On neutrino and charged lepton masses and mixings: A view from the electroweak-scale right-handed neutrino model

Trinh Le

work done in collaboration with Prof. P.Q. Hung University of Virginia, USA

PPP11, Taipei, Taiwan

May 14, 2015

Outline

Motivation

- Overview
 - Seesaw Mechanism
 - Minimal EW ν_R Model
 - Discrete Symmetry A₄
- 3 Model of neutrino masses
- 4 Source of differences between V_{CKM} and U_{PMNS}

Implications

The discovery of neutrino oscillation

- have revealed many valuable information concerning the mixing matrix U_{PMNS} and the Δm^2 in the neutrino sector.
- first evidence of physics beyond the Standard Model (BSM).

The discovery of neutrino oscillation

- have revealed many valuable information concerning the mixing matrix U_{PMNS} and the Δm^2 in the neutrino sector.
- first evidence of physics beyond the Standard Model (BSM).

Many puzzle questions!!!

- The origin of neutrino masses?
- Why is the mass of neutrino so tiny $(m_{\nu} < O(eV))$?
- Can we access experimentally the physics that are responsible for the tininess of the neutrino masses and their mixings?
- Why is the leptonic mixing matrix U_{PMNS} so different from V_{CKM} of the quark sector?

- The origin of neutrino masses?
- Why is the mass of neutrino so tiny $(m_{\nu} < O(eV))$?
- Can we access experimentally the physics that are responsible for the tininess of the neutrino masses and their mixings?
- Why is the leptonic mixing matrix U_{PMNS} so different from V_{CKM} of the quark sector?

¹Werner Rodejohann, 2012

 \bullet For the quark sector we use the Cabibbo-Kobayashi-Maskawa (CKM) matrix 1

$$|V_{CKM}| = \begin{pmatrix} 0.97428 \pm 0.00015 & 0.2253 \pm 0.0007 & 0.00347^{+0.0016}_{-0.0012} \\ 0.2252 \pm 0.0007 & 0.97345^{+0.00015}_{-0.00016} & 0.0410^{+0.0011}_{-0.0007} \\ 0.00862^{+0.00026}_{-0.00020} & 0.0403^{+0.0011}_{-0.0007} & 0.999152^{+0.000030}_{-0.000045} \end{pmatrix}$$

which is really close to a unit matrix.

¹Werner Rodejohann, 2012

 \bullet For the quark sector we use the Cabibbo-Kobayashi-Maskawa (CKM) matrix 1

$$|V_{CKM}| = \left(\begin{array}{ccc} 0.97428 \pm 0.00015 & 0.2253 \pm 0.0007 & 0.00347^{+0.00016}_{-0.00012} \\ 0.2252 \pm 0.0007 & 0.97345^{+0.00015}_{-0.00016} & 0.0410^{+0.0011}_{-0.0007} \\ 0.00862^{+0.00026}_{-0.00020} & 0.0403^{+0.0011}_{-0.0007} & 0.999152^{+0.000030}_{-0.000045} \end{array}\right)$$

which is really close to a unit matrix.

 \bullet For the lepton sector, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix is used to study the mixings 1

(0.7790.848	0.5100.604	0.1220.190
$ U_{PMNS} =$	0.1830.568	0.3850.728	0.6130.794
(0.2000.576	0.4080.742	0.5890.775

¹Werner Rodejohann, 2012

- Logical understanding of PMNS matrix within the framework of Electroweak-scale Right-handed Neutrino (EW ν_R) Model
- Nature of differences between CKM and PMNS matrices
- Extracting $\mathcal{M}_{I}\mathcal{M}_{I}^{\dagger}$ for the charged lepton sector

Overview

Seesaw Mechanism

Neutrino masses

Dirac mass

Dirac neutrino masses are the neutrino analogues of the SM quark and charged lepton masses. They come from Yukawa coupling to the SM Higgs field $\tilde{\Phi}$

Dirac neutrino masses do not mix neutrinos and antineutrinos \rightarrow lepton number is conserved

Overview

Seesaw Mechanism

Neutrino masses

Majorana mass of ν_R

Majorana masses do mix ν and $\bar{\nu} \rightarrow$ lepton number is violated

Seesaw Mechanism

Seesaw Mechanism

A generic model used to understand the observed neutrino masses (\sim O(eV)), compared to those of quarks and charged leptons which are millions of times heavier.

Seesaw Mechanism

Seesaw Mechanism

A generic model used to understand the observed neutrino masses (\sim O(eV)), compared to those of quarks and charged leptons which are millions of times heavier.

