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General Relativity
Einstein (1915)
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GR applied to homogeneous & isotropic universe
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Friedmann (1916)
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• 1916~  General Relativity/Friedmann Universe

• 1929 Hubble’s law: V=H0 R ···cosmological redshift

• 1946~ Big-Bang theory/Nuclear astrophysics

• 1960~  High redshift objects/Quasars

• 1965 Discovery of relic radiation from Big-Bang

Cosmic Microwave Background: T0=2.7K

• 1970~ BBNucleosynthesis vs Observed Abundance

→ Existence of Dark Matter

• 1st stage:   1916 ~ 1980

Progress in Cosmology  (1)
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today

Quasars Galaxies
CMB

photonsproton

electron

Big-Bang 400,000 yr 109 yr 1010 yr

thermal plasma
Recombination of

protons and electrons
z=103

Big-Bang Universe and CMB
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CMB spectrum at T=2.725K

(redshifted by 103 from LSS)

wavelength[mm]

frequency[GHz]

200 sigma

error-bars

COBE/FIRAS (’94)

Big Bang theory has been firmly established
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Establishment of
homogeneous & isotropic
Big-Bang Universe Model

6



Progress in Cosmology  (2)

2nd stage:   1980 ~ 2013
• 1980~ Revelation of Large Scale Structure

Cosmological Perturbation Theory

Particle Cosmology/Inflationary Universe

• 1992   Detection of CMB anisotropy (COBE)

Evidence for Inflationary Universe

• 2003   Accurate CMB angular spectrum (WMAP)

Confirmation of Flatness of the Universe

Strong evidence for Dark Energy

• 2013   High precision CMB spectrum (Planck)

Very strong evidence for Inflation
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 isotropic component =2.73 KCMBT

CMB Full Sky Map
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COBE-DMR (1990)
WMAP (2003~)
Planck (2013~)

 WMAP 7th year data

 Planck 2013
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CMB Anisotropy Spectrum
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Horizon Problem
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Why the detection of T/T at  >10º was so important?

• Because in the standard Friedmann universe, the size of  
causal volume (horizon size) grows like ~ ct.

• Thus, any causal, physical process cannot produce 
correlation on scales  >1º.

• The angle sustaining the horizon size at LSS is ~ 1º.

• But (T/T) >10º ≠0 means there exists non-zero correlation.

While, the expansion of the universe is slower than ~ ct
because gravity is attractive (if  + 3P >0)

decelerated expansion



~1º
Now

Last Scattering Surface
(t=4x105 yr)

Big-Bang
(t=0)

horizon
size

There are ~104 causally independent patches on LSS

(t~1010 yr)
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Progress in Cosmology  (2)

2nd stage:   1980 ~ 2013
• 1980~ Revelation of Large Scale Structure

Cosmological Perturbation Theory

Particle Cosmology/Inflationary Universe

• 1992   Detection of CMB anisotropy (COBE)

Evidence for Inflationary Universe

• 2003   Accurate CMB angular spectrum (WMAP)

Confirmation of Flatness of the Universe

Strong evidence for Dark Energy

• 2013   High precision CMB spectrum (Planck)

Very strong evidence for Inflation
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Inflationary Universe
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Universe dominated by a scalar (inflaton) field

For sufficiently flat potential:
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•  slowly rolls down the potential: slow-roll (chaotic) inflation
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• H is almost constant ~ exponential expansion = inflation

• Inflation ends when  starts damped oscillation.



V()

 decays into thermal energy (radiation)

Birth of Hot Bigbang Universe

Linde (1983)



→ solves the horizon problem.

c H-1

Universe expands exponentially,
while the Hubble horizon size remains almost constant.

a(t)~eHt;  H~const.
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A small region of the universe

An initially tiny region can become much
larger than the entire observable universe

Hubble horizon during inflation
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log L

log a(t)

L=c H-1

Size of the
observable
universe

L∝a(t)

Inflationary Universe Bigbang Universe

length scales of the inflationary universe



Size of our observable universesmall universe

expands by a 

factor >1030

Birth of a gigantic 

universe

looks perfectly 

flat
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Flatness can be explained only by Inflation

Flatness of the Universe



Seed of Cosmological Perturbations
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Zero-point (vacuum) fluctuations of  :
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harmonic oscillator with friction term and time-dependent 

  k  const.

