

PPP11 Tamkang University 13,14 May, 2015

General Relativity and Cosmology - Bigbang, Inflation & beyond -

Misao Sasaki

Yukawa Institute for Theoretical Physics Kyoto University

General Relativity

Einstein (1915)

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}; \quad \nabla_{\mu}T^{\mu\nu} = 0$$

GR applied to homogeneous & isotropic universe Friedmann (1916)

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -c^{2}dt^{2} + a^{2}(t)d\sigma_{K}^{2}$$

$$\left[\frac{\dot{a}}{a}\right]^{2} + \frac{Kc^{2}}{a^{2}} = \frac{8\pi G}{3}\rho; \quad \dot{\rho} + 3\frac{\dot{a}}{a}(\rho + Pc^{-2}) = 0$$

$$\begin{cases} \text{open} : K = -1 \\ \text{flat} : K = 0 \\ \text{closed}: K = +1 \end{cases}$$

 $H \equiv \frac{\dot{a}}{a}$: expansion rate (Hubble parameter)

Progress in Cosmology (1)

- 1st stage: 1916 ~ 1980
 - 1916~ General Relativity/Friedmann Universe
 - 1929 Hubble's law: V=H₀ R ··· cosmological redshift
 - 1946~ Big-Bang theory/Nuclear astrophysics
 - 1960~ High redshift objects/Quasars
 - 1965 Discovery of relic radiation from Big-Bang
 <u>Cosmic Microwave Background</u>: T₀=2.7K
 - 1970~ BBNucleosynthesis vs Observed Abundance
 → Existence of Dark Matter

Big-Bang Universe and CMB

Big Bang theory has been firmly established

Establishment of homogeneous & isotropic Big-Bang Universe Model

Progress in Cosmology (2)

2nd stage: 1980 ~ 2013

- 1980~ Revelation of Large Scale Structure
 Cosmological Perturbation Theory
 Particle Cosmology/Inflationary Universe
- 1992 Detection of CMB anisotropy (COBE)
 Evidence for Inflationary Universe
- 2003 Accurate CMB angular spectrum (WMAP) Confirmation of Flatness of the Universe Strong evidence for Dark Energy
- 2013 High precision CMB spectrum (Planck)
 Very strong evidence for Inflation

CMB Anisotropy Spectrum

Horizon Problem

Why the detection of $\delta T/T$ at $\theta > 10^{\circ}$ was so important?

• Because in the standard Friedmann universe, the size of causal volume (horizon size) grows like ~ ct.

While, the expansion of the universe is slower than ~ ct because gravity is attractive (if ρ + 3P >0) ↓ decelerated expansion

- The angle sustaining the horizon size at LSS is \sim 1°.
- Thus, any causal, physical process cannot produce correlation on scales $\theta > 1^{\circ}$.
- But ($\delta T/T$) $_{\theta > 10^{\circ}} \neq 0$ means there exists non-zero correlation.

Progress in Cosmology (2)

2nd stage: 1980 ~ 2013

- 1980~ Revelation of Large Scale Structure Cosmological Perturbation Theory Particle Cosmology/Inflationary Universe
- 1992 Detection of CMB anisotropy (COBE) Evidence for Inflationary Universe
- 2003 Accurate CMB angular spectrum (WMAP) Confirmation of Flatness of the Universe Strong evidence for Dark Energy
- 2013 High precision CMB spectrum (Planck) Very strong evidence for Inflation

Inflationary Universe

Universe dominated by a scalar (inflaton) field

For sufficiently flat potential:

- H is almost constant \sim exponential expansion = inflation
- ϕ slowly rolls down the potential: slow-roll (chaotic) inflation Linde (1983)

 $V(\phi)$

• Inflation ends when ϕ starts damped oscillation.

 $\Rightarrow \phi$ decays into thermal energy (radiation)

Birth of Hot Bigbang Universe

Hubble horizon during inflation

 $a(t) \sim e^{Ht}$; $H \sim \text{const.}$

A small region of the universe

 $c H^{-1}$

Universe expands exponentially,

while the Hubble horizon size remains almost constant.