With $\chi \equiv \sigma_2 \nu_R^*$ and $\nu \equiv \nu_L$ the mass terms can be written as

$$\begin{pmatrix} \nu^{T} & \chi^{T} \end{pmatrix} \underbrace{ \begin{pmatrix} 0 & m_{\nu}^{D} \\ m_{\nu}^{D} & M_{R} \end{pmatrix}}_{\mathsf{M}} \sigma_{2} \begin{pmatrix} \nu \\ \chi \end{pmatrix}$$

Overview

Seesaw Mechanism

Seesaw Mechanism

With the assumption: $m_{\nu}^D \ll M_R$, diagonalizing the matrix ${f M}$ gives eigenvalues

$$m_
u pprox rac{\left(m_
u^D
ight)^2}{M_R}$$
 and M_R

Overview

Seesaw Mechanism

Seesaw Mechanism

With the assumption: $m_{\nu}^D \ll M_R$, diagonalizing the matrix ${f M}$ gives eigenvalues

$$m_
u pprox rac{\left(m_
u^D
ight)^2}{M_R}$$
 and M_R

Overview

Seesaw Mechanism

Experimental neutrino mass

- Cosmological constraints ²: $\sum m_{
 u} < 0.23 eV$
- Neutrino oscillation experiments ³: the largest Δm^2 is $\Delta m^2_{atm} \cong 2.4 \times 10^{-3} \ eV^2 \Rightarrow$ the heaviest $m_{\nu} \gtrsim 4.9 \times 10^{-2} \ eV$.

Cosmology + Oscillation: $4.9 imes 10^{-2} \ eV \lesssim m_{
u}^{heaviest} \lesssim 0.23 \ eV$

²Planck 2015 results ³Particle Data Group

Overview

Seesaw Mechanism

- ν_R is a singlet under $SU(2)_L \times U(1)_Y$.
- $M_R \sim$ Grand Unified (GUT) mass scale of 10¹⁶ GeV naturally.
- \rightarrow M_R is too large.

PPP11	
Overview	
Seesaw	Mechanism

- ν_R is a singlet under $SU(2)_L \times U(1)_Y$.
- $M_R \sim$ Grand Unified (GUT) mass scale of 10¹⁶ GeV naturally.
- \rightarrow M_R is too large.

Therefore, one can not produce and detect ν_R at the LHC. Or, the seesaw mechanism is not testable!

- ν_R is a singlet under $SU(2)_L \times U(1)_Y$.
- $M_R \sim$ Grand Unified (GUT) mass scale of 10¹⁶ GeV naturally.
- \rightarrow M_R is too large.

Therefore, one can not produce and detect ν_R at the LHC. Or, the seesaw mechanism is not testable!

Questions

• Can we make the Seesaw testable?

- ν_R is a singlet under $SU(2)_L \times U(1)_Y$.
- $M_R \sim$ Grand Unified (GUT) mass scale of 10¹⁶ GeV naturally.
- \rightarrow M_R is too large.

Therefore, one can not produce and detect ν_R at the LHC. Or, the seesaw mechanism is not testable!

Questions

- Can we make the Seesaw testable?
- Can M_R be of the order of Λ_{EW} (246 GeV)?

- ν_R is a singlet under $SU(2)_L \times U(1)_Y$.
- $M_R \sim$ Grand Unified (GUT) mass scale of 10¹⁶ GeV naturally.
- \rightarrow M_R is too large.

Therefore, one can not produce and detect ν_R at the LHC. Or, the seesaw mechanism is not testable!

Questions

- Can we make the Seesaw testable?
- Can M_R be of the order of Λ_{EW} (246 GeV)?
- Keeping the gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$?

- ν_R is a singlet under $SU(2)_L \times U(1)_Y$.
- $M_R \sim$ Grand Unified (GUT) mass scale of 10¹⁶ GeV naturally.
- \rightarrow M_R is too large.

Therefore, one can not produce and detect ν_R at the LHC. Or, the seesaw mechanism is not testable!

Questions

- Can we make the Seesaw testable?
- Can M_R be of the order of Λ_{EW} (246 GeV)?
- Keeping the gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$?
- No more forces added?

Overview

Seesaw Mechanism

Overview

Seesaw Mechanism

The Non-sterile Electroweak-scale Right-handed neutrino (EW ν_R) Model

[P. Q. Hung, PLB 649 (2007)]

Overview

Minimal EW ν_R Model

The EW ν_R Model 4

Overview

Minimal EW ν_R Model

The EW ν_R Model 4

What is it?

Overview

Minimal EW ν_R Model

The EW ν_R Model ⁴

What is it?

Model in which right-handed neutrinos have Majorana masses of the order of Λ_{EW} naturally.

Overview

Minimal EW ν_R Model

The EW ν_R Model ⁴

What is it?

Model in which right-handed neutrinos have Majorana masses of the order of Λ_{EW} naturally.

Gauge group

 $SU(3)_C \times SU(2) \times U(1)_Y$

Overview

Minimal EW ν_R Model

The EW ν_R Model ⁴

What is it?

Model in which right-handed neutrinos have Majorana masses of the order of Λ_{EW} naturally.

Gauge group

 $SU(3)_C \times SU(2) \times U(1)_Y$

Model Content

What's new???

