On neutrino and charged lepton masses and mixings: A view from the electroweak-scale right-handed neutrino model

Trinh Le

work done in collaboration with Prof. P.Q. Hung University of Virginia, USA

PPP11, Taipei, Taiwan

May 14, 2015

Outline

(1) Motivation
(2) Overview

- Seesaw Mechanism
- Minimal EW ν_{R} Model
- Discrete Symmetry A_{4}
(3) Model of neutrino masses

4) Source of differences between $V_{C K M}$ and $U_{P M N S}$
(5) Implications
(6) Summary

Motivation

The discovery of neutrino oscillation

- have revealed many valuable information concerning the mixing matrix $U_{P M N S}$ and the Δm^{2} in the neutrino sector.
- first evidence of physics beyond the Standard Model (BSM).

Motivation

The discovery of neutrino oscillation

- have revealed many valuable information concerning the mixing matrix $U_{P M N S}$ and the Δm^{2} in the neutrino sector.
- first evidence of physics beyond the Standard Model (BSM).

Many puzzle questions!!!

Motivation

- The origin of neutrino masses?
- Why is the mass of neutrino so tiny $\left(m_{\nu}<O(e V)\right)$?
- Can we access experimentally the physics that are responsible for the tininess of the neutrino masses and their mixings?
- Why is the leptonic mixing matrix $U_{P M N S}$ so different from $V_{C K M}$ of the quark sector?

Motivation

- The origin of neutrino masses?
- Why is the mass of neutrino so tiny $\left(m_{\nu}<O(e V)\right)$?
- Can we access experimentally the physics that are responsible for the tininess of the neutrino masses and their mixings?
- Why is the leptonic mixing matrix $U_{P M N S}$ so different from $V_{C K M}$ of the quark sector?

Motivation

${ }^{1}$ Werner Rodejohann, 2012

Motivation

- For the quark sector we use the Cabibbo-Kobayashi-Maskawa (CKM) matrix ${ }^{1}$
$\left|V_{C K M}\right|=\left(\begin{array}{ccc}0.97428 \pm 0.00015 & 0.2253 \pm 0.0007 & 0.00347_{-0.00012}^{+0.00016} \\ 0.2252 \pm 0.0007 & 0.97345_{-0.00016}^{+0.00015} & 0.0410_{-0.0007}^{+0.0011} \\ 0.00862_{-0.00020}^{+0.00026} & 0.0403_{-0.0007}^{+0.0011} & 0.999152_{-0.0000045}^{+0.000030}\end{array}\right)$
which is really close to a unit matrix.

[^0]
Motivation

- For the quark sector we use the Cabibbo-Kobayashi-Maskawa (CKM) matrix ${ }^{1}$

$$
\left|V_{C K M}\right|=\left(\begin{array}{ccc}
0.97428 \pm 0.00015 & 0.2253 \pm 0.0007 & 0.00347_{-0.00012}^{+0.00016} \\
0.2252 \pm 0.0007 & 0.97345_{-0.00016}^{+0.00015} & 0.0410_{-0.0007}^{+0.0011} \\
0.00862_{-0.00020}^{+0.00026} & 0.0403_{-0.0007}^{+0.0011} & 0.999152_{-0.0000045}^{+0.000030}
\end{array}\right)
$$

which is really close to a unit matrix.

- For the lepton sector, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix is used to study the mixings ${ }^{1}$

$$
\left|U_{P M N S}\right|=\left(\begin{array}{lll}
0.779 \ldots 0.848 & 0.510 \ldots 0.604 & 0.122 \ldots 0.190 \\
0.183 \ldots 0.568 & 0.385 \ldots 0.728 & 0.613 \ldots 0.794 \\
0.200 \ldots 0.576 & 0.408 \ldots 0.742 & 0.589 \ldots 0.775
\end{array}\right)
$$

[^1]
Motivation

- Logical understanding of PMNS matrix within the framework of Electroweak-scale Right-handed Neutrino (EW ν_{R}) Model
- Nature of differences between CKM and PMNS matrices
- Extracting $\mathcal{M}_{/} \mathcal{M}_{l}{ }^{\dagger}$ for the charged lepton sector

Neutrino masses

Dirac mass

Dirac neutrino masses are the neutrino analogues of the SM quark and charged lepton masses. They come from Yukawa coupling to the SM Higgs field $\tilde{\Phi}$

Dirac neutrino masses do not mix neutrinos and antineutrinos \rightarrow lepton number is conserved

Neutrino masses

Majorana mass of ν_{R}

Majorana masses do mix ν and $\bar{\nu} \rightarrow$ lepton number is violated

Seesaw Mechanism

A generic model used to understand the observed neutrino masses $(\sim \mathrm{O}(\mathrm{eV}))$, compared to those of quarks and charged leptons which are millions of times heavier.

Seesaw Mechanism

A generic model used to understand the observed neutrino masses $(\sim \mathrm{O}(\mathrm{eV}))$, compared to those of quarks and charged leptons which are millions of times heavier.