··· frozen when  > c H-1

(on superhorizon scales)k

gravitational wave (tensor) modes also satisfy the same eq.

physical wavelength (t)∝a(t)



Generation of Curvature Perturbation
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curvature perturbation R ≈ -Y : gravitational potential
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•  is frozen on “flat” (R=0) 3-surface (t=const. hypersurface)

• Inflation ends/damped osc starts on  =const. 3-surface.

end of
inflation

hot bigbang universe
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• Amplitude of curvature perturbation:

• Power spectrum index: 181
2 4 10 GeV: Planck mass

8
~ .plM
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Mukhanov (1985), MS (1986)

• Tensor (gravitational wave) spectrum:

Liddle-Lyth (1992)
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Theoretical Predictions
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CMB Anisotropy from Curvature Perturbation
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• Photons climbing up from gravitational potential well are redshifted.
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• Tensor (gravitational wave) spectrum:
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CMB constraints on inflation 23

Planck XX (2015)

scalar spectral index: ns ~ 0.96

tensor-to-scalar ratio: r < 0.1
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single-field models with constant ns are severely constrained



Inflation as the Origin of 
Large Scale Structure

24



Post WMAP/Planck Era

Standard (single-field, slow-roll) inflation predicts almost scale-
invariant Gaussian curvature perturbations.

Observational data are consistent with theoretical predictions.

• almost scale-invariant spectrum:

• highly Gaussian fluctuations:
local 0.8 5.0  (68% CL) NLf

l 2

gauss gau

al

s

c

s

o3

5
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25

only to be confirmed by tensor (=GW) modes?!

0.968 0.006 (68% CL)   Sn  
Planck 2015 XIII

Planck 2015 XVII
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signature of primordial GWs

spacetime(graviton) vacuum fluctuations from inflation

B-mode polarization in CMB anisotropy

• E-mode (even parity)

• B-mode (odd parity)

= cannot be produced from 

density fluctuations

Seljak & Zaldarriaga (1996)

Starobinsky (1979)



No trace of primordial
B-mode had been found

so far…

27



If confirmed, it “proves” [ large field models*)of ]

primordial inflation & quantum gravity!

sky map
B-mode spectrum

*) >MPlanck~1018GeV : a challenge for string theorists

Discovery(?) of primordial GWs

BICEP2 (2014)

28

--- r = 0.2

l
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BICEP2       Planck-BICEP2/Keck

Yet, r ~ 0.05 is still possible, which would confirm

primordial inflation & quantum gravity!

B-mode spectrum

r =0.2

without dust

d
u
st

 [

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2
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r

detected B-mode seems mostly to be due to galactic dust…

(2014) (2015)
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Abazajian et al., 
arXiv:1403.5922 [astro-ph.CO]

running spectrum                      broken spectrum

Bayesian evidence

break

H-1
0

observational indication
30

broken spectrum is favored

with r~0.1



3131

a signature from physics 
beyond inflation?
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 There are ~ 10500 vacua in string theory

• vacuum energy density v may be positive or negative

• some of them have v <<MP
4

• typical energy scale ~ MP
4

Lerche, Lust & Schellekens (’87), Bousso & Pochinski (’00),

Susskind, Douglas, KKLT (’03), ...

taken from http://ipht.cea.fr/

vacuum energy 
density

String Theory Landscape



string theory landscape implies an intriguing

picture of the early universe

Maybe we live in one of these vacua…

taken from http://ineedfire.deviantart.com/art/Psychedelic-Multiverse-104313536

Cosmic Landscape

“multiverse”

33



34343434

 A universe jumps around in the landscape by quantum    

tunneling

• it can go up to a vacuum with larger v

• if it tunnels to a vacuum with negative v ,

it collapses within t ~ MP/|v|
1/2.

• so we may focus on vacua with positive v: dS vacua

0

v 

Sato, Kodama, MS & Maeda (’81)

de Sitter (dS) space ~ thermal state with T =H/2
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 Most plausible state of the universe before inflation is

dS vacuum with v ~< MP
4

dS space = solution with maximal symmetry (dS symmetry)

a hyperboloid in 5 dim Minkowski space

xA

(A=1~4)

x0

dS = O(4,1) 

2 2 2 2

(3)coshds dt Ht d   



false vacuum decay via O(4) symmetric (CDL) instanton

Coleman & De Luccia (‘80)
forbidden allowed

O(4)    O(3,1)

2 2 2x R  

2 2 2t x R  

bubble wall

false vacuum

dS = O(4,1)     O(5) = S4 : 4-sphere in 5 dim Euclidean space

quantum tunneling = classically forbidden = imaginary time

(sphere)

(hyperboloid)

(~ WKB approximation)

inside bubble is
an open universe

36
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http://www.georgehart.com/skewers/skewer-hyperboloid.html

bubble wall

37373737

creation of open universe
MS, Tanaka, Yamamoto & Yokoyama (1993)

nucleation

surface

ds vacuum :O(4,1)

Euclidean instanton: O(4)

nucleated bubble: O(3,1)   

=open universe

t = const slice = open
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creation of open universe
in conformal diagram

bubble wall

open universe

dS vacuum

ds vacuum :O(4,1)

Euclidean bubble: O(4)

nucleated bubble: O(3,1)   

=open universe
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Universe = inside nucleated bubble = spatially open universe

Observational data indicate 1-0 = K,0 ~< 10-2 : almost flat
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Friedmann eq.

