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Outline

• Basic formalism — QCD on a space-time lattice	


• Numerical computation — hardware, algorithms and analysis	


• From lattice to physics — results and challenges
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Basic formalism
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Quantum chromodynamics
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http://en.wikipedia.org/wiki/Standard_Model

The Standard Model

http://en.wikipedia.org/wiki/Standard_Model
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Lagrangian

• Lagrangian consists of 1+Nf free parameters:	


• bare coupling (g), bare quark masses (mf)	


• once fixed, theory completely predictive

5

LQCD = � 1

2g2
TrFµ⌫F

µ⌫ + q̄(i�µDµ �m)q

Dµ = @µ + iAµ

Fµ⌫ = �i[Dµ, D⌫ ] = @µA⌫ � @⌫Aµ + i[Aµ, A⌫ ]

Aµ =

N2
c�1X

a=1

T a
µA

a
µ

T a = T a† [T a, T b] = ifabcT c Tr
�
T aT b

�
=

1

2
�ab

m = diag(mu,md,ms, · · · )
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Lagrangian
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LQCD = � 1

2g2
TrFµ⌫F

µ⌫ + q̄(i�µDµ �m)q

Dµ = @µ + iAµ

Fµ⌫ = �i[Dµ, D⌫ ] = @µA⌫ � @⌫Aµ + i[Aµ, A⌫ ]
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T a = T a† [T a, T b] = ifabcT c Tr
�
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=
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2
�ab

m = diag(mu,md,ms, · · · )

q(x) ! ⌦(x)q(x) ⌦(x) 2 SU(Nc)

Aµ(x) ! ⌦(x)Aµ(x)⌦
†(x)� i⌦(x)@µ(x)⌦

†(x) Dµq(x) ! ⌦(x)Dµq(x)
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Important properties

• Anomalous U(1)A: at quantum level; important consequences 
for lattice discretization of fermions	


• Chiral symmetry breaking: 

•   

• pseudoscalar meson octet are pseudo-Goldstone bosons; 
ninth pseudoscalar meson is not	


• quark masses explicitly break chiral symmetry:

7

• Chiral symmetry: classical level, massless quark limit

m⌘0 ⇠ ⇤QCDm2
K / (mu,d +ms)m2

⇡ / (mu +md)

U(Nf )L ⇥ U(Nf )R � SU(Nf )V ⇥ U(1)B ⇥ U(1)A

SU(Nf )L ⇥ SU(Nf )R ⇥ U(1)B ! SU(Nf )V ⇥ U(1)B
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Important properties

• Asymptotic freedom: strength of interaction decreases with 
increasing momentum transfer Q between quarks; conversely, 
at low energies, perturbation theory becomes unreliable

8

Q

↵s(Q) =
ḡ2(Q)

4⇡
⇡ 1

�0 ln(Q2/⇤2)

D. Gross, D. Politzer, F. Wilczek

• Confinement: low-energy degrees of freedom are different 
from fundamental degrees of freedom
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Lattice regularization

• Nonperturbative phenomena require a nonperturbative 
treatment (e.g., chiral symmetry breaking, confinement)	


• Lattice regularization:	


• offers a gauge-invariant nonperturbative framework	


• is ideally suited for numerical simulation	


• typically defined in Euclidean space-time	


• powerful tool, yet has some fundamental limitations:	


• connecting Euclidean space observables to physics	


• numerical: sign problems, signal/noise

9
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Lagrangian in Euclidean space-time

• Gamma matrices are Ηermitian	


• Continuum Dirac operator:	


• satisfies γ5-Ηermiticity:	


• has paired eigenvalues:

10

LE
QCD =

1

2g2
TrFµ⌫F

µ⌫ + q̄(�µDµ +m)q

�µ = �†
µ = ��1

µ �2
µ = 1 {�µ, �⌫} = 2�µ⌫

�5 = ��1�2�3�4 �2
5 = 1 {�5, �µ} = 0

D(m) = �µDµ +m

�5D(m)�5 = �D(�m) = D†(m)

±i�+m
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Discretization of space-time

• Usually a hypercubic lattice	


• Inverse lattice spacing (1/a) acts 
as a UV cut-off	


• Discretization explicitly breaks 
Poincare symmetry

11

{a

x4

x

q(x) =

Z
⇡/a

�⇡/a

d

4
p q̃(p)eipx

q̃(p) =
X

x

q(x)e�ipx

x = a{n1, n2, n3, n4} nµ 2 Z
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Constructing lattice actions — guiding principles

• Preserve gauge invariance	


• Preserve maximum number of global symmetries as possible:	


• hypercubic symmetry (discrete rotations, reflections, etc)	


• discrete translational symmetries	


• chiral symmetry? (massless quark limit)

12

In order to minimize fine-tuning of operators in the quantum theory, 
lattice discretization should preserve a maximal amount of symmetry
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Lattice derivatives

13

@µq(x) =
1

a

[q(x+ aeµ)� q(x)]

@

?
µq(x) =

1

a

[q(x)� q(x� aeµ)]

Forward difference operator:

Backward difference operator:

@µ ! eiapµ � 1

a
⇡ ipµ [1 +O(ap)] @?

µ ! 1� e�iapµ

a
⇡ ipµ [1 +O(ap)]

1

2

�
@µ + @?

µ

�
! i

a
sin (apµ) ⌘ ip̂µ

�@?
µ@µ ! 4

a2
sin2

⇣apµ
2

⌘
⌘ �(p)

Symmetric difference operator:

Lattice Laplacian:
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Naive fermions
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Dnaive(m) =
�µ
2

�
@µ + @?

µ

�
+m D̃�1

naive(m) =
�i�µp̂µ +m

p̂2 +m2

Propagator poles located at:

Choice of derivative matters: individually, these 
lead to forward/backward propagation only

!(p) =
1

a
sinh�1

p
(ap̂)2 + (am)2 p̂j =

1

a
sin (apj)

! = ip4

!(p) !
p
p2 +m2 ap̂ ! 0
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Fermion doublers

• Poles in propagator indicate 2d-1 doubler modes, appearing at 
each corner of the Brillouin zone 	


• Doublers represent physical degrees of freedom in continuum; 
too many for QCD….

15

-� 0 �
am

a p
a
�

Continuum

Naive

Brillouin zone:

(0,0,0) (π,0,0)

(π,π,0)

(π,π,π)
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Nielsen-Ninomiya’s no-go theorem

1. absence of doubler modes	


2. invariance under continuum chiral symmetry	


3. locality of the fermion operator D	


4. correct continuum limit

16

A fermion discretization cannot simultaneously 
satisfy the following conditions:
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Absence of chiral anomaly

• Doubler modes are a fundamental problem — intimately 
related to chiral symmetry and anomalies in gauge theories	


• lattice gauge theory constructions are finite and therefore 
must be free of anomalies	


• in a lattice chiral gauge theory, doubler modes are necessary 
to cancel off anomaly

17
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Nielsen-Ninomiya’s no-go theorem

• Must sacrifice one of the no-go theorem conditions — results 
in a wide variety of fermion actions	


• Many fermion actions in use today	


• actions give the same continuum limit, up to flavor content	


• have different advantages/disadvantages in terms of chiral 
properties, renormalization requirements and computational 
cost

18
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An abundance of fermion actions…

• Wilson: breaks chiral symmetry, O(a) lattice artifacts	


• Staggered: fewer (but nonzero) doubler modes	


• Ginsparg-Wilson (overlap, domain-wall): breaks continuum 
chiral symmetry, but preserves a modified chiral symmetry	


• Minimally doubled: single doubler pole, breaks lattice 
rotational invariance	


• Many others: twisted mass, reduced staggered, Dirac-Kaeler

19
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Wilson fermions

• Doubler modes receive a mass ~ 1/a	


• Wilson term is irrelevant in continuum limit	


• Explicit breaking of chiral symmetry implies additive mass 
renormalization; additional tuning of operators

20

DW (m) =
�µ
2

�
@µ + @?