With $\chi \equiv \sigma_{2} \nu_{R}^{*}$ and $\nu \equiv \nu_{L}$ the mass terms can be written as

$$
\left(\begin{array}{ll}
\nu^{T} & \chi^{T}
\end{array}\right) \underbrace{\left(\begin{array}{cc}
0 & m_{\nu}^{D} \\
m_{\nu}^{D} & M_{R}
\end{array}\right)}_{\mathrm{M}} \sigma_{2}\binom{\nu}{\chi}
$$

Seesaw Mechanism

With the assumption: $m_{\nu}^{D} \ll M_{R}$, diagonalizing the matrix \mathbf{M} gives eigenvalues

$$
m_{\nu} \approx \frac{\left(m_{\nu}^{D}\right)^{2}}{M_{R}} \text { and } M_{R}
$$

Seesaw Mechanism

With the assumption: $m_{\nu}^{D} \ll M_{R}$, diagonalizing the matrix \mathbf{M} gives eigenvalues

$$
m_{\nu} \approx \frac{\left(m_{\nu}^{D}\right)^{2}}{M_{R}} \text { and } M_{R}
$$

Experimental neutrino mass

- Cosmological constraints ${ }^{2}: \sum m_{\nu}<0.23 \mathrm{eV}$
- Neutrino oscillation experiments ${ }^{3}$: the largest Δm^{2} is $\Delta m_{a t m}^{2} \cong 2.4 \times 10^{-3} \mathrm{eV}^{2} \Rightarrow$ the heaviest $m_{\nu} \gtrsim 4.9 \times 10^{-2} \mathrm{eV}$.

Cosmology + Oscillation: $4.9 \times 10^{-2} \mathrm{eV} \lesssim m_{\nu}^{\text {heaviest }} \lesssim 0.23 \mathrm{eV}$

[^2]- ν_{R} is a singlet under $S U(2)_{L} \times U(1)_{Y}$.
- $M_{R} \sim$ Grand Unified (GUT) mass scale of $10^{16} \mathrm{GeV}$ naturally.
$\rightarrow M_{R}$ is too large.
- ν_{R} is a singlet under $S U(2)_{L} \times U(1)_{Y}$.
- $M_{R} \sim$ Grand Unified (GUT) mass scale of $10^{16} \mathrm{GeV}$ naturally.
$\rightarrow M_{R}$ is too large.

Therefore, one can not produce and detect ν_{R} at the LHC. Or, the seesaw mechanism is not testable!

- ν_{R} is a singlet under $S U(2)_{L} \times U(1)_{Y}$.
- $M_{R} \sim$ Grand Unified (GUT) mass scale of $10^{16} \mathrm{GeV}$ naturally.
$\rightarrow M_{R}$ is too large.

Therefore, one can not produce and detect ν_{R} at the LHC. Or, the seesaw mechanism is not testable!

Questions

- Can we make the Seesaw testable?
- ν_{R} is a singlet under $S U(2)_{L} \times U(1)_{Y}$.
- $M_{R} \sim$ Grand Unified (GUT) mass scale of $10^{16} \mathrm{GeV}$ naturally.
$\rightarrow M_{R}$ is too large.

Therefore, one can not produce and detect ν_{R} at the LHC. Or, the seesaw mechanism is not testable!

Questions

- Can we make the Seesaw testable?
- Can M_{R} be of the order of $\Lambda_{E W}(246 \mathrm{GeV})$?
- ν_{R} is a singlet under $S U(2)_{L} \times U(1)_{Y}$.
- $M_{R} \sim$ Grand Unified (GUT) mass scale of $10^{16} \mathrm{GeV}$ naturally.
$\rightarrow M_{R}$ is too large.

Therefore, one can not produce and detect ν_{R} at the LHC. Or, the seesaw mechanism is not testable!

Questions

- Can we make the Seesaw testable?
- Can M_{R} be of the order of $\Lambda_{E W}(246 \mathrm{GeV})$?
- Keeping the gauge group $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$?
- ν_{R} is a singlet under $S U(2)_{L} \times U(1)_{Y}$.
- $M_{R} \sim$ Grand Unified (GUT) mass scale of $10^{16} \mathrm{GeV}$ naturally.
$\rightarrow M_{R}$ is too large.

Therefore, one can not produce and detect ν_{R} at the LHC. Or, the seesaw mechanism is not testable!

Questions

- Can we make the Seesaw testable?
- Can M_{R} be of the order of $\Lambda_{E W}(246 \mathrm{GeV})$?
- Keeping the gauge group $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$?
- No more forces added?

The Non-sterile Electroweak-scale Right-handed neutrino $\left(E W \nu_{R}\right)$ Model
[P. Q. Hung, PLB 649 (2007)]

The EW ν_{R} Model ${ }^{4}$

The EW ν_{R} Model ${ }^{4}$

What is it?
${ }^{4}$ P.Q. Hung, 2007

The EW ν_{R} Model ${ }^{4}$

What is it?
Model in which right-handed neutrinos have Majorana masses of the order of $\Lambda_{E W}$ naturally.
${ }^{4}$ P.Q. Hung, 2007

The EW ν_{R} Model ${ }^{4}$

What is it?
Model in which right-handed neutrinos have Majorana masses of the order of $\Lambda_{E W}$ naturally.

Gauge group
$S U(3)_{C} \times S U(2) \times U(1)_{Y}$
${ }^{4}$ P.Q. Hung, 2007

The EW ν_{R} Model ${ }^{4}$

What is it?
Model in which right-handed neutrinos have Majorana masses of the order of $\Lambda_{E W}$ naturally.