Overview

Minimal EW ν_R Model

Model Content

Overview

Minimal EW ν_R Model

Model Content

$$l_{L} = \left(\begin{array}{c} \nu_{L} \\ e_{L} \end{array}\right)$$

Overview

Minimal EW ν_R Model

Model Content

$$I_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \quad \longleftrightarrow \quad I_R^M = \begin{pmatrix} \nu_R \\ e_R^M \end{pmatrix},$$

Overview

Minimal EW ν_R Model

Model Content

Leptons

$$l_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \iff l_R^M = \begin{pmatrix} \nu_R \\ e_R^M \end{pmatrix},$$

 e_R

Overview

Minimal EW ν_R Model

Model Content

$$\begin{split} l_L &= \left(\begin{array}{c} \nu_L \\ e_L \end{array} \right) &\longleftrightarrow \quad l_R^M = \left(\begin{array}{c} \nu_R \\ e_R^M \end{array} \right), \\ e_R &\longleftrightarrow \quad e_L^M \end{split}$$
Overview

Minimal EW ν_R Model

Model Content

Leptons

$$I_{L} = \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \iff I_{R}^{M} = \begin{pmatrix} \nu_{R} \\ e_{R}^{M} \end{pmatrix},$$
$$e_{R} \iff e_{L}^{M}$$
Quarks

Overview

Minimal EW ν_R Model

Model Content

Leptons

$$I_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \longleftrightarrow I_R^M = \begin{pmatrix} \nu_R \\ e_R^M \end{pmatrix},$$
$$e_R \longleftrightarrow e_L^M$$

Quarks

$$q_{L} = \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \iff q_{R}^{M} = \begin{pmatrix} u_{R}^{M} \\ d_{R}^{M} \end{pmatrix},$$
$$u_{R}, d_{R} \iff u_{L}^{M}, d_{L}^{M}$$

Overview

Minimal EW ν_R Model

Model Content

Leptons

$$l_L = \left(egin{array}{c}
u_L \\
e_L \end{array}
ight) & \longleftrightarrow & l_R^M = \left(egin{array}{c}
u_R \\
e_R^M \\
e_R & \longleftrightarrow & e_L^M \end{array}
ight),$$

Quarks

$$q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix} \iff q_R^M = \begin{pmatrix} u_R^M \\ d_R^M \end{pmatrix},$$

 $u_R, d_R \iff u_L^M, d_L^M$

Mirror particles are totally different from the SM particles!

EW precision

V. Hoang, P. Q. Hung and A. S. Kamat, Nucl. Phys. B **877**, 190 (2013) [arXiv:1303.0428 [hep-ph]].

- Implications of the 125-GeV SM-like scalar: Dr Jekyll (SM-like) and Mr Hyde (very different from SM)
 V. Hoang, P. Q. Hung and A. S. Kamat, arXiv:1412.0343
 [hep-ph] (To appear in Nuclear Physics B).
- Signals of mirror fermions (Paper in preparation)
 P.Q. Hung, Trinh Le (UVA); Nandi, Chakdar, Gosh (Oklahoma State University).

Overview

Minimal EW ν_R Model

What is the Higgs sector to give Majorana and Dirac mass?

Overview

Minimal EW ν_R Model

Majorana mass of ν_R

Overview

Minimal EW ν_R Model

Majorana mass of ν_R

$$L_M = g_M \left(l_R^{M,T} \sigma_2 \right) (i \tau_2 \tilde{\chi}) l_R^M$$
 (1)

Overview

Minimal EW ν_R Model

Majorana mass of ν_R

$$L_{M} = g_{M} \left(l_{R}^{M,T} \sigma_{2} \right) (i \tau_{2} \tilde{\chi}) l_{R}^{M}$$

$$= g_{M} \nu_{R}^{T} \sigma_{2} \nu_{R} \chi^{0} - \frac{1}{\sqrt{2}} \nu_{R}^{T} \sigma_{2} e_{R}^{M} \chi^{+} + \dots$$
(1)

$$\begin{aligned} \tilde{\chi} &= (3, Y/2 = 1) \\ \tilde{\chi} &= \frac{1}{\sqrt{2}} \vec{\tau} \cdot \vec{\chi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \chi^+ & \chi^{++} \\ \chi^0 & -\frac{1}{\sqrt{2}} \chi^+ \end{pmatrix} \end{aligned}$$

Overview

Minimal EW ν_R Model

Majorana mass of
$$\nu_R$$

$$L_{M} = g_{M} \left(l_{R}^{M,T} \sigma_{2} \right) (i \tau_{2} \tilde{\chi}) l_{R}^{M}$$
(1)
$$= g_{M} \nu_{R}^{T} \sigma_{2} \nu_{R} \chi^{0} - \frac{1}{\sqrt{2}} \nu_{R}^{T} \sigma_{2} e_{R}^{M} \chi^{+} + \dots$$

$$\begin{aligned} \tilde{\chi} &= (3, Y/2 = 1) \\ \tilde{\chi} &= \frac{1}{\sqrt{2}} \, \vec{\tau} \cdot \vec{\chi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \chi^+ & \chi^{++} \\ \chi^0 & -\frac{1}{\sqrt{2}} \chi^+ \end{pmatrix} \end{aligned}$$