µ

�
� a

2
@?
µ@µ +m

D̃�1
W (m) =

�i�µp̂µ +M(p)

p̂2 +M2(p)

M(p) = m+
a

2
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-� 0 �
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a
�

Continuum
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Naive
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Staggered fermions

21

S(x) = �
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1 �
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Staggered fermions
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?
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2
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⌘5(x) = (�1)x1/a+x2/a+x3/a+x4/a {⌘5, ⌘µ} = 0 {⌘5, Dst(0)} = 0

S†Dnaive(m)S = S†
h�µ
2

�
@µ + @?

µ

�
+m

i
S

— Residual taste non-singlet chiral symmetry at m=0:

(@µ + @?
µ)S = ⌘µ�µS(@µ + @?

µ)

— 15 doublers reduced to 3 (“tastes”)
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Staggered fermions

• Transformation exposes four-fold degeneracy in naive fermions	


• Action defined by taking only one component of the four	


• Fermion components are spread over the hypercube	


• Computationally inexpensive	


• Four remaining degrees of freedom (“tastes”)	


• To achieve the proper number of continuum degrees of 
freedom, requires rooting trick; questions about validity due to 
non locality of rooted Dirac operator

23
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Ginsparg-Wilson fermions

24

�5D +D�5 = aD�5D

SGW = q̄Dq invariant under 

Proof: e�i�5✓De�i�5(1�aD)✓ = e�i�5✓e�iD�5(1�aD)D�1✓D
= e�i�5✓e�i(D�5�aD�5D)D�1✓D
= e�i�5✓ei�5✓D

q ! ei✓�5(1�aD)q q̄ ! q̄ei✓�5

Manifestation of anomaly: 
!
  — symmetry transformation depends explicitly on the gauge field	

  — integration measure is not invariant under flavor-singlet transformation
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Ginsparg-Wilson fermions

25

�5D +D�5 = aD�5D

D
ov

=
1

a

2

41 + D
W

(�1/a)q
D†

W

(�1/a)D
W

(�1/a)

3

5

SGW = q̄Dq invariant under 

Proof: e�i�5✓De�i�5(1�aD)✓ = e�i�5✓e�iD�5(1�aD)D�1✓D
= e�i�5✓e�i(D�5�aD�5D)D�1✓D
= e�i�5✓ei�5✓D

q ! ei✓�5(1�aD)q q̄ ! q̄ei✓�5

One solution to the G-W relation is the overlap operator:
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Ginsparg-Wilson fermions

• Continuum chiral symmetry restored in the continuum limit, 
but violated on the lattice	


• Main disadvantage: computationally costly	


• Other Dirac operators also satisfy the G-W relation, e.g., 	


• Domain-wall fermions: four-dimensional fermions arise as 
zero-modes of a five-dimensional theory with a mass defect 
in the fictitious fifth dimension of extent L5	


• Overlap fermions are equivalent to domain-wall fermions in 
the limit of infinite L5

26
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Parallel transport

27

y

x

C
Wilson line:

LC(x, y) = Pe

i
R
C
x!y

dz
µ

A
µ

(z)

Under a gauge transformation:

Parallel transport:

LC(x, y)q(y) q(x)transforms like

LC(x, y) ! ⌦(x)LC(x, y)⌦
†(y) TrLC(x, x) ! TrLC(x, x)



Michael G. Endres (MIT) • Lattice QCD • PPP 11 • Taipei, Taiwan • May 12, 2015

Gauge fields defined on the lattice

28

U

µ

(x) = e

iaAµ(x) ⇡ L(x, x+ ae

µ

) +O(a)

Introduce gauge link variables on the lattice:

x

x+ aeµ

Uµ(x) ! ⌦(x)Uµ(x)⌦
†(x+ aeµ)

Under a gauge transformation:
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Covariant lattice derivatives

29

rµq(x) =
1

a

[Uµ(x)q(x+ aeµ)� q(x)]

r?
µq(x) =

1

a

⇥
q(x)� U

†
µ(x� aeµ)q(x� aeµ)

⇤

1

2

�rµ +r?
µ

� ⇡ Dµ +O(a2) �r?
µrµ ⇡ �DµDµ +O(a2)

rµq(x) ! ⌦(x)rµq(x)

r?
µq(x) ! ⌦(x)r?

µq(x)

x+ aeµ x+ aeµx

x

x x

x� aeµx� aeµ
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Gauge-invariant fermion actions

30

S
F

[U, q̄, q] = a4
X

x

q̄D[U ]q D = D
naive

, D
W

, D
st

, D
ov

, · · ·

Gauge-invariant fermion actions are defined by:

@µ ! rµ @?
µ ! rµ

with the simple replacement:

Example: Wilson gauge action

DW (m) =
1

2
�µ

�
rµ +r⇤

µ

�
� a

2
r⇤

µrµ +m
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Plaquettes, rectangles, and the likes

31

Pµ⌫ = TrUµ(x)U⌫(x+ aeµ)U
†
µ(x+ ae⌫)U

†
⌫ (x)

x+ aeµx

x+ ae⌫

Rµ⌫ = TrUµ(x)Uµ(x+ aeµ)U⌫(x+ 2aeµ)U
†
µ(x+ ae⌫ + aeµ)U

†
µ(x+ ae⌫)U

†
⌫ (x)

x

x+ ae⌫

x+ aeµ

Pµ⌫ ! Tr eia
2Fµ⌫ [1+O(a)]

Rµ⌫ ! Tr ei2a
2Fµ⌫ [1+O(a)]
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Gauge actions

• Naive continuum limit requires: CP + 4CR= 1	


• Tune CR to remove higher order lattice artifacts	


• Wilson gauge action: CR=0	


• tree-level O(a2) improved Luscher-Weiz action: CR=1/12

32

S
G

[U ] = � 1

g2

X

x

X

µ⌫

< [c
P

P
µ⌫

+ c
R

R
µ⌫

]

S
G

[U ] ⇡ const + (c
P

+ 4c
R

)

a4

2g2

X

x

X

µ⌫

F 2
µ⌫

[1 +O(a)]
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Quantization of lattice QCD — partition function

33

Z =

Z
[dU ][dq̄][dq] e�SG[U ]�q̄D[U ]q

D = D
naive

, D
W

, D
st

, D
ov

, · · ·

Gauge-invariant integration measure:

Path-integral representation:

Z
dU f(U) =

Z
dU f(U⌦) =

Z
dU f(⌦U)

Z
dU = 1

[dU ] =
Y

x,µ

dU

µ

(x)
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Quantization of lattice QCD — partition function

34

Z =

Z
[dU ][dq̄][dq] e�SG[U ]�q̄D[U ]q

Path-integral representation:

Z =

Z
[dU ] e�SG[U ] detD[U ]

gauge integration volume is	

finite; no need to gauge fix
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Quantization of lattice QCD — observables

35

O(U, q̄, q) = O[U ]
i1,··· ,iN ;jN ,··· ,j1qi1 · · · qiN q̄jN · · · q̄j1

generalized index: color, flavor, spin, subset of space-time coordinates

A general observable can be written as:
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Quantization of lattice QCD — observables

36

�[U ]
i1,··· ,iN ;jN ,··· ,j1 = det

0

B@
D�1

i1,j1
[U ] · · · D�1

i1,jN
[U ]

...
. . .