Gauge group
$S U(3)_{C} \times S U(2) \times U(1)_{Y}$

Model Content
What's new???
${ }^{4}$ P.Q. Hung, 2007

Model Content

Leptons

Model Content

Leptons

$$
\iota_{L}=\binom{\nu_{L}}{e_{L}}
$$

Model Content

Leptons

$$
I_{L}=\binom{\nu_{L}}{e_{L}} \longleftrightarrow I_{R}^{M}=\binom{\nu_{R}}{e_{R}^{M}}
$$

Model Content

Leptons

$$
I_{L}=\binom{\nu_{L}}{e_{L}} \quad \longleftrightarrow \quad I_{R}^{M}=\binom{\nu_{R}}{e_{R}^{M}}
$$

e_{R}

Model Content

Leptons

$$
\begin{aligned}
I_{L}=\binom{\nu_{L}}{e_{L}} & \longleftrightarrow I_{R}^{M}=\binom{\nu_{R}}{e_{R}^{M}}, \\
e_{R} & \longleftrightarrow e_{L}^{M}
\end{aligned}
$$

Model Content

Leptons

$$
\begin{aligned}
I_{L}=\binom{\nu_{L}}{e_{L}} & \longleftrightarrow I_{R}^{M}=\binom{\nu_{R}}{e_{R}^{M}}, \\
e_{R} & \longleftrightarrow e_{L}^{M}
\end{aligned}
$$

Quarks

Model Content

Leptons

$$
\begin{aligned}
I_{L}=\binom{\nu_{L}}{e_{L}} & \longleftrightarrow I_{R}^{M}=\binom{\nu_{R}}{e_{R}^{M}}, \\
e_{R} & \longleftrightarrow e_{L}^{M}
\end{aligned}
$$

Quarks

$$
\begin{gathered}
q_{L}=\binom{u_{L}}{d_{L}} \longleftrightarrow q_{R}^{M}=\binom{u_{R}^{M}}{d_{R}^{M}}, \\
u_{R}, d_{R} \longleftrightarrow u_{L}^{M}, d_{L}^{M}
\end{gathered}
$$

Model Content

Leptons

$$
\begin{aligned}
I_{L}=\binom{\nu_{L}}{e_{L}} & \longleftrightarrow I_{R}^{M}=\binom{\nu_{R}}{e_{R}^{M}}, \\
e_{R} & \longleftrightarrow e_{L}^{M}
\end{aligned}
$$

Quarks

$$
\begin{aligned}
q_{L}=\binom{u_{L}}{d_{L}} & \longleftrightarrow q_{R}^{M}=\binom{u_{R}^{M}}{d_{R}^{M}}, \\
u_{R}, d_{R} & \longleftrightarrow u_{L}^{M}, d_{L}^{M}
\end{aligned}
$$

Mirror particles are totally different from the SM particles!
(1) EW precision
V. Hoang, P. Q. Hung and A. S. Kamat, Nucl. Phys. B 877, 190 (2013) [arXiv:1303.0428 [hep-ph]].
(2) Implications of the $125-\mathrm{GeV}$ SM-like scalar: Dr Jekyll (SM-like) and Mr Hyde (very different from SM) V. Hoang, P. Q. Hung and A. S. Kamat, arXiv:1412.0343 [hep-ph] (To appear in Nuclear Physics B).
(3) Signals of mirror fermions (Paper in preparation) P.Q. Hung, Trinh Le (UVA); Nandi, Chakdar, Gosh (Oklahoma State University).

Question

What is the Higgs sector to give Majorana and Dirac mass?

Majorana mass of ν_{R}

Majorana mass of ν_{R}

$$
\begin{equation*}
L_{M}=g_{M}\left(l_{R}^{M, T} \sigma_{2}\right)\left(i \tau_{2} \tilde{\chi}\right) l_{R}^{M} \tag{1}
\end{equation*}
$$

Majorana mass of ν_{R}

$$
\begin{align*}
L_{M} & =g_{M}\left(l_{R}^{M, T} \sigma_{2}\right)\left(i \tau_{2} \tilde{\chi}\right) l_{R}^{M} \tag{1}\\
& =g_{M} \nu_{R}^{T} \sigma_{2} \nu_{R} \chi^{0}-\frac{1}{\sqrt{2}} \nu_{R}^{T} \sigma_{2} e_{R}^{M} \chi^{+}+\ldots \\
& \tilde{\chi}=(3, Y / 2=1) \\
& \tilde{\chi}=\frac{1}{\sqrt{2}} \vec{\tau} \cdot \vec{\chi}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} \chi^{+} & \chi^{++} \\
\chi^{0} & -\frac{1}{\sqrt{2}} \chi^{+}
\end{array}\right)
\end{align*}
$$

Majorana mass of ν_{R}

$$
\begin{align*}
L_{M} & =g_{M}\left(l_{R}^{M, T} \sigma_{2}\right)\left(i \tau_{2} \tilde{\chi}\right) l_{R}^{M} \tag{1}\\
& =g_{M} \nu_{R}^{T} \sigma_{2} \nu_{R} \chi^{0}-\frac{1}{\sqrt{2}} \nu_{R}^{T} \sigma_{2} e_{R}^{M} \chi^{+}+\ldots \\
& \tilde{\chi}=(3, Y / 2=1) \\
& \tilde{\chi}=\frac{1}{\sqrt{2}} \vec{\tau} \cdot \vec{\chi}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} \chi^{+} & \chi^{++} \\
\chi^{0} & -\frac{1}{\sqrt{2}} \chi^{+}
\end{array}\right)
\end{align*}
$$