From (1), the Majorana mass $M_R = g_M v_M$ where $\langle \chi^o \rangle = v_M \sim \Lambda_{EW}$

Z-boson decay width: $M_R > M_Z/2$

Overview

Minimal EW ν_R Model

Dirac mass

PPP11 Overview Minimal EW ν_R Model

Dirac mass

The singlet scalar field ϕ_S couples to fermion bilinear.

$$L_S = g_{Sl} \,\overline{l}_L \,\phi_S \,l_R^M + h.c. \qquad (2)$$
$$= g_{Sl} \overline{\nu}_L \,\phi_S \,\nu_R + \dots + h.c.$$

 $\phi_S (1, Y/2 = 0)$ From (2), Dirac mass: $m_{\nu}^D = g_{Sl} v_S$ where $\langle \phi_S \rangle = v_S$.

Overview

Minimal EW ν_R Model

Charged fermion mass

We also need a Higgs doublet for charged fermion masses (leptons and quarks)

$$L_{Y_l} = g_l \, \bar{l}_L \, \Phi \, e_R + h.c. \tag{3}$$

$$L_{Y_q} = g_q \, \bar{q}_L \, \Phi \, u_R + h.c. \tag{4}$$

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \quad \langle \phi^0 \rangle = \frac{\nu_2}{\sqrt{2}}$$

Overview

Minimal EW ν_R Model

ρ parameter at the tree level

In the Standard Model,

$$\rho \equiv \frac{M_W^2}{M_Z^2 \, \cos^2\!\theta_W}$$

Experimentally, $\rho = 1$ to a good precision.

PPP11 Overview

Minimal EW ν_R Model

ρ parameter at the tree level

In Higgs sector ⁵: a number of Higgs multiplets ϕ_k of isospin T_k and hypercharge Y_k

$$\rho = \frac{\sum_{k} [T_{k}(T_{k}+1) - \frac{1}{4}Y_{k}^{2}]v_{k}^{2}c_{k}}{\sum_{k} \frac{1}{2}Y_{k}^{2}v_{k}^{2}}$$

where $v_k \equiv \text{VEV}$ of the neutral component of the Higgs multiplet $c_k = 1/2$ (1) for real (complex) multiplet

⁵Phys. Lett. B, 568 (2003)

PPP11 Overview

Minimal EW ν_R Model

ρ parameter at the tree level

In Higgs sector ⁵: a number of Higgs multiplets ϕ_k of isospin T_k and hypercharge Y_k

$$\rho = \frac{\sum_{k} [T_k(T_k + 1) - \frac{1}{4}Y_k^2] v_k^2 c_k}{\sum_{k} \frac{1}{2}Y_k^2 v_k^2}$$

where $v_k \equiv \text{VEV}$ of the neutral component of the Higgs multiplet $c_k = 1/2$ (1) for real (complex) multiplet

One would have $\rho \neq 1$ when both a triplet and a doublet are present.

⁵Phys. Lett. B, 568 (2003)

PPP11 Overview

Minimal EW ν_R Model

ρ parameter at the tree level

In order to restore Custodial global SU(2) symmetry ($\rho = 1$) at three level (Chanowitz, Golden and Georgi, Machacek), we add

$$\xi = (3, Y/2 = 0)$$

and group it with $\tilde{\chi}=({\tt 3},\ {\tt Y}/{\tt 2}={\tt 1})$ in

$$\chi = \begin{pmatrix} \chi^0 & \xi^+ & \chi^{++} \\ \chi^- & \xi^0 & \xi^+ \\ \chi^{--} & \xi^- & \chi^{0*} \end{pmatrix}$$
(5)

The doublet Higgs can be written as

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^+ \\ \phi^- & \phi^0 \end{pmatrix}$$
 (6)

Overview

Minimal EW ν_R Model

Proper vacuum alignment for custodial symmetry

$$\langle \chi^0 \rangle = \langle \xi^0 \rangle = v_M$$

$$\langle \chi \rangle = \begin{pmatrix} v_M & 0 & 0 \\ 0 & v_M & 0 \\ 0 & 0 & v_M \end{pmatrix}, \text{ and } \langle \Phi \rangle = \begin{pmatrix} \frac{v_2}{\sqrt{2}} & 0 \\ 0 & \frac{v_2}{\sqrt{2}} \end{pmatrix}$$

With this vacuum alignment $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$ and the global $SU(2)_D$ custodial symmetry is preserved.