...
D�1

iN ,j1
[U ] · · · D�1

iN ,jN
[U ]

1

CA

Wick contractions — Slater determinant

hO(U, q̄, q)i = 1

Z

Z
[dU ][dq̄][dq] e�SG[U ]�q̄D[U ]qO(U, q̄, q)

hO(U, q̄, q)i = 1

Z

Z
[dU ] e�SG[U ] detD[U ]O[U ]

i1,··· ,iN ;jN ,··· ,j1�
[U ]
i1,··· ,iN ;jN ,··· ,j1

!
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hO(U, q̄, q)i = 1

Z

Z
[dU ] e�SG[U ] detD[U ]Õ(U)

Quantization of lattice QCD — observables

37

hO(U, q̄, q)i = 1

Z

Z
[dU ][dq̄][dq] e�SG[U ]�q̄D[U ]qO(U, q̄, q)

hO(U, q̄, q)i = 1

Z

Z
[dU ] e�SG[U ] detD[U ]O[U ]

i1,··· ,iN ;jN ,··· ,j1�
[U ]
i1,··· ,iN ;jN ,··· ,j1

hO(U, q̄, q)i = hÕ(U)iU
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Observables — Wilson loop

• Wilson loop represents 
space-time path taken by a 
static quark/anti-quark pair	


• Confining potential— WL 
exhibits area-law behavior	


• easily verified in strong-
coupling expansion

38

W (R, T ) = hproduct of link variables, U , along an R⇥ T rectangle i

R

T

W (R, T ) ! e�TV (R) , T ! 1



Michael G. Endres (MIT) • Lattice QCD • PPP 11 • Taipei, Taiwan • May 12, 2015

Observables — Wilson loop

• Expand integrand in 
powers of 1/g2	


• Integrate term by term	


• Leading contribution 
corresponds to a single 
tiling of plaquettes

39

R

T

Example: pure YM, Wilson action Z
dUUijU

†
kl =

1

Nc
�jk�il

W (R, T ) =
1

Z

Z
[dU ] e�SG[U ]

[R⇥ T loop]
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Observables — Wilson loop

40

R

T

Z
dUUijU

†
kl =

1

Nc
�jk�il

V (R) =

R

a2
log(Ncg

2
)

⇠ N�1
c

⇠ Nc

Example: pure YM, Wilson action

W (R, T ) ⇠
✓

1

Ncg2

◆RT/a2

W (R, T ) ⇠ e�TRa�2
log(Ncg

2
)
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Observables — meson correlation functions

41

M(x) = q̄f (x)�qg(x)

0x

� �†

� �†hCM(x)i = hM(x)M†(0)iU,q̄,q

flavor singlet correlator gets	

“disconnected” contributiontrace over color and spin

flavor indices

hCM(x)i = �
D
Tr

h
D

�1
f (0, x)�D�1

g (x, 0)�†
iE

U

+
D
Tr

h
D

�1
f (x, x)�

i
Tr

⇥
D

�1
g (0, 0)�†⇤

E

U
�fg
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hCM(x)i = �
D
Tr

h
D

�1
f (0, x)�D�1

g (x, 0)�†
iE

U

+
D
Tr

h
D

�1
f (x, x)�

i
Tr

⇥
D

�1
g (0, 0)�†⇤

E

U
�fg

Observables — meson correlation functions

42

M(x) = q̄f (x)�qg(x)

hCM(x)i = hM(x)M†(0)iU,q̄,q

! �
D
Tr

h
D

�1
d

†
(x, 0)D�1

u (x, 0)
iE

U

M = ⇡+ : f = d, g = u,� = �5

�5D
�1(0, x)�5 = D

�1†(x, 0)

0x

� �†

flavor indices
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Continuum limit

• Lattice action depends explicitly on the bare parameters and 
lattice spacing	


• Lattice spacing is a redundant parameter, can be absorbed by 
redefinition of the fields and bare parameters:

43

a3/2q a3/2q̄ amf

• Lattice spacing set by the choice of bare coupling (g)	


• In lattice QCD, it is convenient to work with dimensionless 
bare parameters (that’s what goes into the computer)	


g
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Continuum limit — Pure YM

44

aMphys = Mlat(g(a))

�(g)
d

dg
Mlat(g) = Mlat(g)a

d

da

�(g) ⌘ �a
dg

da
= ��0g

3 � �1g
5 +O(g7)

b0 =
1

(4⇡)2

✓
11

3
Nc �

2

3
Nf

◆

b1 =
1

(4⇡)4

✓
34

3
N2

c � N2
c � 1

Nc
Nf � 10

3
NcNf

◆

b0, b1 are	

universal

>0

�b0g
3 � b1g

5 +O(g7)
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�(g) ⌘ �a
dg

da
= ��0g

3 � �1g
5 +O(g7)�b0g

3 � b1g
5 +O(g7)

Continuum limit — Pure YM

45

aMphys = Mlat(g(a))

�(g)
d

dg
Mlat(g) = Mlat(g)

Mlat(g) = aMphys / e
� 1

2�0g2 g
��1
�0

Z

In asymptotic scaling region:

a(g) =
1

⇤
e
� 1

2�0g2 g
��1
�0

a
d

da



Michael G. Endres (MIT) • Lattice QCD • PPP 11 • Taipei, Taiwan • May 12, 2015

• Continuum limit:	


• corresponds to tuning bare coupling to a critical point	


• g=0 corresponds to a gaussian fixed point	


• All dimensionless ratios of dimensionful quantities are 
predictions and have a finite continuum limit

Continuum limit — Pure YM

46

aMphys ! 0 , g ! 0

• Scale setting:

input from experiment

measured at bare coupling g

a =
Mlat(g)

Mphys
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Continuum limit — 2+1 flavor QCD

47

g,ml = mu = md,ms

aml(g)

Three bare parameters:

Three physical scales:	

(any choice will do, in princple)

ams(g)defines

aMp,phys = Mp,lat(g, aml, ams)

aM⇡,phys = M⇡,lat(g, aml, ams)

aMK,phys = MK,lat(g, aml, ams)

MK,lat

Mp,lat
= physical value

M⇡,lat

Mp,lat
= physical value
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Continuum limit — 2+1 flavor QCD

48

Along the curve of constant physics: {aml(g), ams(g)}

a =
Mp,lat(g)

Mp,phys

The lattice spacing is given by:

Mp,phys = 938MeV

• Lattice spacing a[fm] is convention dependent	


• The continuum limit corresponds to taking g to zero, and is 
independent of conventions

measured at bare coupling g
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GUNNAR S. BALI AND KLAUS SCHILLING 47

TABLE II. Fit results. Since the parameter values on the largest lattices are most precise, we
refrain from citing results gained on smaller volumes as long as they are compatible with the stated
numbers. For the 16 x 64 lattice at P = 6.8 this is not the case. Therefore we have listed both the
standard 6t result and the parameter values with the string tension constrained to its 32 value.