From (1), the Majorana mass $M_{R}=g_{M} v_{M}$ where
$\left\langle\chi^{0}\right\rangle=v_{M} \sim \Lambda_{E W}$
Z-boson decay width: $M_{R}>M_{Z} / 2$

Dirac mass

Dirac mass

The singlet scalar field ϕ_{S} couples to fermion bilinear.

$$
\begin{align*}
L_{S} & =g_{S l} \bar{l}_{L} \phi_{S} l_{R}^{M}+h . c . \tag{2}\\
& =g_{S l} \bar{\nu}_{L} \phi_{S} \nu_{R}+\ldots+h . c .
\end{align*}
$$

$$
\phi_{S}(1, \quad Y / 2=0)
$$

From (2), Dirac mass: $m_{\nu}^{D}=g_{S l} v_{S}$ where $\left\langle\phi_{S}\right\rangle=v_{S}$.

Charged fermion mass

We also need a Higgs doublet for charged fermion masses (leptons and quarks)

$$
\begin{align*}
& L_{Y_{l}}=g_{l} \bar{l}_{L} \Phi e_{R}+h . c . \tag{3}\\
& L_{Y_{q}}=g_{q} \bar{q}_{L} \Phi u_{R}+h . c . \tag{4}\\
& \Phi=\binom{\phi^{+}}{\phi^{0}}, \quad\left\langle\phi^{0}\right\rangle=\frac{v_{2}}{\sqrt{2}}
\end{align*}
$$

ρ parameter at the tree level

In the Standard Model,

$$
\rho \equiv \frac{M_{W}^{2}}{M_{Z}^{2} \cos ^{2} \theta_{W}}
$$

Experimentally, $\rho=1$ to a good precision.
ρ parameter at the tree level

In Higgs sector ${ }^{5}$: a number of Higgs multiplets ϕ_{k} of isospin T_{k} and hypercharge Y_{k}

$$
\rho=\frac{\sum_{k}\left[T_{k}\left(T_{k}+1\right)-\frac{1}{4} Y_{k}^{2}\right] v_{k}^{2} c_{k}}{\sum_{k} \frac{1}{2} Y_{k}^{2} v_{k}^{2}}
$$

where $v_{k} \equiv \mathrm{VEV}$ of the neutral component of the Higgs multiplet $c_{k}=1 / 2$ (1) for real (complex) multiplet
ρ parameter at the tree level

In Higgs sector ${ }^{5}$: a number of Higgs multiplets ϕ_{k} of isospin T_{k} and hypercharge Y_{k}

$$
\rho=\frac{\sum_{k}\left[T_{k}\left(T_{k}+1\right)-\frac{1}{4} Y_{k}^{2}\right] v_{k}^{2} c_{k}}{\sum_{k} \frac{1}{2} Y_{k}^{2} v_{k}^{2}}
$$

where $v_{k} \equiv \mathrm{VEV}$ of the neutral component of the Higgs multiplet $c_{k}=1 / 2$ (1) for real (complex) multiplet

One would have $\rho \neq 1$ when both a triplet and a doublet are present.
${ }^{5}$ Phys. Lett. B, 568 (2003)
ρ parameter at the tree level
In order to restore Custodial global $\operatorname{SU}(2)$ symmetry $(\rho=1)$ at three level (Chanowitz, Golden and Georgi, Machacek), we add

$$
\xi=(3, Y / 2=0)
$$

and group it with $\tilde{\chi}=(3, Y / 2=1)$ in

$$
\chi=\left(\begin{array}{ccc}
\chi^{0} & \xi^{+} & \chi^{++} \tag{5}\\
\chi^{-} & \xi^{0} & \xi^{+} \\
\chi^{--} & \xi^{-} & \chi^{0 *}
\end{array}\right)
$$

The doublet Higgs can be written as

$$
\Phi=\left(\begin{array}{ll}
\phi^{0 *} & \phi^{+} \tag{6}\\
\phi^{-} & \phi^{0}
\end{array}\right)
$$

Proper vacuum alignment for custodial symmetry

$$
\begin{gathered}
\left\langle\chi^{0}\right\rangle=\left\langle\xi^{0}\right\rangle=v_{M} \\
\langle\chi\rangle=\left(\begin{array}{ccc}
v_{M} & 0 & 0 \\
0 & v_{M} & 0 \\
0 & 0 & v_{M}
\end{array}\right), \text { and }\langle\Phi\rangle=\left(\begin{array}{cc}
\frac{v_{2}}{\sqrt{2}} & 0 \\
0 & \frac{v_{2}}{\sqrt{2}}
\end{array}\right)
\end{gathered}
$$

With this vacuum alignment $S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{e m}$ and the global $S U(2)_{D}$ custodial symmetry is preserved.

Model of neutrino masses

It was conjectured by Cabibbo ${ }^{6}$ and Wolfenstein ${ }^{7}$ independently that

$$
U_{C W}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \tag{7}\\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right)
$$

[^3]
Model of neutrino masses

It was conjectured by Cabibbo ${ }^{6}$ and Wolfenstein ${ }^{7}$ independently that

$$
U_{C W}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \tag{7}\\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right)
$$

Experimentally, $U_{P M N S} \simeq U_{C W}$
What's kind of symmetry that give rise to $U_{C W}$?

[^4]
Model of neutrino masses

It was conjectured by Cabibbo ${ }^{6}$ and Wolfenstein ${ }^{7}$ independently that

$$
U_{C W}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \tag{7}\\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right)
$$

Experimentally, $U_{P M N S} \simeq U_{C W}$
What's kind of symmetry that give rise to $U_{C W}$?