Overview

Minimal EW ν_R Model

Model of neutrino masses

It was conjectured by $\mathsf{Cabibbo}^6$ and $\mathsf{Wolfenstein}^7$ independently that

$$U_{CW} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^2\\ 1 & \omega^2 & \omega \end{pmatrix}$$
(7)

⁶N. Cabibbo, 1978 ⁷L. Wolfenstein, 1978

Overview

Minimal EW ν_R Model

Model of neutrino masses

It was conjectured by Cabibbo⁶ and Wolfenstein⁷ independently that

$$U_{CW} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^2\\ 1 & \omega^2 & \omega \end{pmatrix}$$
(7)

Experimentally, $U_{PMNS} \simeq U_{CW}$

What's kind of symmetry that give rise to U_{CW} ?

⁶N. Cabibbo, 1978 ⁷L. Wolfenstein, 1978

Overview

Minimal EW ν_R Model

Model of neutrino masses

It was conjectured by Cabibbo⁶ and Wolfenstein⁷ independently that

$$U_{CW} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^2\\ 1 & \omega^2 & \omega \end{pmatrix}$$
(7)

Experimentally, $U_{PMNS} \simeq U_{CW}$

What's kind of symmetry that give rise to U_{CW} ?

A₄ Symmetry

⁶N. Cabibbo, 1978 ⁷L. Wolfenstein, 1978

Overview

Discrete Symmetry A_4

Overview

Discrete Symmetry A₄

Why A_4 ?

Overview

Discrete Symmetry A₄

Why A_4 ?

With 3 families, we need a group containing a $\underline{3}$ representation.

The simplest one is A_4 .

Overview

Discrete Symmetry A₄

What is A_4 ?

Overview

Discrete Symmetry A4

What is A_4 ?

- Non-Abelian discrete group
- Four irreducible representations: Three 1-dimension representations called $\underline{1}$, $\underline{1}$ ', $\underline{1}$ " and **One** 3-dimension representation called $\underline{3}$

Overview

Discrete Symmetry A₄

If denoting $\underline{3}$ as (1, 2, 3) then

Multiplication rule⁸

$$\underline{3} \times \underline{3} = \underline{1}(11 + 22 + 33) + \underline{1}'(11 + \omega^2 22 + \omega 33) + \underline{1}''(11 + \omega 22 + \omega^2 33)$$

+
$$\underline{3}(23, 31, 12) + \underline{3}(32, 13, 21)$$

where $\omega = e^{i2\pi/3}$

⁸Ernest Ma, 2007

Model of neutrino masses

The form of U_{CW} in our work is contained in ν sector, NOT in charged lepton sector as in some generic models.

Model of neutrino masses

The form of U_{CW} in our work is contained in ν sector, NOT in charged lepton sector as in some generic models.

Assignments of the model's content

Field	$(\nu, l)_L$	$(u, l^M)_R$	e_R	e_L^M	ϕ_{0S}	$ ilde{\phi}_S$	Φ_2
<i>A</i> ₄	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	1	<u>3</u>	<u>1</u>

The Yukawa interactions

$$L_{S} = \bar{l}_{L} (g_{0S}\phi_{0S} + g_{1S}\tilde{\phi}_{S} + g_{2S}\tilde{\phi}_{S}) l_{R}^{M} + h.c.$$
(8)

The Yukawa interactions

$$L_{S} = \overline{l}_{L} \left(g_{0S}\phi_{0S} + g_{1S}\tilde{\phi}_{S} + g_{2S}\tilde{\phi}_{S} \right) l_{R}^{M} + h.c.$$

$$\underline{3} \otimes \left(\underline{1} \quad \underline{3} \quad \underline{3} \right) \underline{3}$$
(8)

where g_{1S} and g_{2S} reflect the two different ways that $\tilde{\phi}_S$ couples to the product of \bar{l}_L and $l_R^M.$

The Yukawa interactions

$$L_{S} = \overline{l}_{L} \left(g_{0S}\phi_{0S} + g_{1S}\tilde{\phi}_{S} + g_{2S}\tilde{\phi}_{S} \right) l_{R}^{M} + h.c.$$

$$\underline{3} \otimes \left(\underline{1} \quad \underline{3} \quad \underline{3} \right) \underline{3}$$
(8)

where g_{1S} and g_{2S} reflect the two different ways that $\tilde{\phi}_S$ couples to the product of \bar{l}_L and $l_R^M.$

Multiplication rule⁹

 $\underline{3} \times \underline{3} = \underline{1}(11 + 22 + 33) + \underline{1}'(11 + \omega^2 22 + \omega 33) + \underline{1}''(11 + \omega 22 + \omega^2 33) + \underline{3}(23, 31, 12) + \underline{3}(32, 13, 21)$