An initially tiny region can become much larger than the entire observable universe

 \rightarrow solves the horizon problem.

length scales of the inflationary universe

Flatness of the Universe

Seed of Cosmological Perturbations

Zero-point (vacuum) fluctuations of ϕ : $\delta\phi = \sum_{k} \delta\phi_{k}(t)e^{ik \cdot x}$ $\delta\ddot{\phi}_{k} + 3H\delta\dot{\phi}_{k} + \omega^{2}(t)\delta\phi_{k} = 0$; $\omega^{2}(t) = \frac{k^{2}}{a^{2}(t)} \equiv \left(\frac{2\pi c}{\lambda(t)}\right)^{2}$ physical wavelength $\lambda(t) \propto a(t)$

harmonic oscillator with friction term and time-dependent @

$$\delta \phi_k \rightarrow \text{const.}$$

•••• frozen when $\lambda > c H^{-1}$ (on superhorizon scales)

gravitational wave (tensor) modes also satisfy the same eq.

Generation of Curvature Perturbation

curvature perturbation $\mathcal{R} \approx -\Psi$: gravitational potential $\delta R^{(3)} = -\frac{4}{a^2} \nabla^2 \mathcal{R}$

- $\delta \phi$ is frozen on "flat" ($\mathcal{R}=0$) 3-surface (t=const. hypersurface)
- Inflation ends/damped osc starts on $\phi = \text{const.}$ 3-surface.

Theoretical Predictions

• Amplitude of curvature perturbation:

$$\mathcal{R} = \left. \frac{H^2}{2\pi \dot{\phi}} \right|_{k/a=H}$$
 Mukhanov (1985), MS (1986)

• Power spectrum index:

$$M_{pl} \equiv \frac{1}{\sqrt{8\pi G}} \sim 2.4 \times 10^{18} \text{ GeV}$$
: Planck mass

$$\frac{4\pi k^3}{(2\pi)^3} P_S(k) = \left[\frac{H^2}{2\pi \dot{\phi}}\right]_{k/a=H}^2 = Ak^{n_S-1} ; \ n_S - 1 = M_P^2 \left(2\frac{V''}{V} - 3\frac{V'^2}{V^2}\right)$$

• Tensor (gravitational wave) spectrum:

$$\frac{4\pi k^3}{(2\pi)^3} P_T(k) = Ak^{n_T} ; \quad n_T = -\frac{1}{8} \frac{P_T(k)}{P_S(k)} \equiv -\frac{r}{8} \qquad \text{Liddle-Lyth (1992)}$$

"consistency relation"

CMB Anisotropy from Curvature Perturbation

• Photons climbing up from gravitational potential well are redshifted.

• In an expanding universe, this is modified to be $\frac{\Delta T}{T}(\vec{n}) = \frac{1}{3}\Psi(\vec{x}_{emit})$

Sachs-Wolfe effect

• There is also the standard Doppler effect:

$$\frac{\Delta T}{T}(\vec{n}) = -\vec{n} \cdot \vec{v}(\vec{x}_{emit})$$

• Amplitude of curvature perturbation:

$$\mathcal{R} = \left. \frac{H^2}{2\pi \dot{\phi}} \right|_{k/a=H} \qquad \text{Mukhanov (1985), MS (1986)}$$
$$\mathcal{R}_{\text{obs}} \sim 10^{-5} \implies V^{1/4}(\phi) \sim 10^{16} \text{GeV}$$

• Power spectrum index:

$$M_{p} = \frac{1}{\sqrt{8\pi G}} \sim 2.4 \times 10^{18} \text{ GeV: Planck mass}$$

$$\frac{4\pi k^{3}}{(2\pi)^{3}} P_{S}(k) = \left[\frac{H^{2}}{2\pi \dot{\phi}}\right]_{k/a=H}^{2} = Ak^{n_{S}-1} ; n_{S} - 1 = M_{p}^{2} \left(2\frac{V''}{V} - 3\frac{V'^{2}}{V^{2}}\right)$$

$$n_{S,Planck} - 1 = -0.040 \pm 0.0073 \iff n_{S} - 1 \sim -0.04 \text{ for a typical model}$$

• Tensor (gravitational wave) spectrum:

$$\frac{4\pi k^3}{(2\pi)^3} P_T(k) = Ak^{n_T} ; \quad n_T = -\frac{1}{8} \frac{P_T(k)}{P_S(k)} \equiv -\frac{r}{8}$$
 Liddle-Lyth (1992)
to be observed ...