A_{4} Symmetry

[^5]
A_{4} Symmetry

A_{4} Symmetry

Why A_{4} ?

A_{4} Symmetry

Why A_{4} ?

With 3 families, we need a group containing a 3 representation.
The simplest one is A_{4}.

A_{4} Symmetry

What is A_{4} ?

A_{4} Symmetry

What is A_{4} ?

- Non-Abelian discrete group
- Four irreducible representations: Three 1-dimension representations called $\underline{1}, \underline{1}$ ', $\underline{1}^{\prime \prime}$ and One 3 -dimension representation called $\underline{3}$

A_{4} Symmetry

If denoting $\underline{3}$ as $(1,2,3)$ then
Multiplication rule ${ }^{8}$

$$
\begin{gathered}
\underline{3} \times \underline{3}=\underline{1}(11+22+33)+\underline{1}^{\prime}\left(11+\omega^{2} 22+\omega 33\right)+\underline{1}^{\prime \prime}\left(11+\omega 22+\omega^{2} 33\right) \\
+\underline{3}(23,31,12)+\underline{3}(32,13,21) \\
\text { where } \omega=e^{i 2 \pi / 3}
\end{gathered}
$$

[^6]
Model of neutrino masses

The form of $U_{C W}$ in our work is contained in ν sector, NOT in charged lepton sector as in some generic models.

Model of neutrino masses

The form of $U_{C W}$ in our work is contained in ν sector, NOT in charged lepton sector as in some generic models.

Assignments of the model's content

Field	$(\nu, l)_{L}$	$\left(\nu, l^{M}\right)_{R}$	e_{R}	e_{L}^{M}	$\phi_{0 S}$	$\tilde{\phi}_{S}$	Φ_{2}
A_{4}	$\underline{3}$	$\underline{3}$	$\underline{3}$	$\underline{3}$	$\underline{1}$	$\underline{3}$	$\underline{1}$

Neutrino Dirac mass

The Yukawa interactions

$$
\begin{equation*}
L_{S}=\bar{l}_{L}\left(g_{\mathrm{o} S} \phi_{\mathrm{o} S}+g_{1 S} \tilde{\phi}_{S}+g_{2 S} \tilde{\phi}_{S}\right) l_{R}^{M}+h . c . \tag{8}
\end{equation*}
$$

Neutrino Dirac mass

The Yukawa interactions

$$
\begin{align*}
L_{S}= & \bar{l}_{L}\left(g_{\mathrm{o} S} \phi_{\mathrm{oS}}+g_{1 S} \tilde{\phi}_{S}+g_{2 S} \tilde{\phi}_{S}\right) l_{R}^{M}+\text { h.c. } \tag{8}\\
& \underline{3} \otimes(\underline{1} \underline{\underline{3}}) \underline{3}
\end{align*}
$$

where $g_{1 S}$ and $g_{2 S}$ reflect the two different ways that $\tilde{\phi}_{S}$ couples to the product of \bar{l}_{L} and l_{R}^{M}.

[^7]
Neutrino Dirac mass

The Yukawa interactions

$$
\begin{align*}
L_{S}= & \bar{l}_{L}\left(g_{\mathrm{o} S} \phi_{\mathrm{o} S}+g_{1 S} \tilde{\phi}_{S}+g_{2 S} \tilde{\phi}_{S}\right) l_{R}^{M}+h . c . \tag{8}\\
& \underline{3} \otimes(\underline{1} \underline{3} \underline{3}) \underline{3}
\end{align*}
$$

where $g_{1 S}$ and $g_{2 S}$ reflect the two different ways that $\tilde{\phi}_{S}$ couples to the product of \bar{l}_{L} and l_{R}^{M}.

Multiplication rule ${ }^{9}$

$$
\begin{aligned}
\underline{3} \times \underline{3} & =\underline{1}(11+22+33)+\underline{1}^{\prime}\left(11+\omega^{2} 22+\omega 33\right)+\underline{1}^{\prime \prime}\left(11+\omega 22+\omega^{2} 33\right) \\
& +\underline{3}(23,31,12)+\underline{3}(32,13,21)
\end{aligned}
$$

[^8]
Neutrino Dirac mass

Neutrino Dirac mass matrix:

$$
M_{\nu}^{D}=\left(\begin{array}{lll}
g_{\mathrm{o} S} v_{\mathrm{o}} & g_{1 S} v_{3} & g_{2 S} v_{2} \tag{9}\\
g_{2 S} v_{3} & g_{\mathrm{o} S} v_{\mathrm{o}} & g_{1 S} v_{1} \\
g_{1 S} v_{2} & g_{2 S} v_{1} & g_{\mathrm{o} S} v_{\mathrm{o}}
\end{array}\right)
$$

where $v_{\mathrm{o}}=\left\langle\phi_{\mathrm{o} S}\right\rangle$ and $v_{i}=\left\langle\phi_{i S}\right\rangle$ with $\imath=1,2,3$.