⁹Ernest Ma, 2007

Neutrino Dirac mass matrix:

$$\mathcal{M}_{\nu}^{D} = \begin{pmatrix} g_{0S}v_{0} & g_{1S}v_{3} & g_{2S}v_{2} \\ g_{2S}v_{3} & g_{0S}v_{0} & g_{1S}v_{1} \\ g_{1S}v_{2} & g_{2S}v_{1} & g_{0S}v_{0} \end{pmatrix}$$
(9)

where $v_{\rm o}=\langle\phi_{{\rm o}S}\rangle$ and $v_i=\langle\phi_{iS}\rangle$ with $\imath=1,2,3.$

If $v_1=v_2=v_3=v\sim O(10^5~eV)$ $^{10},~M^D_{\nu}$ can be diagonalized as follows

$$U_{\nu_{L}}^{\dagger} M_{\nu}^{D} U_{\nu_{R}} = U_{\nu}^{\dagger} M_{\nu}^{D} U_{\nu} = \begin{pmatrix} m_{1D} & 0 & 0 \\ 0 & m_{2D} & 0 \\ 0 & 0 & m_{3D} \end{pmatrix}$$
(10)
where $U_{\nu} = U_{CW}^{\dagger} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2} \end{pmatrix}$

Notice that $U_{\nu_L} = U_{\nu_R} = U_{\nu}$.

¹⁰P.Q. Hung, 2007

Charged-lepton mass

¹¹P.Q. Hung, 2007

Charged-lepton mass

• Charged leptons can couple with singlet Higgs field which give rise to mass mixing between charged SM and mirror leptons. However, the mixing is very small so its contribution to the charged-lepton mass matrix can be negligible ¹¹.

Charged-lepton mass

• Charged leptons can couple with singlet Higgs field which give rise to mass mixing between charged SM and mirror leptons. However, the mixing is very small so its contribution to the charged-lepton mass matrix can be negligible ¹¹.

• The Yukawa couplings (with Higgs doublet)

$$L_{Y_l} = g_l \, \overline{l}_L \, \Phi_2 \, e_R + h.c. \tag{11}$$
$$= \underline{3} \otimes \underline{1} \otimes \underline{3}$$
Charged lepton mass

The charged-lepton mass matrix is

$$\mathcal{M}_{I} = g_{l} \frac{v_{2}}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$
(12)

Diagonalizing \mathcal{M}_I by $U_{IL}^{\dagger} \mathcal{M}_I U_{IR}$ gives rise to

$$U_{IL} = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$
(13)

Source of differences between V_{CKM} and U_{PMNS}

The PMNS Matrix

$$U_{
u_L} = rac{1}{\sqrt{3}} \left(egin{array}{cccc} 1 & 1 & 1 \ 1 & \omega^2 & \omega \ 1 & \omega & \omega^2 \end{array}
ight); \; U_{I\!L} \simeq \left(egin{array}{cccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight)$$

The PMNS Matrix

$$U_{PMNS} = U_{\nu_L}^{\dagger} \ U_{IL} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}$$
(14)

which mainly comes from neutrino mixing matrix.

Why is the U_{PMNS} different from the V_{CKM} ?

- It has known that $V_{CKM} = U_{U,L}^{\dagger} U_{D,L}$ comes totally from couplings between quarks and Higgs doublet.
- We are showing that the $U_{PMNS} = U_{\nu_L}^{\dagger} U_{IL}$ comes from
 - $U_{IL} \leftarrow$ couplings between leptons and Higgs doublet
 - $U_{\nu_L} \leftarrow$ couplings between leptons and Higgs singlets

Source of differences between V_{CKM} and U_{PMNS}

Why is the U_{PMNS} different from the V_{CKM} ?

In a nutshell

There are two different sources of PMNS matrix whereas the CKM matrix comes totally from one source.

One expects a natural difference between V_{CKM} and U_{PMNS} .

PPP11 Implications

Ansätz for U_{IL}

Ansätz for U_{IL}

A_4 requires degenerate charged leptons e, μ , $\tau \Rightarrow U_{IL} = \mathbb{I}$.

Ansätz for U_{IL}

 A_4 requires degenerate charged leptons e, μ , $\tau \Rightarrow U_{lL} = \mathbb{I}$.

Breaking A_4 by making some deviations from U_{lL}

Ansätz for U_{lL}

 A_4 requires degenerate charged leptons e, μ , $\tau \Rightarrow U_{lL} = \mathbb{I}$. Breaking A_4 by making some deviations from U_{lL} We can use Wolfenstein parameters to construct U_{ll} .

$$U_{lL} \to U_{lL} = \begin{pmatrix} 1 - \frac{\lambda_l^2}{2} & \lambda_l & A_l \lambda_l^3 (\rho_l - i\eta_l) \\ -\lambda_l & 1 - \frac{\lambda_l^2}{2} & A_l \lambda_l^2 \\ A_l \lambda_l^3 (1 - \rho_l - i\eta_l) & -A_l \lambda_l^2 & 1 \end{pmatrix}$$
(15)

where A_l , ρ_l , η_l are real parameters of O(1).