CMB constraints on inflation Planck XX (2015)

single-field models with constant n_s are severely constrained

Inflation as the Origin of Large Scale Structure

Post WMAP/Planck Era

- Standard (single-field, slow-roll) inflation predicts almost scaleinvariant Gaussian curvature perturbations.
- Observational data are consistent with theoretical predictions.
 - almost scale-invariant spectrum: $n_s = 0.968 \pm 0.006$ (68% CL) Planck 2015 XIII
 - highly Gaussian fluctuations: $f_{NL}^{\text{local}} = 0.8 \pm 5.0 \ (68\% \text{ CL})$

Planck 2015 XVII

$$\mathcal{R} = \mathcal{R}_{gauss} + \frac{3}{5} f_{NL}^{local} \mathcal{R}_{gauss}^2 + \cdots$$

only to be confirmed by tensor (=GW) modes?!

signature of primordial GWs

spacetime(graviton) vacuum fluctuations from inflation Starobinsky (1979)

> B-mode polarization in CMB anisotropy Seljak & Zaldarriaga (1996)

- E-mode (even parity)
 ①
- B-mode (odd parity)
- = cannot be produced from density fluctuations

No trace of primordial B-mode had been found so far...

Discovery(?) of primordial GWs

If confirmed, it "proves" [large field models^{*)}of] primordial inflation & quantum gravity!

*) $\phi > M_{Planck} \sim 10^{18} GeV$: a challenge for string theorists

detected B-mode seems mostly to be due to galactic dust...

Yet, *r* ~ 0.05 is still possible, which would confirm primordial inflation & quantum gravity!

observational indication

Bayesian evidence

a signature from physics beyond inflation?

String Theory Landscape

Lerche, Lust & Schellekens ('87), Bousso & Pochinski ('00), Susskind, Douglas, KKLT ('03), ...

32

- > There are ~ 10^{500} vacua in string theory
 - vacuum energy density ρ_{v} may be positive or negative
 - typical energy scale ~ M_P^4
 - some of them have $\rho_{v}<<\!\!M_{P}{}^{4}$

vacuum energy

taken from http://ipht.cea.fr/

Cosmic Landscape

string theory landscape implies an intriguing picture of the early universe

Maybe we live in one of these vacua...

> A universe jumps around in the landscape by quantum tunneling

- it can go up to a vacuum with larger ρ_v de Sitter (dS) space ~ thermal state with $T = H/2\pi$
 - if it tunnels to a vacuum with negative ρ_v , it collapses within t ~ $M_P/|\rho_v|^{1/2}.$
- so we may focus on vacua with positive ρ_v : dS vacua

> Most plausible state of the universe before inflation is dS vacuum with $\rho_v \sim < M_P^4$

dS space = solution with maximal symmetry (dS symmetry) a hyperboloid in 5 dim Minkowski space

quantum tunneling = classically forbidden = imaginary time (~ WKB approximation)

 $dS = O(4,1) \rightarrow O(5) = S^4$: 4-sphere in 5 dim Euclidean space

false vacuum decay via O(4) symmetric (CDL) instanton

Coleman & De Luccia ('80)

Open Inflation

Universe = inside nucleated bubble = spatially open universe

Friedmann eq.

$$H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{\rho}{3M_{P}^{2}} + \frac{1}{a^{2}}$$
negative
spatial
curvature
 $a(t)$: cosmic scale factor (= curvature radius)

$$1 = \frac{\rho}{3M_{P}^{2}H^{2}} + \frac{1}{a^{2}H^{2}} \equiv \Omega + \Omega_{K}$$
density parameter

Observational data indicate $1-\Omega_0 = \Omega_{K,0} \sim < 10^{-2}$: almost flat

("0" stands for current value)

If inflation after tunneling was short enough (N = 50 ~ 60) $1 - \Omega_0 = 10^{-2} \sim 10^{-3}$ open universe is still possible eg, anthropic argument by Garriga, Tanaka & Vilenkin '99

any signature in large angle CMB anisotropies?