Vol.
K
e
Vp
l

&min
x2
NDF

P=60
32'

0.0513 (25)
0.275 (28)
0.636 (10)
0.64 (12)
0.041 (58)

2

0.816

p=6.4
32'

0.014 75 (29)
0.315 (15)
0.6013 (37)
0.564 (55)
0.075 (18)
v3
0.953

32'
0.005 33 (18)
0.311 (10)
0.5485 (24)
0.558 (35)
0.094 (13)
v3
0.937

P=68
16' x 64

0.005 45(27)
0.269 (22)
0.5412 (37)
0.725 (87)
0.037 (26)
v3
0.989

0.005 33
0.274 (18)
0.5426 (34)
0.710 (120)
0.043 (25)
~3
0.754

A test of the ansatz Eq. (8) implies that the "cor-
rected" data V(B) = V(R,) +6V(R) with

6V(R) = el[4vrGL, (R) —I/B] (10)

V=52', P = 64

are independent of the direction of R. The global situ-
ation is depicted for the 32 lattice at P = 6.4 in Fig. 1
where the corrected data points are plotted together with
the interpolating fit V(R) = Va+ KR—e/R+ f/Rs, with
fit parameters Va, K, e, and f as given in Table II. Our
potential fits yield y /NDF ( 1 as long as the first twos

data points are excluded. The stability of the string ten-
sion result with respect to cuts in R is displayed in Fig. 2
(for P = 6.4 and 6.8).
For P ) 6.4 the Coulomb coefficients e are definitely

different from the value ir/12 0.262 predicted by the
string vibrating picture [21] for large qq separations. The
self-energy contribution Va follows the leading-order ex-
pectation Va o( 1/P. We emphasize that for all P values
the parameter f is established to be positive as expected.
In fact, this parameter tends to increase with P, weaken-
ing the Coulomb coupling for small distances.
A more sensitive representation of the scatter of the

data points around the interpolating fit curve (obtained
on the 324 lattice) is shown in Fig. 3 (for P = 6.4). Note

0.9
C3

18

17

0.8

0.7

15

14

& ~~bb
f & I

9

0.5

12

11

0 I I I I

1

6c -(b}
5.8

I » i I I I i I i I i i i i I

4 5
Rmin

0 4
5.6 ()0 ()

0 3 I & i I

4 8 'I 2 16 20 24

5.2

FIG. 1. The qq potential at P = 6.4 (in lattice units).
The data points have been corrected for the lattice Coulomb
propagator [Eq. (8)]. The fit parameters are contained in
Table II.

Three for P = 6.0.

4.8
I I I I I I I I I I I I I I I I I I j I I I I I I I I

7
R io

FIG. 2. The values for the string tension K at (a) P = 6.4
and (b) P = 6.8 are plotted against the smallest R separation
included for the corresponding Gt in order to visualize sta-
bility. The first two values (in each figure) have nonreliable
error bars since g & NDF.

Scale setting: string tension

49

hep-lat/9208028

• string tension extracted 
from asymptotic 
behavior of the static 
quark potential	


• phenomenological value: 
σ1/2 ~ 440 MeV 

� = lim
r!1

@

@r
V (r)

V (r) = V0 �
c

r
+ �r

slope = σ
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Scale setting: Sommer scale (r0)

• r0 defined in terms of 
force between static 
quarks at intermediate 
distances r	


• r0 ~0.5 fm based on 
phenomenological 
potential models

50Figure 2: Interpolation of r0/a.

and we note that it is safe to use eq. (2.5) also at finite lattice spacings starting
around β = 6.4.

2.3 Parameterization of r0/a

The direct determination of r0/a for 5.7 ≤ β ≤ 6.4 [16] 1 and our new computa-
tions of rc/a in the range 6.57 ≤ β ≤ 6.92 may be combined with rc/r0=0.5133(24)
to obtain an interpolating formula giving r0/a in the whole range 5.7 ≤ β ≤ 6.92.
Following [16] we interpolate ln(a/r0) through a polynomial in β and find that

ln(a/r0) = −1.6804 − 1.7331(β − 6) + 0.7849(β − 6)2 − 0.4428(β − 6)3 ,

for 5.7 ≤ β ≤ 6.92, (2.6)

is an excellent approximation (Fig. 2) to the MC results. This formula covers a
larger range of β than the one given in [16], but its precision in the low β range
is somewhat worse. The accuracy of r0/a in eq. (2.6) is about 0.5% at low β
decreasing to 1% at β = 6.92.

1 In [16] the simulation for β = 6.57 was performed with a single smearing level, yielding less
control over excited state contaminations. As a result the error on r0/a seems to be somewhat
underestimated. Although the statistical significance of this small effect is not clear, we decided
to use our new data for β = 6.57 instead.

4

Alpha collaboration: hep-lat/0108008

r2
@

@r
V (r)

����
r=r0

= 1.65

r0 =

r
1.65� c

�

0.11 fm 0.067 fm 0.041 fm



Michael G. Endres (MIT) • Lattice QCD • PPP 11 • Taipei, Taiwan • May 12, 2015

Scale setting: gradient flow (t0)

• Computation of string tension and Sommer scale requires 
numerical computation of static quark potential:	


• computation of Wilson loops of all sizes TxL — 
computationally costly	


• large T extrapolation, estimates get noisy in this regime	


• fits to V(R)	


• State-of-the-art scale setting based on Gradient flow (t0); 
numerically simple computation

51

arXiv:1006.4518
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Scale setting: gradient flow (t0)

• Evolution of gauge fields in fictitious fifth time dimension 
according to a gauge-covariant diffusion equation	


• Flow has a smoothing effect on field configurations	


• Key property: gauge fields at flow time t>0 are smooth, 
renormalized fields; observables constructed from them 
contain physical properties of the system	


• Scale t0 defined as:

52

t2hEi
��
t=t0

= 0.3 E =
1

2
TrFµ⌫Fµ⌫

• Many other uses (e.g., defining stress-energy tensor on he 
lattice, measuring topological charge,…)

defined in terms of	

“flowed” gauge field
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Universality and improvement

• Continuum limit is independent of the choice of lattice action, 
however, the rate at which the continuum limit is reached will 
depend on the choice of action	


• Can improve actions, by adding irrelevant lattice operators, 
which are tuned in some way to remove lattice artifacts at the 
quantum level (i.e., Symanzik improvement)

53

Example:

Gµ⌫(x) = x�µ⌫ = � i

2
[�µ, �⌫ ]

S

imp

[U, q̄, q] = S[U, q̄, q] +
i

4
c

sw

a

5
X

x

q̄(x)�
µ⌫

G

µ⌫

(x)q(x)
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Finite volume and temperature effects

• Finite memory — finite number of grid points	


• finite temperature effects, controlled by T	


• finite volume effects, controlled by L	


• choice of boundary conditions are arbitrary, but some 
choices are sometimes better for addressing specific physics 
questions

54

x4

x

box size: L3xT
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Typical Spatial Boundary conditions

• Periodic/anti-periodic:	


• Twisted:

55

x4

x

box size: L3xT

f(x+ L) = ±f(x)

f(x+ L) = e

i�
f(x)

useful for interpolating between lattice momenta
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Finite volume

• Spatial extent should be 
larger than the Compton 
wave-length of lightest state 
(i.e., pions)	