( ) :   a t cosmic scale factor (= curvature radius)

K2 2 2 2

1
1

3 PM H a H


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negative
spatial

curvature

density parameter

(“0” stands for current value)

Open Inflation
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If inflation after tunneling was short enough (N = 50 ~ 60)

2 3

01 10 ~ 10    open universe is still possible

any signature in large angle CMB anisotropies?

Here we argue that we are already

seeing a couple of such signatures

on large angle CMB

 dipolar statistical anisotropy

 tensor-scalar ratio: Planck & BICEP2/Keck

eg, anthropic argument by Garriga, Tanaka & Vilenkin ‘99



length scales

N=log a

log L

curvature
radius

current Hubble
radius?

inflationary phasetransition phasecurvature 
dominated phase

H-1

new scale!

supercurvature
scales

41



42

42

 
2 2

1 cos

iso

T T
A

T T

 


   
    

   

l

  lCll 1

Dipolar Statistical Anisotropy
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dipole asymmetry observed by WMAP/Planck

dipole asymmetry of Cl in the direction

maximizing the asymmetry

asymmetry of Cl in the direction of ell=1
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Planck 2013 XXIII

0.07A 

 
2

2

1 cos

iso

                     

T
A

T

T

T






 
  

 

 
  

 



4545

bubble wall

open universe

dS vacuum

wavelength > curvature radius

“supercurvature” mode

supercurvature mode

MS, Tanaka & Yamamoto (’94)

scalar field with                  has discrete supercurvature mode
2 29

4
m H



curvature radius

46

size of 

observable

universe

Gradient of a field over the horizon scale

= Super-curvature mode in open inflation

may modulate the amplitude of     

perturbation depending on the direction.

leading order effect is dipolar
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a viable model

 : inflaton

 : isocurvature mode with super-curvature perturbation 

c : curvaton 

 curvature perturbation is almost Gaussian

       c  c c       
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2
2 2 2,

( )

H
H

f
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HF  : Hubble at

false vacuum

Kanno, MS & Tanaka (2013)

 c2 2 22 ( )F VH m H m

(, c )-sector  ~  "axion"-like
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dipolar modulation through f ( )

c-field is a “free” field (no direct coupling to inflaton)

-field eventually dies out ( because m ~ H )

modulation is larger on larger scales

= consistent with Planck 2013

no significant non-Gaussianity, nor quadrupole
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resolved if dns /d lnk<0 (running spectral index)

if r >~ 0.05, models with non-constant ns are favored

Planck-BICEP2/Keck 2015

49

tensor-scalar ratio

can open inflation explain this?  -- Yes!



Abazajian et al.,
arXiv:1403.5922 [astro-ph.CO]

running spectrum                      broken spectrum

Bayesian evidence

break

H-1
0

curvature 

radius?

observational indication

broken spectrum is favored

with r~0.1

50



fast-roll phase in open inflation

right after tunneling, H is

dominated by curvature:

 
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 curvature dominant phase

curvature dominance ends
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slow-roll phase
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lasts for a few e-folds until V becomes small.  
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length scales

N=log a

log L

curvature
radius

current Hubble
radius

inflationary phasetransition phasecurvature 
dominated phase

H-1

new scale!

supercurvature
scales

52
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• suppression of curvature perturbation during the first

few e-folds (↔large scales) of open inflation 

• no suppresion in tensor perturbation
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scalar & tensor spectrum in open inflation

Linde, MS & Tanaka (1999)

White, Zhang &MS (2014)

scalar

tensor

(no suppression)

curvature

radius
H0

-1 if K ≈ 0.003

scalar suppression begins 
indeed at smaller scales
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1. Dipolar statistical anisotropy requires a 
non-standard inflation scenario

Modulation of the fluctuation amplitude by 
supercurvatue mode in open inflation

2. If r>~0.05, Planck result may be explained with

Ps(k) suppressed on large scales

Suppression due to fast-roll phase at the 
beginning of in open inflation

These may be signatures from string landscape

Summary



• embedding models in string theory?

• any other testable predictions?

• other features in CMB? LSS? ...?

Maybe we are beginning to 

see physics beyond inflation!

string theory landscape?

56