Here we argue that we are already seeing a couple of such signatures on large angle CMB

dipolar statistical anisotropy
 tensor-scalar ratio: Planck & BICEP2/Keck

Dipolar Statistical Anisotropy

$$\left\langle \left(\frac{\delta T}{T}\right)^2 \right\rangle = \left(1 + A\cos\theta\right) \left\langle \left(\frac{\delta T}{T}\right)^2 \right\rangle_{\text{iso}}$$
$$l(l+1)C_l$$

dipole asymmetry observed by WMAP/Planck

dipole asymmetry of C_l in the direction maximizing the asymmetry

							= 44
Planck 2013 XXIII $\left\langle \left(\frac{\delta T}{T}\right)^{2} \right\rangle = \left(1 + A \cos \frac{\delta T}{T}\right)^{2} \\ \times \left\langle \left(\frac{\delta T}{T}\right)^{2} \right\rangle \\ A \approx 0.07$	Data set	FWHM [°]	А	(<i>l,b</i>) [°]	$\Delta \ln \mathcal{L}$	Significance	•••
	Commander	5	$0.078^{+0.020}_{-0.021}$	(227,-15)±19	8.8	3.5σ	_
	NILC	5	0.069+0.020	(226, -16) ± 22	7.1	3.0σ	
	SEVEN	5	$0.066^{+0.021}_{-0.021}$	(227, -16) ± 24	6.7	2.9σ	
	SMICA	5	$0.065^{+0.021}_{-0.021}$	(226, -17) ± 24	6.6	2.9σ	
	WMAP5 ILC	4.5	0.072 ± 0.022	(224, -22) ± 24	7.3	3.3σ	
	Commander	6	0.076+0.024 -0.025	(223, -16) ± 25	6.4	2.8σ	
	NILC	6	$0.062^{+0.025}_{-0.026}$	(223,-19) ± 38	4.7	2.3σ	
	SEVEM	6	$0.060^{+0.025}_{-0.026}$	(225,-19)±40	4.6	2.2σ	
	SMICA	6	$0.058^{+0.025}_{-0.027}$	(223,-21)±43	4.2	2.1σ	
	der	7	$0.062^{+0.028}_{-0.030}$	(223, -8) ± 45	4.0	2.0σ	
		7	$0.055^{+0.029}_{-0.030}$	(225, -10) ± 53	3.4	1.7σ	
	$\operatorname{Ds} \theta$)	7	$0.055^{+0.029}_{-0.030}$	(226, -10) ± 54	3.3	1.7σ	
		7	$0.048^{+0.029}_{-0.029}$	$(226, -11) \pm 58$	2.8	1.5σ	
) ² der	8	0.043+0.032 -0.029	(218,-15) ± 62	2.1	1.2σ	_
		8	0.049+0.032	(223,-16) ± 59	2.5	1.4σ	
	/ / iso ·····	8	$0.050^{+0.032}_{-0.031}$	(223,-15)±60	2.5	1.4σ	
	SMICA	8	$0.041^{+0.032}_{-0.029}$	(225,-16) ± 63	2.0	1.1σ	
	Commander	9	0.068+0.035	(210,-24) ± 52	3.3	1.7σ	_
	NILC	9	0.076+0.035	(216, -25) ± 45	3.9	1.9σ	
	SEVEN	9	$0.078^{+0.035}_{-0.037}$	(215, -24) ± 43	4.0	2.0σ	
	SMICA	9	0.070+0.035	(216, -25) ± 50	3.4	1.8σ	
	WMAP3 ILC	9	0.114	(225, -27)	6.1	2.8σ	_
	Commander	10	$0.092^{+0.037}_{-0.040}$	(215, -29) ± 38	4.5	2.2σ	
	NILC	10	0.098+0.037	(217, -29) ± 33	5.0	2.3σ	
	SEVEM	10	$0.103^{+0.037}_{-0.039}$	(217,-28) ± 30	5.4	2.5σ	
	SMICA	10	$0.094^{+0.037}_{-0.040}$	(218, -29) ± 37	4.6	2.2σ	