Neutrino Dirac mass

If $v_{1}=v_{2}=v_{3}=v \sim O\left(10^{5} \mathrm{eV}\right)^{10}, M_{\nu}^{D}$ can be diagonalized as follows

$$
U_{\nu_{L}}^{\dagger} M_{\nu}^{D} U_{\nu_{R}}=U_{\nu}^{\dagger} M_{\nu}^{D} U_{\nu}=\left(\begin{array}{ccc}
m_{1 D} & 0 & 0 \tag{10}\\
0 & m_{2 D} & 0 \\
0 & 0 & m_{3 D}
\end{array}\right)
$$

where $U_{\nu}=U_{C W}^{\dagger}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2}\end{array}\right)$
Notice that $U_{\nu_{L}}=U_{\nu_{R}}=U_{\nu}$.

Charged-lepton mass

${ }^{11}$ P.Q. Hung, 2007

Charged-lepton mass

- Charged leptons can couple with singlet Higgs field which give rise to mass mixing between charged SM and mirror leptons. However, the mixing is very small so its contribution to the charged-lepton mass matrix can be negligible ${ }^{11}$.

Charged-lepton mass

- Charged leptons can couple with singlet Higgs field which give rise to mass mixing between charged SM and mirror leptons. However, the mixing is very small so its contribution to the charged-lepton mass matrix can be negligible ${ }^{11}$.
- The Yukawa couplings (with Higgs doublet)

$$
\begin{align*}
L_{Y_{l}} & =g_{l} \bar{l}_{L} \Phi_{2} e_{R}+h . c . \tag{11}\\
& =\underline{3} \otimes \underline{1} \otimes \underline{3}
\end{align*}
$$

Charged lepton mass

The charged-lepton mass matrix is

$$
\mathcal{M}_{I}=g_{l} \frac{v_{2}}{\sqrt{2}}\left(\begin{array}{lll}
1 & 0 & 0 \tag{12}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Diagonalizing \mathcal{M}_{I} by $U_{I L}^{\dagger} \mathcal{M}_{I} U_{I R}$ gives rise to

$$
U_{I L}=\left(\begin{array}{lll}
1 & 0 & 0 \tag{13}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The PMNS Matrix

$$
U_{\nu_{L}}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega^{2} & \omega \\
1 & \omega & \omega^{2}
\end{array}\right) ; U_{I L} \simeq\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The PMNS Matrix

$$
U_{P M N S}=U_{\nu_{L}}^{\dagger} U_{I L}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \tag{14}\\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right)
$$

which mainly comes from neutrino mixing matrix.

Why is the $U_{P M N S}$ different from the $V_{C K M}$?

- It has known that $V_{C K M}=U_{U, L}^{\dagger} U_{D, L}$ comes totally from couplings between quarks and Higgs doublet.
- We are showing that the $U_{P M N S}=U_{\nu_{L}}^{\dagger} U_{I L}$ comes from
- $U_{I L} \Longleftarrow$ couplings between leptons and Higgs doublet
- $U_{\nu_{L}} \Longleftarrow$ couplings between leptons and Higgs singlets

Why is the $U_{\text {PMNS }}$ different from the $V_{C K M}$?

In a nutshell
There are two different sources of PMNS matrix whereas the CKM matrix comes totally from one source.

One expects a natural difference between $V_{C K M}$ and $U_{P M N S}$.

Ansätz for $U_{I L}$

Ansätz for $U_{\text {IL }}$

A_{4} requires degenerate charged leptons e, $\mu, \tau \Rightarrow U_{I L}=\mathbb{I}$.

Ansätz for $U_{\text {IL }}$
A_{4} requires degenerate charged leptons e, $\mu, \tau \Rightarrow U_{l L}=\mathbb{I}$.
Breaking A_{4} by making some deviations from $U_{I L}$

Ansätz for $U_{I L}$
A_{4} requires degenerate charged leptons e, $\mu, \tau \Rightarrow U_{I L}=\mathbb{I}$.
Breaking A_{4} by making some deviations from $U_{\text {IL }}$
We can use Wolfenstein parameters to construct $U_{\text {IL }}$.

$$
U_{I L} \rightarrow U_{I L}=\left(\begin{array}{ccc}
1-\frac{\lambda_{l}^{2}}{2} & \lambda_{l} & A_{l} \lambda_{l}^{3}\left(\rho_{l}-i \eta_{l}\right) \tag{15}\\
-\lambda_{l} & 1-\frac{\lambda_{l}^{2}}{2} & A_{l} \lambda_{l}^{2} \\
A_{l} \lambda_{l}^{3}\left(1-\rho_{l}-i \eta_{l}\right) & -A_{l} \lambda_{l}^{2} & 1
\end{array}\right)
$$

where $A_{l}, \rho_{l}, \eta_{l}$ are real parameters of $\mathrm{O}(1)$.

Ansätz for $U_{\text {IL }}$

$U_{P M N S}=U_{\nu_{L}}^{\dagger} U_{I L}=$

$$
\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
A_{l} \lambda_{l}^{3}\left(1-\rho_{l}-i \eta_{l}\right)-\frac{\lambda_{l}^{2}}{2}-\lambda_{l}+1 & -\left(A_{l}+\frac{1}{2}\right) \lambda_{l}^{2}+\lambda_{l}+1 & A_{l} \lambda_{l}^{3}\left(\rho_{l}-i \eta_{l}\right)+A_{l} \lambda_{l}^{2}+1 \\
\omega^{2} A_{l} \lambda_{l}^{3}\left(1-\rho_{l}-i \eta_{l}\right)-\frac{\lambda_{l}^{2}}{2}-\omega \lambda_{l}+1 & -\left(\omega^{2} A_{l}+\frac{\omega}{2}\right) \lambda_{l}^{2}+\lambda_{l}+\omega & A_{l} \lambda_{l}^{3}\left(\rho_{l}-i \eta_{l}\right)+\omega A_{l} \lambda_{l}^{2}+\omega^{2} \\
\omega A_{l} \lambda_{l}^{3}\left(1-\rho_{l}-i \eta_{l}\right)-\frac{\lambda_{l}^{2}}{2}-\omega^{2} \lambda_{l}+1 & -\left(\omega A_{l}+\frac{\omega^{2}}{2}\right) \lambda_{l}^{2}+\lambda_{l}+\omega^{2} & A_{l} \lambda_{l}^{3}\left(\rho_{l}+i \eta_{l}\right)+\omega^{2} A_{l} \lambda_{l}^{2}+\omega
\end{array}\right)
$$