• Periodic lattice: states can 
interact with their images	


• Typical finite volume 
corrections from around-
the-world pion propagation:

56

u

m�1
⇡

⇠ e�m⇡L m⇡L & 4

d
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Finite temperature

• States can propagate “around the world”	


• correlation functions will pick up backward propagating 
states at large time separations	


• asymptotic “thermal effects”	


• For correlation functions, around the world contributions can 
be summed

57

⇠ e�Et ⇠ e�E(t+T )

……

⇠ e�E(t�T )

+ + ++



Michael G. Endres (MIT) • Lattice QCD • PPP 11 • Taipei, Taiwan • May 12, 2015

Basic formalism — summary

• Lattice QCD degrees of freedom	


• Fermion and gauge actions	


• Continuum limit/scale setting	


• Computation of observables	


• Finite volume/temporal extent effects

58
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Outline

• Basic formalism — QCD on a space-time lattice	


• Numerical computation — hardware, algorithms and analysis	


• From lattice to physics — results and challenges

59
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Numerical computation

60
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Evaluation of the path integral

• Gauge integration involves NcxL3xT degrees of freedom	


• Fermion operator sparse but enormous:  NcxNsxL3xTxdx2	


• Direct numerical integration is impractical	


• Problem ideally suited for Monte Carlo

61

Z =

Z
[dU ] e�SG[U ] detD[U ]

hÕ(U)iU =
1

Z

Z
[dU ] e�SG[U ] detD[U ]Õ(U)

Goal is to reliably compute:
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Evaluation of the path integral

• Distributed according to the probability measure:

62

W (U) = e�SG[U ] detD[U ]

hÕ(U)i
U

⇡ 1

N
conf

N

confX

n=1

Õ(Un) +O
⇣
N1/2

conf

⌘

{U1, U2, · · · , UN
conf }• Generate uncorrelated field configurations:

• Stochastically estimate observables via:

hÕ(U)iU =
1

Z

Z
[dU ] e�SG[U ] detD[U ]Õ(U)

General strategy:

-1/2
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Configuration generation

• Generation of ensembles is performed using Markov Chain 
Monte Carlo methods (e.g., Metropolis Method)	


• Metropolis updating — requires ergodicity, detailed balance	


• autocorrelations — future configurations depend on past 
configurations	


• Dealing with fermion determinants is an added complication	


• naive computational cost ~ rank(D)3	


• past strategy: quenched approximation (uncontrolled)	


• Current state-of-the-art: Hybrid Monte Carlo

63

U1 ! U2 ! U3 ! . . .
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Hybrid Monte Carlo in a Nutshell

64

Z =

Z
[dU ] e�SG[U ] detD[U ]

Z =

Z
[dU ][d�†][d�] e�SG[U ]��†D[U ]�1�

Z =

Z
[dP ][dU ][d�†][d�] e�SK [P ]�SG[U ]��†D[U ]�1�

S

K

[P ] =
1

2

X

xµ

TrP
µ

(x)P
µ

(x)

“integrate in”	

pseudo-fermions

“integrate in”	

conj. momenta P

Pµ(x) =

N2
c�1X

a=1

T

a
P

a
µ (x)
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Hybrid Monte Carlo in a Nutshell

65

Z =

Z
[dU ] e�SG[U ] detD[U ]

Z =

Z
[dU ][d�†][d�] e�SG[U ]��†D[U ]�1�

Z =

Z
[dP ][dU ][d�†][d�] e�SK [P ]�SG[U ]��†D[U ]�1�

Z =

Z
[dP ][dU ][d�†][d�] e�H[P,U,�†,�]

H[P,U,�†,�] = SK [P ] + SG[U ] + �†D[U ]�1�

“integrate in”	

pseudo-fermions

“integrate in”	

conj. momenta P
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Hybrid Monte Carlo in a Nutshell

66

Draw random P , �†
, � for fixed U

Z =

Z
[dP ][dU ][d�†][d�] e�SK [P ]�SG[U ]��†D[U ]�1�

Gaussian distributed

(repeat)

Update U ??
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Hybrid Monte Carlo in a Nutshell

• Regard Q and P as conjugate variables	


• Introduce fictitious time τ (i.e., a fifth dimension)	


• For a fixed background field φ, define evolution in time τ 
according to Hamilton’s equations:

67

H[P,U,�†,�] = SK [P ] + SG[U ] + �†D[U ]�1�

Performing updating of gauge links U

• View partition function as a classical system with Hamiltonian:

d

d⌧

Qµ(x) = Pµ(x)
d

d⌧
Pµ(x) = � @

@Qµ(x)
H[P,U,�†,�]

U ⌘ eiQ
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Hybrid Monte Carlo in a Nutshell

• Erogodicy/ergodic hypothesis: time average of observables 
along an evolution trajectory is equal to its phase-space 
average	


• Classical Hamiltonian H is conserved along the trajectory	


• Finite integration steps, results in small nonconservation of H	


• Evaluation of fermion force term requires D-inversions 

68

d

d⌧

Qµ(x) = Pµ(x)
d

d⌧
Pµ(x) = � @

@Qµ(x)
H[P,U,�†,�]

H[P,U,�†,�] = SK [P ] + SG[U ] + �†D[U ]�1� U ⌘ eiQ
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Hybrid Monte Carlo in a Nutshell

69

Evolve U and P for fixed � a distance ⌧

Accept/reject new configuration

according to Pacc = min(1, e��H
)

Draw random P , �†
, � for fixed U

Z =

Z
[dP ][dU ][d�†][d�] e�SK [P ]�SG[U ]��†D[U ]�1�

Gaussian distributed

(repeat)
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Hybrid Monte Carlo in a Nutshell

• HMC evolution requires many linear solves of form:	


• can be solved cheaply, iteratively	


• but inversion cost grows as chiral limit approached	


• Method is exact	


• errors in numerical integration of Hamilton’s equations takes 
system away from constant energy surface	


• such errors removed with Metropolis accept/reject step	


• Acceptance rate is controllable by integration step size Δτ	


• Many algorithmic improvements

70

Dx = y
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Thermalization and autocorrelations

• Deficiency of MCMC: future configs depend on the past	


• Autocorrelation times are algorithm dependent	


• Long distance quantities typically have longer autocorrelation 
times (e.g., topological charge, large Wilson loops)	


• Critical slowing down in continuum/chiral limits

71
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Lattice field configurations

Gauge fields configurations can be studies 
on an individual basis: 

• action density	


• configuration topology, 
topological charge density, 
topological charge	


• spectrum of the Dirac 
operator; zero modes

72

D. Leinweber, http://www.physics.adelaide.edu.au

http://www.physics.adelaide.edu.au
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Topological charge

• Gluonic definition of topological charge (not unique)	


• configurations require cooling to get integer values	


• jumps in charge with cooling iterations due to small instantons 
“falling through the lattice”

73
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Anatomy of a lattice QCD computation

1. Generate a statistically uncorrelated ensemble of gauge 
configurations distributed according to the action for multiple 
lattice parameters (e.g., lattice spacing, quark masses, etc)	


2. Measure operators on background field configurations	


3. Estimate expectation values of operators as ensemble averages 
over background gauge field configurations	


4. Use theory to connect expectation values of lattice operators 
to relevant physical quantities	


5. Analysis of data, necessary extrapolations/fits, quantification of 
all statistical and systematic uncertainties

74
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Understanding uncertainties

• Most numerical work quote two types of uncertainties:	