Ansätz for U_{IL}

$$U_{PMNS} = U_{
u_L}^{\dagger} U_{IL} =$$

$$\frac{1}{\sqrt{3}} \begin{pmatrix} A_l \lambda_l^3 (1-\rho_l - i\eta_l) - \frac{\lambda_l^2}{2} - \lambda_l + 1 & -\left(A_l + \frac{1}{2}\right)\lambda_l^2 + \lambda_l + 1 & A_l \lambda_l^3 (\rho_l - i\eta_l) + A_l \lambda_l^2 + 1 \\ \omega^2 A_l \lambda_l^3 (1-\rho_l - i\eta_l) - \frac{\lambda_l^2}{2} - \omega \lambda_l + 1 & -\left(\omega^2 A_l + \frac{\omega}{2}\right)\lambda_l^2 + \lambda_l + \omega & A_l \lambda_l^3 (\rho_l - i\eta_l) + \omega A_l \lambda_l^2 + \omega^2 \\ \omega A_l \lambda_l^3 (1-\rho_l - i\eta_l) - \frac{\lambda_l^2}{2} - \omega^2 \lambda_l + 1 & -\left(\omega A_l + \frac{\omega}{2}\right)\lambda_l^2 + \lambda_l + \omega^2 & A_l \lambda_l^3 (\rho_l + i\eta_l) + \omega^2 A_l \lambda_l^2 + \omega \end{pmatrix}$$

Toward $\mathcal{M}_{I}\mathcal{M}_{I}^{\dagger}$

Diagonalizing mass matrices \mathcal{M}_{I} and $\mathcal{M}_{I}^{\dagger}$ as follows.

$$U_{IL}^{\dagger}\mathcal{M}_{I}U_{IR}$$
 ; $U_{IR}^{\dagger}\mathcal{M}_{I}^{\dagger}U_{IL}$

Therefore,

$$U_{lL}^{\dagger} \mathcal{M}_{l} \mathcal{M}_{l}^{\dagger} U_{lL} = \left(egin{array}{ccc} m_{e}^{2} & 0 & 0 \ 0 & m_{\mu}^{2} & 0 \ 0 & 0 & m_{ au}^{2} \end{array}
ight)$$

$$\mathcal{M}_{l}\mathcal{M}_{l}^{\dagger} = U_{lL} \cdot \begin{pmatrix} m_{e}^{2} & 0 & 0 \\ 0 & m_{\mu}^{2} & 0 \\ 0 & 0 & m_{\tau}^{2} \end{pmatrix} \cdot U_{lL}^{\dagger}$$
(16)

PPP11 Implications

Toward
$$\mathcal{M}_I \mathcal{M}_I{}^\dagger$$

 \Rightarrow Up to O(λ_l^2)

$$\begin{pmatrix} (1 - \lambda_l^2) m_e^2 + \lambda_l m_{\mu}^2 & \lambda_l (m_{\mu}^2 - m_e^2) & 0\\ \lambda_l (m_{\mu}^2 - m_e^2) & (1 - \lambda_l^2) m_{\mu}^2 + \lambda_l m_e^2 & A \lambda_l^2 (m_{\tau}^2 - m_{\mu}^2)\\ 0 & A_l \lambda_l^2 (m_{\tau}^2 - m_{\mu}^2) & m_{\tau}^2 \end{pmatrix}$$
(17)

 $A_l,\,\lambda_l$ are extracted from U_{PMNS} and experimental values $m_e,m_\mu,m_\tau.$

Summary

• The differences between CKM and PMNS matrices come from the fact that *U_{PMNS}* is constructed by couplings with Higgs singlets and mainly comes from neutrinos.

Summary

- The differences between CKM and PMNS matrices come from the fact that *U_{PMNS}* is constructed by couplings with Higgs singlets and mainly comes from neutrinos.
- The simplicity of our approach as compared with previous works is due to the source of the neutrino Dirac masses which comes from the Higgs singlets as opposed to Higgs doublets.

Summary

- The differences between CKM and PMNS matrices come from the fact that *U_{PMNS}* is constructed by couplings with Higgs singlets and mainly comes from neutrinos.
- The simplicity of our approach as compared with previous works is due to the source of the neutrino Dirac masses which comes from the Higgs singlets as opposed to Higgs doublets.
- By slightly breaking A_4 symmetry, we avoided the case of degenerate charged-lepton mass and were able to extract $\mathcal{M}_I \mathcal{M}_I^{\dagger}$ for the charged-lepton sector (as well as the quark sector).

Thank you!

1. Characters of A₄ reperesentations

A_4	h	χ1	$\chi_{1'}$	$\chi_{1''}$	<i>χ</i> з
<i>C</i> ₁	1	1	1	1	3
<i>C</i> ₃	2	1	1	1	-1
<i>C</i> ₄	3	1	ω	ω^2	0
$C_{4'}$	3	1	ω^2	ω	0

where $\omega = e^{i2\pi/3}$ which is the cube root of unity.