Toward $\mathcal{M}, \mathcal{M}_{l}{ }^{\dagger}$

Diagonalizing mass matrices \mathcal{M}_{l} and $\mathcal{M}_{l}{ }^{\dagger}$ as follows.

$$
U_{I L}^{\dagger} \mathcal{M}_{I} U_{I R} \quad ; \quad U_{I R}^{\dagger} \mathcal{M}_{l}^{\dagger} U_{I L}
$$

Therefore,

$$
\begin{gather*}
U_{I L}^{\dagger} \mathcal{M}_{l} \mathcal{M}_{l}^{\dagger} U_{I L}=\left(\begin{array}{ccc}
m_{e}{ }^{2} & 0 & 0 \\
0 & m_{\mu}^{2} & 0 \\
0 & 0 & m_{\tau}{ }^{2}
\end{array}\right) \\
\mathcal{M}_{I} \mathcal{M}_{l}^{\dagger}=U_{I L} \cdot\left(\begin{array}{ccc}
m_{e}{ }^{2} & 0 & 0 \\
0 & m_{\mu}{ }^{2} & 0 \\
0 & 0 & m_{\tau}{ }^{2}
\end{array}\right) \cdot U_{I L}^{\dagger} \tag{16}
\end{gather*}
$$

Toward $\mathcal{M}, \mathcal{M}_{1}{ }^{\dagger}$

$$
\Rightarrow \text { Up to } \mathrm{O}\left(\lambda_{l}^{2}\right)
$$

$$
\left(\begin{array}{ccc}
\left(1-\lambda_{l}^{2}\right) m_{e}^{2}+\lambda_{l} m_{\mu}^{2} & \lambda_{l}\left(m_{\mu}^{2}-m_{e}^{2}\right) & 0 \tag{17}\\
\lambda_{l}\left(m_{\mu}^{2}-m_{e}^{2}\right) & \left(1-\lambda_{l}^{2}\right) m_{\mu}^{2}+\lambda_{l} m_{e}^{2} & A \lambda_{l}^{2}\left(m_{\tau}^{2}-m_{\mu}^{2}\right) \\
0 & A_{l} \lambda_{l}^{2}\left(m_{\tau}^{2}-m_{\mu}^{2}\right) & m_{\tau}^{2}
\end{array}\right)
$$

A_{l}, λ_{l} are extracted from $U_{P M N S}$ and experimental values m_{e}, m_{μ}, m_{τ}.

Summary

- The differences between CKM and PMNS matrices come from the fact that $U_{P M N S}$ is constructed by couplings with Higgs singlets and mainly comes from neutrinos.

Summary

- The differences between CKM and PMNS matrices come from the fact that $U_{P M N S}$ is constructed by couplings with Higgs singlets and mainly comes from neutrinos.
- The simplicity of our approach as compared with previous works is due to the source of the neutrino Dirac masses which comes from the Higgs singlets as opposed to Higgs doublets.

Summary

- The differences between CKM and PMNS matrices come from the fact that $U_{P M N S}$ is constructed by couplings with Higgs singlets and mainly comes from neutrinos.
- The simplicity of our approach as compared with previous works is due to the source of the neutrino Dirac masses which comes from the Higgs singlets as opposed to Higgs doublets.
- By slightly breaking A_{4} symmetry, we avoided the case of degenerate charged-lepton mass and were able to extract $\mathcal{M}_{1} \mathcal{M}_{1}{ }^{\dagger}$ for the charged-lepton sector (as well as the quark sector).

Thank you!

Appendix

1. Characters of A_{4} reperesentations

A_{4}	h	χ_{1}	$\chi_{1^{\prime}}$	$\chi_{1^{\prime \prime}}$	χ_{3}
C_{1}	1	1	1	1	3
C_{3}	2	1	1	1	-1
C_{4}	3	1	ω	ω^{2}	0
$C_{4^{\prime}}$	3	1	ω^{2}	ω	0

where $\omega=e^{i 2 \pi / 3}$ which is the cube root of unity.