• Statistical uncertainties — are controlled primarily by 
ensemble size and choice of operators; can be reduced by 
increased computing resources and improved algorithms	


• Systematic uncertainties — can sometimes be controlled/
estimated/removed using functional forms predicted by 
theory (e.g., within an EFT framework)

75
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Uncertainties — controlled by numerics

• Autocorrelations	


• due to algorithmic inefficiency	


• critical slowing down as continuum/chiral limits approached	


• Equilibration	


• Statistical/fitting	


• Tuning of lattice parameters

76
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Uncertainties — controlled by theoretical input

• Continuum extrapolation	


• Infinite volume extrapolation	


• Accounting for thermal effects	


• Chiral extrapolation

77
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Consequences of limited resources

• Limited computational resources result in sacrifices…	


• quenched — uncontrolled approximation of the past	


• simulations at unphysical pion masses	


• limited number of lattice spacings — need 3+ for continuum 
extrapolation	


• Limited statistics present significant signal/noise challenges:	


• disconnected contributions to correlators	


• multi-baryon correlators	


• glue-ball correlators

78
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Hardware and algorithms

79

2/11/15, 8:58 PMjVrbdSnlwQIECBAgAABAgQIECCQEDBlNAGjmQABAgQIECBAgAABArkLOEK…AAAQIECBAgkLvAX30BfGXg+DsZAAAAAElFTkSuQmCC 900×800 pixels

Page 1 of 1data:image/png;base64,iVBORw0KGgoAAAANSUhEUgAAA4QAAAMgCAYAA…CCQEBAIEzCaCRAgQIAAAQIECBAgkLvAX30BfGXg+DsZAAAAAElFTkSuQmCC

Rapid advances in both hardware 
and algorithms have enabled:	

— realistic simulations: 	

	
 e.g., large volumes, light pions	

— increasingly challenging studies
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Survey of ensembles

• Nf = 1+1, 2+1, 1+1+1 and even 1+1+1+1 flavor ensembles	


• Typical lattice spacings: a > 0.05 fm	


• Typical pion masses greater than 200-300 MeV; state-of-the-art 
down to the physical pion mass	


• Some simulations include dynamical QED
80
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Numerical computation — summary

• Algorithms: Hybrid Monte Carlo	


• Considerations for carrying out a lattice QCD calculation to 
completion	


• Understanding and controlling (when possible) systematic/
statistical uncertainties

81
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Outline

• Basic formalism — QCD on a space-time lattice	


• Numerical computation — hardware, algorithms and analysis	


• From lattice to physics — results and challenges
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From lattice to physics

83
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Survey of LQCD applications

• Weak decays and matrix elements (Amarjit Soni, K to ππ)	


• Hadron structure (Jian-Wei Qiu, parton distribution functions)	


• Hadron spectroscopy and interactions — a sampling of 
lattice QCD results, enabled by theoretical, algorithmic and 
hardware developments 

• Nonzero temperature and density: e.g., equation of state, 
deconfinement transition, dense QCD (complex Langevin)	


• …
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Correlation functions in Euclidean spacetime
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sum over states

Cij(t) = h0|Ô0
ie

�ĤtÔ†
j |0i

Cij(t) =
X

n

Z 0
inZ

⇤
jne

�Ent

Ĥ|ni = En|ni Z 0
jn = h0|Ôj |niZ 0

in = h0|Ô0
i|ni

ensemble average	

over individual 

correlators= hCij(t)iU
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Effective mass
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“excited state contamination”ground state energy

exp. suppression at late times

typically one lattice spacing

meff (t) = � 1

�t
log

v0†C(t+�t)v

v0†C(t)v

meff (t) ⇡ E0 +
(v0†Z 0

1)(v
†Z1)

(v0†Z 0
0)(v

†Z0)


1� e�(E1�E0)�t

�t

�
e�(E1�E0)t + · · ·

v0
†
C(t)v = h0|

⇣
v0

†Ô0
⌘
e�Ĥt

⇣
Ô†v

⌘
|0i Ôv = v†Ô

linear combination of operators
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Effective mass — example: the nucleon
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Energies determined via fit to the “plateau region” 

excited state	
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(data courtesy of  The College of William & Mary)
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Understanding the origins of noise: pion

88

Signal:

⌧

C(t) = hC(t)iU ⇠ e�m⇡t

C(t) ⇠ D�1D�1†
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Understanding the origins of noise: pion
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⌧

Variance:

�2(t) = h|C(t)|2iU � |hC(t)iU |2

C(t) ⇠ D�1D�1†

⇥ D�1†D�1

†
|C(t)|2
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Understanding the origins of noise: pion
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⌧

Variance:

�2(t) = h|C(t)|2iU � |hC(t)iU |2

⇠ e�2m⇡
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Understanding the origins of noise: pion

91

bs

s/n ⇠ C(t)/�(t) ⇠ O(1)

0 10 20 30 40 50 60
0.50

0.55

0.60

0.65

0.70

a t

a
m
ef
f

am⇡



Michael G. Endres (MIT) • Lattice QCD • PPP 11 • Taipei, Taiwan • May 12, 2015

Understanding the origins of noise: nucleon
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Signal:

⌧

C(t) = hC(t)iU ⇠ e�mpt

C(t) ⇠ D�1D�1D�1
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Understanding the origins of noise: nucleon

93

†

⌧

Variance:

�2(t) = h|C(t)|2iU � |hC(t)iU |2

C(t) ⇠ D�1D�1D�1

⇥ D�1†D�1†D�1†
|C(t)|2
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Understanding the origins of noise: nucleon
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⌧

Variance is determined 
by pion physics

�2
p(t) ⇠ e�3m⇡t

Variance:

�2(t) = h|C(t)|2iU � |hC(t)iU |2



Michael G. Endres (MIT) • Lattice QCD • PPP 11 • Taipei, Taiwan • May 12, 2015

Understanding the origins of noise: proton
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Understanding the origins of noise: proton

• Generally, variance is governed by the lightest state with 
vacuum quantum numbers (and nontrivial valence QN)	


• e.g., pions or the vacuum itself	


• Multi-baryon systems: exponential degradation with baryon 
number, e.g., a “signal/noise” problem	


• Signal/noise problem is intimately related to the “sign-problem”
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s/n ⇠ e�(E0� 3
2 Ẽ0)tLepage’s argument:

(multi-) pion or 
vacuum energysignal ground state
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Disconnected diagrams
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Disconnected diagrams

• Two sources of noise:	


• gauge noise	


• noise associates with stochastic estimate of D-1
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0x
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tune M so they are comparable
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Effective mass — example: the nucleon
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excited state	

contamination

(data courtesy of  The College of William & Mary)
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To extend plateau, one can either: 1) reduce contamination at early times	

2) reduce statistical noise at late times
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Variance reduction

• (Semi-) recent algorithmic developments for variance 
reduction:	


• distillation [arXiv:0905.2160]	


• dilution [arXiv:0505023]	


• low mode averaging [hep-lat/0401011]	


• all mode averaging [arXiv:1208.4349]	


• signal/noise optimization of sources [arXiv:1404.6816]	


• Despite advances, signal/noise remains a significant challenge 
for LQCD calculations
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Generalized eigenvalue problem

• Observation: correlator is like a truncated transfer matrix	


• Solutions to generalized eigenvalue problem yield lowest N energy eigenstates, 
and operators with maximal overlap	


