Nonlocal Cosmology

arXiv:1401.0254 arXiv:0705.0153 & 1307.6693 (Deser) arXiv:0904.0961 (Deffayet)

Problem: What is making the universe accelerate?

- FLRW: $ds^2 = -dt^2 + a^2(t) d\mathbf{x} \cdot d\mathbf{x}$ $\Rightarrow H(t) \equiv \frac{\dot{a}}{a} \Rightarrow H_0 \sim 68 \frac{\mathrm{km}}{\mathrm{s-Mpc}}$ $\Rightarrow q(t) \equiv -1 - \frac{\mathrm{H}}{\mathrm{H}^2} \Rightarrow q_0 \sim -.54$
- General Relativity with $\frac{a_0}{a(t)} \equiv 1 + z$ $\Rightarrow 3H^2 = 3H_0^2 \left[\Omega_r (1+z)^4 + \Omega_n (1+z)^3 + \Omega_\Lambda\right]$ $\Rightarrow -2\dot{H} - 3H^2 = 3H_0^2 \left[\frac{1}{3}\Omega_r (1+z)^4 + 0 - \Lambda\right]$
- ACDM works

***** But why is $G\Lambda$ so small and why dominant NOW?

- Scalar quintessence works, but also unnatural
- f(R) models don't really work (arXiv:1005.2205)

Modifications of Gravity

- f(R) only local, invariant, stable & $g_{\mu\nu}$ -based
- Retain locality and sacrifice invariance
 - Horava gravity
 - Massive gravitons
- Retain invariance and sacrifice locality for:
 - Summing QIR effects from primordial inflation
 - Explaining late time acceleration w/o Dark Energy
 - Explaining galactic structure w/o Dark Matter

Newton was against nonlocality

I agree

Fundamental theory is local

- But quantum effective field equations are not
- $\bigstar M = 0 \text{ loops could give big IR corrections}$
- Primordial Inflation
 → IR gravitons

 $N(t,k) = \left[\frac{Ha(t)}{2ck}\right]^2$ for EVERY wave vector Perhaps their attraction stops inflation Late time modifications from vacuum polarization Would affect large scales most

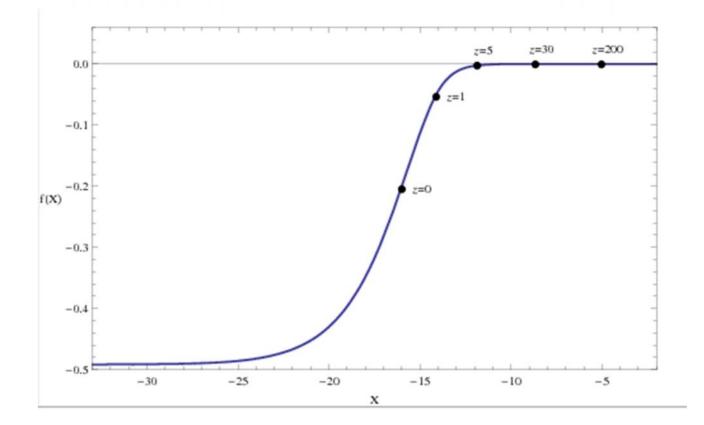
• But for now, just model-building

Late-Time Acceleration (arXiv:0705.0153 with Deser)

• Nonlocality via
$$\frac{1}{\Box}$$
 for $\Box \equiv \frac{1}{\sqrt{-g}} \partial_{\mu} \left(\sqrt{-g} g^{\mu\nu} \partial_{\nu} \right)$
• Retarded BC \rightarrow both $\frac{1}{2}$ and $\partial_{t} \frac{1}{2}$ vanish at $t = 0$

- Act it on $R \rightarrow X \equiv \frac{1}{\Box}R$ is dimensionless
- $\mathcal{L} = \frac{R[1+f(X)]\sqrt{-g}}{16\pi G}$ • f(X) the "nonlocal distortion function"
- Field equations: $G_{\mu\nu} + \Delta G_{\mu\nu} = 8\pi G T_{\mu\nu}$ $G_{\mu\nu} = \left[G_{\mu\nu} + g_{\mu\nu}\Box - D_{\mu}D_{\nu}\right] \left(f(X) + \frac{1}{\Box}[Rf'(X)]\right)$ $+ \left[\delta_{\mu}^{(\rho}\delta_{\nu}^{\sigma)} - \frac{1}{2}g_{\mu\nu}g^{\rho\sigma}\right]\partial_{\rho}X \partial_{\sigma}\left(\frac{1}{\Box}[Rf'(X)]\right)$
- Causal and conserved

Specialization to FLRW:


$$ds^2 = -dt^2 + a^2(t)d\mathbf{x} \cdot d\mathbf{x}$$

• $R = 6\dot{H} + 12H^2$

•
$$\left[\frac{1}{n}f\right](t) = -\frac{t}{0}\frac{dt'}{a^3(t')}\int_0^{t'}dt'' a^3(t'')f(t'')$$

• Two Built-In Delays:

Reconstructing Λ CDM (arXiv:0904.0961 with Deffayet) $f(X) \approx \frac{1}{4} \left[tanh\left(\frac{X}{3} + \frac{11}{2}\right) - 1 \right]$