PPP11

Summary

Appendix

2. Constraints on A, λ , ρ and η

$$\begin{array}{ll} (1) & 0.779 < \frac{1}{\sqrt{3}} |A\lambda^{3}(1-\rho-i\eta) - \frac{\lambda^{2}}{2} - \lambda + 1| < 0.848 \\ (2) & 0.510 < \frac{1}{\sqrt{3}} |-\left(A + \frac{1}{2}\right)\lambda^{2} + \lambda + 1| < 0.604 \\ (3) & 0.122 < \frac{1}{\sqrt{3}} |A\lambda^{3}(\rho-i\eta) + A\lambda^{2} + 1| < 0.190 \\ (4) & 0.183 < \frac{1}{\sqrt{3}} |\omega^{2}A\lambda^{3}(1-\rho-i\eta) - \frac{\lambda^{2}}{2} - \omega\lambda + 1| < 0.568 \\ (5) & 0.385 < \frac{1}{\sqrt{3}} |-\left(\omega^{2}A + \frac{\omega}{2}\right)\lambda^{2} + \lambda + \omega| < 0.728 \\ (6) & 0.613 < \frac{1}{\sqrt{3}} |A\lambda^{3}(\rho-i\eta) + \omega A\lambda^{2} + \omega^{2}| < 0.794 \\ (7) & 0.200 < \frac{1}{\sqrt{3}} |\omega A\lambda^{3}(1-\rho-i\eta) - \frac{\lambda^{2}}{2} - \omega^{2}\lambda + 1| < 0.576 \\ (8) & 0.408 < \frac{1}{\sqrt{3}} |-\left(\omega A + \frac{\omega^{2}}{2}\right)\lambda^{2} + \lambda + \omega^{2}| < 0.742 \\ (9) & 0.589 < \frac{1}{\sqrt{3}} |A\lambda^{3}(\rho-i\eta) + \omega^{2}A\lambda^{2} + \omega| < 0.775 \\ \end{array}$$

 $-4.8517 < A < -4.4580, \quad -0.2404 < \lambda < -0.1882,$

3. Sample numerical results Taking upper limit values of A = -4.4580, λ = -0.1882, ρ = -5.5712 and η = 4.8912

 $U_{l} = \begin{pmatrix} 0.9823 & -0.1882 & -0.1656 - 0.1454i \\ 0.1882 & 0.9823 & -0.1579 \\ 0.1953 - 0.1454i & 0.1579 & 1 \end{pmatrix}$

 $U_{I}U_{I}^{\dagger} = \begin{pmatrix} 1.0489 & 0.0261 + 0.0230i & -0.0035 - 0.0026i \\ 0.0261 - 0.0230i & 1.0253 & 0.0340 + 0.0274i \\ -0.0035 + 0.0026i & 0.0340 - 0.0274i & 1.0842 \end{pmatrix}$

 $\simeq \mathbb{I}$

Using the above numerical U_l and putting in the values of $m_e=0.51\times10^{-3}$ GeV, $m_\mu=0.1057$ GeV and $m_\tau=1.7768$ GeV we get

$$\mathcal{M}_{I}\mathcal{M}_{I}^{\dagger} \simeq \left(egin{array}{cccc} 0.1537 & 0.0805 + 0.0725 i & -0.5231 - 0.4590 i \ 0.0805 - 0.0725 i & 0.0895 & -0.4968 \ -0.5231 + 0.4590 i & -0.4968 & 3.1573 \end{array}
ight)$$

4. Possible signature of EW ν_{R} model The fact

- ν_R interacts with the W and Z (part of a doublet)
- So the v_R and e_R^M interact with ν_L and e_L through the singlet scalar field ϕ_S

Since $m_{\phi_S} \sim O(10^5 \ eV)$, it's possible

$$\nu_R \rightarrow \nu_L + \phi_S$$

 $e_R^M \rightarrow e_L + \phi_S$

If $m_{\nu_R} \lesssim m_{e_R^M}$:

$$e_M^R \rightarrow
u_R + e_L + \bar{\nu}_L$$

 $u_R \rightarrow \nu_L + \phi_S$

Possible signature of EW ν_R model

The heaviest ν_R could be pair produced

$$\begin{array}{rccc} q+\bar{q} & \rightarrow & Z \rightarrow \nu_R + \nu_R \\ \nu_R & \rightarrow & e_R^M + W^*(W) \\ e_R^M & \rightarrow & e_L + \phi_S \end{array}$$

at a 'displaced' vertex. If ν_R is Majorana

$$e_{R}^{M,-} + W^{+} + e_{R}^{M,-} + W^{+} \rightarrow e_{L} + e_{L} + W^{+} + W^{+} + 2\phi_{S}$$

same-sign dilepton event which is distinctively different from the Dirac case!