• Enhanced excited state contamination in appropriate regimes	


• Works best when operator basis is fairly orthogonal	


• Enables extraction of not only ground, but excited states
101

C(t)vn(t, t0) = �n(t, t0)C(t0)vn(t, t0)

C(t) = C†(t)

Assuming NxN correlator:

t0 < t < 2t0En = �@t log �n(t, t0) +O
⇣
e�(EN+1�En)t

⌘

Nucl. Phys. B215, 433 (1983)	

Nucl.Phys. B339 (1990) 222-252	


Nucl. Phys. B339, 222 (1990)	

J. High Energy Phys. 04 (2009) 094



Michael G. Endres (MIT) • Lattice QCD • PPP 11 • Taipei, Taiwan • May 12, 2015

Effective mass — example: the nucleon

• Other methods exist as well: intuition, Matrix Prony, …	


• New/better methods highly desirable
102
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Construction of operator basis

• Operators should have appropriate quantum numbers	


• definite momentum, parity, other quantum numbers	


• definite transformation properties of a lattice irrep	


• Target states are extended objects on the lattice	


• point sources not ideal	


• Ideal choice of operators should generally have:	


• low statistical noise 	


• large overlap onto target states
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Ôv = v†Ô

TABLE II: Decomposition of angular momentum eigenstates into irreps of O
h

. Also indicated are

the O
h

irreps containing ` as their lowest-lying state (LLS).

` decomposition irreps containing l as LLS

0 A+

1

A+

1

1 T�
1

T�
1

2 E+ � T+

2

E+, T+

2

3 A�
2

� T�
1

� T�
2

A�
2

, T�
2

4 A+

1

� E+ � T+

1

� T+

2

T+

1

5 E� � T�
1

� T�
1

� T�
2

E�

6 A+

1

�A+

2

� E+ � T+
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� T+

2

� T+

2

A+

2

9 A�
1

�A�
2

� E� � T�
1

� T�
1

� T�
1

� T�
2

� T�
2

A�
1

approximately 2% in the smallest box size considered, while the deviations are considerably

smaller for the L = 16 box (. 0.6%).

Using the generalization of Lüscher’s formula for s-wave scattering, we may determine

the scattering phase shifts for the higher partial waves. For p-wave scattering, if one assumes

tan �
4

⌧ tan �
1

, one finds (see, for example, [62]):

p3 cot �
1

(p) =

✓
2⇡

L

◆
3 1

2⇡2

⌘ S(⌘) , (19)

where ⌘ and S(⌘) are defined in Eq. 16. Plugging the lattice eigenvalues obtained for the

T�
1

irrep shown in Fig. 2 into the right-hand side of Eq. 19, we obtain a lattice prediction

for p3 cot �
1

. In Fig. 3, the scattering phase shift �
1

obtained by this procedure is plotted

as a function of ⌘ for L = 8 and L = 16, and for NO = 1, 2, 3, 4 and 5. For reference, also

shown in this figure is the scattering phase shift �
0

obtained from Eq. 16.

More generally, one can show from the results of Ref. [62] that if ⌘ is su�ciently close to

⌘⇤, then for the partial waves ` = 0, 1, 2, 3, 4, 5, 6 and 9 one finds:

�
`

(p) ⇡ (⌘⇤)3/2

g
`

(⌘⇤)
(⌘/⌘⇤ � 1) +O(⌘/⌘⇤ � 1)3 , (20)

where g
`

(⌘⇤) is some non-zero calculable numerical factor. For s- and p-waves, g
0

(⌘⇤) =

g
1

(⌘⇤) = d(⌘⇤)/(2⇡2), where d(⌘⇤) equals the number of times the integer triplet j satisfies

|j| = ⌘⇤ for a given pole ⌘⇤ (i.e., an integer taking the value: 1, 6, 8, 12, 24, or 48 depending on

12

cubic group with parity:

— 48 group elements	

— 10 irreps.	

— pos. and neg. parity irreps. 
correspond to even and odd l, 
respectively

`
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Construction of operator basis
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Ôv = v†Ô

• A1+ irrep contains l=0,4,6….	


• T1- irrep contains l=1,3,5,…

Example:

TABLE II: Decomposition of angular momentum eigenstates into irreps of O
h

. Also indicated are

the O
h

irreps containing ` as their lowest-lying state (LLS).

` decomposition irreps containing l as LLS

0 A+

1

A+

1

1 T�
1

T�
1

2 E+ � T+

2

E+, T+

2

3 A�
2

� T�
1

� T�
2

A�
2

, T�
2

4 A+

1

� E+ � T+

1

� T+

2

T+

1

5 E� � T�
1

� T�
1

� T�
2

E�

6 A+

1

�A+

2

� E+ � T+

1

� T+

2

� T+

2

A+

2

9 A�
1

�A�
2

� E� � T�
1

� T�
1

� T�
1

� T�
2

� T�
2

A�
1

approximately 2% in the smallest box size considered, while the deviations are considerably

smaller for the L = 16 box (. 0.6%).

Using the generalization of Lüscher’s formula for s-wave scattering, we may determine

the scattering phase shifts for the higher partial waves. For p-wave scattering, if one assumes

tan �
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, one finds (see, for example, [62]):
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⌘ S(⌘) , (19)

where ⌘ and S(⌘) are defined in Eq. 16. Plugging the lattice eigenvalues obtained for the

T�
1

irrep shown in Fig. 2 into the right-hand side of Eq. 19, we obtain a lattice prediction

for p3 cot �
1

. In Fig. 3, the scattering phase shift �
1

obtained by this procedure is plotted

as a function of ⌘ for L = 8 and L = 16, and for NO = 1, 2, 3, 4 and 5. For reference, also

shown in this figure is the scattering phase shift �
0

obtained from Eq. 16.

More generally, one can show from the results of Ref. [62] that if ⌘ is su�ciently close to

⌘⇤, then for the partial waves ` = 0, 1, 2, 3, 4, 5, 6 and 9 one finds:
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where g
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(⌘⇤) is some non-zero calculable numerical factor. For s- and p-waves, g
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(⌘⇤) =
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(⌘⇤) = d(⌘⇤)/(2⇡2), where d(⌘⇤) equals the number of times the integer triplet j satisfies

|j| = ⌘⇤ for a given pole ⌘⇤ (i.e., an integer taking the value: 1, 6, 8, 12, 24, or 48 depending on

12

cubic group with parity:

— 48 group elements	

— 10 irreps.	