Screening

- Solar system a problem for f(R) models
 R > 0 for cosmology AND solar system
 Need "screening mechanism" to suppress deviations inside solar system
- $f\left(\frac{1}{\Box}R\right)$ models avoid this problem
 - $\bigstar = -\partial_t^2 + \nabla^2 \rightarrow \frac{1}{\Gamma}$ provides a ± sign
 - $\frac{1}{\Box}R < 0$ for cosmology
 - $\frac{1}{\pi}R > 0$ for gravitationally bound systems

 $f(\bar{X}) = 0$ for X > 0 means NO solar system changes

Local Version Is Haunted (Nojiri & Odintsov, arXiv:0708.0924)

• $R\left[1 + f\left(\frac{1}{\alpha}R\right)\right] \Rightarrow R\left[1 + f(\phi)\right] + \left[\ \mathbf{j}\phi - R \right]$ • Varying with respect to ξ enforces = R• NB both scalars have 2 pieces of initial value data

•
$$\rightarrow -\partial_{\mu}\xi\partial_{\nu}\phi g^{\mu\nu}$$

= $-\frac{1}{4}\partial_{\mu}(\xi + \phi)\partial_{\nu}(\xi + \phi)g^{\mu\nu} + \frac{1}{4}\partial_{\mu}(\xi -)\partial_{\nu}(\xi -)g^{\mu\nu}$

- – ' has negative kinetic energy
- Mixing with gravity doesn't help

No new initial value data for the original nonlocal version

- Synchronous gauge: $ds^2 = -dt^2 + h_{ij}(t, \mathbf{x})d\mathbf{x}^i d\mathbf{x}^j$
- GR initial value data: h_{ij}(0, x) & h_{ij}(0, x) = 6 + 6
 \$4+4 constrained fields
 \$2+2 dynamical gravitons
- NC initial value data \rightarrow count the ∂_t 's • $R \sim \partial_t^2$ & $\frac{1}{2} \sim \frac{1}{\partial_t^2} \rightarrow \frac{1}{2} R \sim (\partial_t)^0$

♦ $G_{\mu\nu}$ has up to $\partial_t^2 \frac{1}{\pi}$ → only $h_{ij}(0, \mathbf{x})$ and $h_{ij}(0, \mathbf{x})$

- Same initial value constraints as GR
- No graviton ever becomes a ghost

A problem with how the model reproduces ΛCDM without Λ

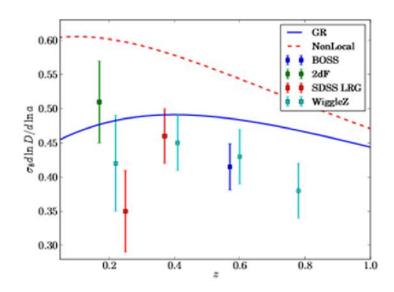
• For FLRW with slowly varying H(t)

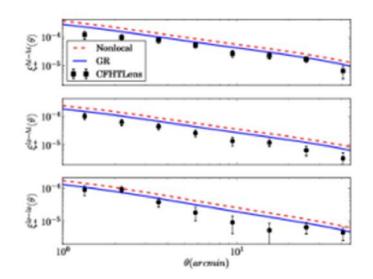
 $\bigstar G_{\mu\nu} + \Delta G_{\mu\nu} \approx \left\{1 + f(X) + \frac{1}{\neg} \left[Rf'(X)\right]\right\} G_{\mu\nu} = 8\pi G T_{\mu\nu}$

This is effectively a time-varying Newton constant

$$G_{eff}(t) = \frac{G}{1+f(X) + \frac{1}{\Box}[Rf'(X)]}$$

♣ Balances the Friedmann Eqn: $3H^2 \approx 8 G_{eff}(t) \times \frac{\rho_m}{a^3(t)}$


- But G_{eff}(t) also strengthens the force of gravity
 Not relevant for solar system
 - Should increase structure formation
 - Dodelson & Park have confirmed this, & it's bad


What Dodelson and Park Found

 $ds^{2} = -[1 + 2\Psi(t)e^{i\mathbf{k}\cdot\mathbf{x}}]dt^{2}$ $+ a^{2}(t)[1 + 2\Phi(t)e^{i\mathbf{k}\cdot\mathbf{x}}]d\mathbf{x}\cdot d\mathbf{x}$

- Nonlocal Cosmology predicts:
 - $(t) \sim \psi_{GR} \quad \text{throughout}$
 - ♦ $(t) \neq '_{GR}$ by $z \sim 1.5$ and $(t_0) \sim 2 \times '_{GR}$
- Relevant data sets:
 - WiggleZ, 2dF, BOSS, SDSS LRG's (redshift space dist.)CFHTLens (weak lensing)
- Preference of GR over Nonlocal Cosmology:
 ◆Redshift space distortions → 7.8σ
 ◆Weak lensing → 5.9σ
- Data favors a less highly evolved universe

Most data below BOTH Nonlocal Cosmology & General Relativity

Conclusions

- Nonlocal gravity not fundamental
 - Infrared QG corrections from primordial inflation
 - Purely phenomenological for now
- Simplest model based on $Rf\left(\frac{1}{\Box}R\right)$
 - Built-in delays explain cosmic coincidence
 - Simple f(X) reproduces Λ CDM without Λ
 - But structure formation heavily favors GR
- Probably BETTER than GR with 2nd invariant
- Desirable properties
 - Perfect screening for gravitationally bound systems
 - No new degrees of freedom
 - Initial value constraints identical to GR
 - No kinetic energy instabilities