supercurvature mode

Gradient of a field over the horizon scale = Super-curvature mode in open inflation

may modulate the amplitude of perturbation depending on the direction.

leading order effect is dipolar

a viable model

Kanno, MS & Tanaka (2013)

$$L = -\frac{1}{2} (\nabla \phi)^2 - V(\phi) - \frac{1}{2} (\nabla \sigma)^2 - m_\sigma^2 \sigma^2 - \frac{1}{2} f^2(\sigma) (\nabla \chi)^2 - \frac{1}{2} m_\chi^2 \chi^2$$
$$(\sigma, \chi) \text{-sector} \sim \text{"axion"-like}$$
$$\phi \text{: inflaton}$$

 σ : isocurvature mode with super-curvature perturbation $\Delta \sigma$ χ : curvaton H_F : Hubble at $\Longrightarrow H_F^2 \gg m_\sigma^2 \approx H^2 \gg V''(\phi) \gg m_\chi^2$

false vacuum

curvature perturbation is almost Gaussian

$$\mathcal{R}_{c} = N_{\phi}\delta\phi + N_{\chi}\delta\chi + \frac{1}{2}N_{\chi\chi}\delta\chi^{2} + \cdots$$

$$\left< \delta \phi^2 \right> \approx H^2, \ \left< \delta \chi^2 \right> \approx \frac{H^2}{f^2 (\sigma + \Delta \sigma)}$$

$$P_{S}(k) \approx \left[N_{\phi}^{2} H^{2} + N_{\chi}^{2} \frac{H^{2}}{f^{2} (\sigma + \Delta \sigma)} \right]_{k/a=H}$$

dipolar modulation through $f(\sigma)$

 χ -field is a "free" field (no direct coupling to inflaton)

no significant non-Gaussianity, nor quadrupole

 σ -field eventually dies out (because $m_{\sigma} \sim H$)

modulation is larger on larger scales = consistent with Planck 2013

tensor-scalar ratio

if $r > \sim 0.05$, models with non-constant n_s are favored

can open inflation explain this? -- Yes!

observational indication

fast-roll phase in open inflation

> fast-roll phase

lasts for a few e-folds until ε_V becomes small.

theoretical (qualitative) predictions

 suppression of curvature perturbation during the first few e-folds (↔large scales) of open inflation

$$P_{S}(k) \approx \frac{H^{2}}{2\varepsilon(2\pi)^{2}M_{pl}^{2}}: \qquad \varepsilon \equiv -\frac{\dot{H}}{H^{2}}$$

no suppresion in tensor perturbation

$$P_T(k) = \frac{8H^2}{(2\pi)^2 M_{pl}^2} \qquad \Longrightarrow \qquad r \equiv \frac{P_T}{P_S} = 16\varepsilon$$

curvature scale at the beginning of fast-roll phase t = t*

scalar & tensor spectrum in open inflation

Summary

 Dipolar statistical anisotropy requires a non-standard inflation scenario

Modulation of the fluctuation amplitude by supercurvatue mode in open inflation

- If r>~0.05, Planck result may be explained with
 P_s(k) suppressed on large scales
 - Suppression due to fast-roll phase at the beginning of in open inflation

These may be signatures from string landscape

- embedding models in string theory?
 - any other testable predictions?
 - other features in CMB? LSS? ...?

Maybe we are beginning to see physics beyond inflation!

string theory landscape?