Appendix

2. Constraints on A, λ, ρ and η
(1) $0.779<\frac{1}{\sqrt{3}}\left|A \lambda^{3}(1-\rho-i \eta)-\frac{\lambda^{2}}{2}-\lambda+1\right|<0.848$
(2) $0.510<\frac{1}{\sqrt{3}}\left|-\left(A+\frac{1}{2}\right) \lambda^{2}+\lambda+1\right|<0.604$
(3) $0.122<\frac{1}{\sqrt{3}}\left|A \lambda^{3}(\rho-i \eta)+A \lambda^{2}+1\right|<0.190$
(4) $0.183<\frac{1}{\sqrt{3}}\left|\omega^{2} A \lambda^{3}(1-\rho-i \eta)-\frac{\lambda^{2}}{2}-\omega \lambda+1\right|<0.568$
(5) $0.385<\frac{1}{\sqrt{3}}\left|-\left(\omega^{2} A+\frac{\omega}{2}\right) \lambda^{2}+\lambda+\omega\right|<0.728$
(6) $0.613<\frac{1}{\sqrt{3}}\left|A \lambda^{3}(\rho-i \eta)+\omega A \lambda^{2}+\omega^{2}\right|<0.794$
(7) $0.200<\frac{1}{\sqrt{3}}\left|\omega A \lambda^{3}(1-\rho-i \eta)-\frac{\lambda^{2}}{2}-\omega^{2} \lambda+1\right|<0.576$
(8) $0.408<\frac{1}{\sqrt{3}}\left|-\left(\omega A+\frac{\omega^{2}}{2}\right) \lambda^{2}+\lambda+\omega^{2}\right|<0.742$
(9) $0.589<\frac{1}{\sqrt{3}}\left|A \lambda^{3}(\rho-i \eta)+\omega^{2} A \lambda^{2}+\omega\right|<0.775$
$-4.8517<A<-4.4580, \quad-0.2404<\lambda<-0.1882$,

Appendix

3. Sample numerical results

Taking upper limit values of $A=-4.4580, \lambda=-0.1882$, $\rho=-5.5712$ and $\eta=4.8912$

$$
\begin{aligned}
U_{l} & =\left(\begin{array}{ccc}
0.9823 & -0.1882 & -0.1656-0.1454 i \\
0.1882 & 0.9823 & -0.1579 \\
0.1953-0.1454 i & 0.1579 & 1
\end{array}\right) \\
U_{l} U_{l}^{\dagger} & =\left(\begin{array}{ccc}
1.0489 & 0.0261+0.0230 i & -0.0035-0.0026 i \\
0.0261-0.0230 i & 1.0253 & 0.0340+0.0274 i \\
-0.0035+0.0026 i & 0.0340-0.0274 i & 1.0842
\end{array}\right) \\
& \simeq \mathbb{I}
\end{aligned}
$$

Appendix

Using the above numerical U_{l} and putting in the values of $m_{e}=0.51 \times 10^{-3} \mathrm{GeV}, m_{\mu}=0.1057 \mathrm{GeV}$ and $m_{\tau}=1.7768 \mathrm{GeV}$ we get
$\mathcal{M}_{\boldsymbol{\prime}} \mathcal{M}_{\boldsymbol{l}}^{\dagger} \simeq\left(\begin{array}{ccc}0.1537 & 0.0805+0.0725 i & -0.5231-0.4590 i \\ 0.0805-0.0725 i & 0.0895 & -0.4968 \\ -0.5231+0.4590 i & -0.4968 & 3.1573\end{array}\right)$

Appendix

4. Possible signature of $E W \nu_{R}$ model

The fact
(1) ν_{R} interacts with the W and Z (part of a doublet)
(2) Both ν_{R} and e_{R}^{M} interact with ν_{L} and e_{L} through the singlet scalar field ϕ_{S}
Since $m_{\phi_{S}} \sim O\left(10^{5} \mathrm{eV}\right)$, it's possible

$$
\begin{aligned}
\nu_{R} & \rightarrow \nu_{L}+\phi_{S} \\
e_{R}^{M} & \rightarrow e_{L}+\phi_{S}
\end{aligned}
$$

If $m_{\nu_{R}} \lesssim m_{e_{R}^{M}}:$

$$
\begin{aligned}
e_{M}^{R} \rightarrow & \nu_{R}+e_{L}+\bar{\nu}_{L} \\
& \nu_{R} \rightarrow \nu_{L}+\phi_{S}
\end{aligned}
$$

Possible signature of EW ν_{R} model

The heaviest ν_{R} could be pair produced

$$
\begin{aligned}
q+\bar{q} & \rightarrow Z \rightarrow \nu_{R}+\nu_{R} \\
\nu_{R} & \rightarrow e_{R}^{M}+W^{*}(W) \\
e_{R}^{M} & \rightarrow e_{L}+\phi_{S}
\end{aligned}
$$

at a 'displaced' vertex.
If ν_{R} is Majorana

$$
e_{R}^{M,-}+W^{+}+e_{R}^{M,-}+W^{+} \rightarrow e_{L}+e_{L}+W^{+}+W^{+}+2 \phi_{S}
$$

same-sign dilepton event which is distinctively different from the Dirac case!

[^0]: ${ }^{1}$ Werner Rodejohann, 2012

[^1]: ${ }^{1}$ Werner Rodejohann, 2012

[^2]: ${ }^{2}$ Planck 2015 results
 ${ }^{3}$ Particle Data Group

[^3]: ${ }^{6}$ N. Cabibbo, 1978
 ${ }^{7}$ L. Wolfenstein, 1978

[^4]: ${ }^{6}$ N. Cabibbo, 1978
 ${ }^{7}$ L. Wolfenstein, 1978

[^5]: ${ }^{6}$ N. Cabibbo, 1978
 ${ }^{7}$ L. Wolfenstein, 1978

[^6]: ${ }^{8}$ Ernest Ma, 2007

[^7]: ${ }^{9}$ Ernest Ma, 2007

[^8]: ${ }^{9}$ Ernest Ma, 2007