— pos. and neg. parity irreps. 
correspond to even and odd l, 
respectively
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Construction of operator basis

• Operators should have appropriate quantum numbers	


• definite momentum, parity, other quantum numbers	


• definite transformation properties of a lattice irrep	


• Target states are extended objects on the lattice	


• point sources not ideal	


• Ideal choice of operators should generally have:	


• low statistical noise 	


• large overlap onto target states

105

Ôv = v†Ô

point smeared displaced double displaced
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Construction of operator basis

• Operators should have appropriate quantum numbers	


• definite momentum, parity, other quantum numbers	


• definite transformation properties of a lattice irrep	


• Target states are extended objects on the lattice	


• point sources not ideal	


• Ideal choice of operators should generally have:	


• low statistical noise 	


• large overlap onto target states
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Ôv = v†Ô

not necessarily compatible!
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Light hadron spectroscopy

• Summary results: includes MILC, PAC-CS, BMW, QCDSF, RBC&UKQCD and 
Hadron Spectrum collaborations	


• Bars/boxes represent experimentally measured masses/widths	


• Agreement: systematics (different for each) are under control

107

arXiv:1404.3723

lattice QCD compared to experiment	

(extrapolated to physical point)
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Glueball spectrum (pure YM)

• Operator basis: gauge invariant combinations of Wilson loops	


• Glueball spectrum extracted using variational method (GEVP)	


• Continuum limit, identification of continuum quantum numbers

108

FIG. 1. The Wilson loop shapes used in making the basic
glueball operators.

jects. Both single and double windings around the paths
are used; this allows us to double the number of raw oper-
ators with only a small increase in computational effort.
For each symmetry channel except A−+

2 , four irreducible
combinations are then chosen and applied to the smeared
links from each of the six schemes, yielding a total of 24
basic operators in each channel. For the A−+

2 , only the
last shape in Fig. 1 can be used and produces a total of
12 basic operators. Lastly, the glueball operators Φ(R)(t)
are formed from linear combinations of the basic oper-

ators, Φ(R)(t) =
∑

α v(R)
α φ(R)

α (t), where the coefficients

v(R)
α are determined using the variational method. This

involves first obtaining Monte Carlo estimates of the large
correlation matrix

C̃αβ(t) =
∑

τ

⟨0|φ̄(R)
α (τ+t) φ̄(R)

β (τ)|0⟩, (1)

where φ̄(R)
α (t) = φ(R)

α (t) − ⟨0|φ(R)
α (t)|0⟩. In practise, this

vacuum subtraction is only performed for the A++
1 chan-

nel as the expectation value vanishes identically in all

other sectors. The coefficients v(R)
α are then chosen to

minimize the effective mass

m̃(tD) = −
1

tD
ln

[

∑

αβ v(R)
α v(R)

β C̃αβ(tD)
∑

αβ v(R)
α v(R)

β C̃αβ(0)

]

, (2)

where the time separation for optimization is fixed to
tD = 1. Other values of tD are used as consistency
checks. Let v

(R) denote a column vector whose elements
are the optimal values of the coefficients v(R)

α . This vector
satisfies the eigenvalue equation

C̃(tD) v
(R) = e−tDm̃(tD) C̃(0) v

(R), (3)

and the eigenvector v
(R)
0 corresponding to the lowest ef-

fective mass m̃0(tD) yields the coefficients v(R)
0α for the

TABLE I. The glueball simulation parameters. Values for
the coupling β, input aspect ratio parameter ξ, the mean-link
parameter u4

s, the single-link smearing weight λs, the two-link
smearing weight λf , and the lattice sizes are listed. Results
for the hadronic scale r0 in terms of the lattice spacing as are
also given. The approximate spatial lattice spacings as are
determined assuming r−1

0 = 410(20) MeV.

β ξ u4
s λs λf Lattice r0/as as/r0 as (fm)

1.7 5 0.295 0.1 0.5 63 × 30 1.224(1) 0.8169(9) 0.39
1.9 5 0.328 0.1 0.5 63 × 30 1.375(2) 0.727(1) 0.35
2.2 5 0.378 0.1 0.5 83 × 40 1.761(2) 0.5680(5) 0.27
2.4 5 0.409 0.1 0.5 83 × 40 2.180(6) 0.459(1) 0.22
2.5 5 0.424 0.1 0.5 103 × 50 2.455(6) 0.407(1) 0.20
3.0 3 0.500 0.4 0.5 153 × 45 4.130(24) 0.2421(14) 0.12

operator Φ(R)
0 (t) which, under ordinary circumstances,

best overlaps the lowest-lying glueball G0 in the channel

of interest. A sequence of operators Φ(R)
1 (t), Φ(R)

2 (t), . . .
which predominantly overlap excited glueball states can
also be constructed using the higher-mass eigenvectors of
Eq. (3).

Monte Carlo estimates of the correlator matrix ele-
ments given in Eq. (1) were obtained for all 20 irreducible
representations in five simulations using an input aspect
ratio parameter ξ = 5. The values for the coupling β,
mean-link parameter us, smearing weights λs and λf , and
the lattice sizes used in these runs are listed in Table I.
An additional run at a smaller lattice spacing (∼ 0.12 fm)
and using ξ = 3 was done for the A++

1 , E++, and T ++
2

representations only. A smaller-as measurement helped
to obtain a reliable continuum-limit extrapolation for the
troublesome A++

1 state. The input parameters for this
run are also given in Table I. All computations were
carried out on DEC Alpha and Sun Ultrasparc work-
stations. Configuration ensembles were generated us-
ing Cabibbo-Marinari (CM) pseudo-heatbath and SU(2)
subgroup over-relaxation (OR) methods. Link variables
were updated in serial order on the lattice. Three com-
pound sweeps were performed between measurements,
where a compound sweep is one CM updating sweep fol-
lowed by nOR OR sweeps. The measurements were av-
eraged into bins of nmb, and nbins bins were obtained.
For the β = 3.0, ξ = 3 run, nOR = 5, nmb = 50, and
nbins = 80. For the β = 2.5, ξ = 5 run, nOR = 5,
nmb = 20, and nbins = 318. For all of the other simu-
lations, nOR = 3, nmb = 100, and nbins = 100. Crude
checks for residual autocorrelations were done by over-
binning by factors of two and four; in all cases, statistical
error estimates remained unchanged.

In the final analysis phase, the glue energies mG were
extracted using a two-step procedure. First, the large
correlation matrices in each channel were reduced to
smaller 3 × 3 matrices CAB(t) for A, B = 0, 1, 2 using

3

TABLE VIII. Glueball mass ratios.

m(2++)/m(0++) 1.39(4)
m(0−+)/m(0++) 1.50(4)
m(0∗++)/m(0++) 1.54(11)
m(1+−)/m(0++) 1.70(5)
m(2−+)/m(0++) 1.79(5)
m(3+−)/m(0++) 2.06(6)
m(0∗−+)/m(0++) 2.11(6)

m(0−+) /m(2++) 1.081(12)

that the pseudoscalar glueball is clearly resolved (at the
7σ level) to be heavier than the tensor.

All of the glueball states shown in Fig. 8 are stable
against decay to lighter glueballs. In the PC = ++ sec-
tor, the threshold for decay into two identical 0++ glue-
balls having zero total momentum is at twice the mass of
the scalar glueball. Although this lies below the mass of
the 3++ glueball, Bose symmetrization prohibits odd L
partial waves, where L is the relative orbital angular mo-
mentum, so that the 3++ glueball cannot decay into two
identical scalar glueballs. In the PC = −+ sector, the
lowest-lying two-glueball state consists of the 0++ and
2++ glueballs in a relative P -wave; all of our glueballs in
this sector have masses below the sum of the scalar and
tensor glueball masses. States of total zero momentum
and comprised of the 0++ and 1+− glueballs with rel-
ative orbital angular momentum L are the lowest-lying
two-glueball states in the PC = +− sector when L is
even and in the PC = −− sector when L is odd. Only
the 0+− glueball has sufficient mass to decay into two
such glueballs; however, this decay is forbidden because
L = 1 is required to make a state of zero total angular
momentum.

To convert our glueball masses into physical units, the
value of the hadronic scale r0 must be specified. We used
r−1
0 = 410(20) MeV from Ref. [1] to obtain the scale

shown on the right-hand vertical axis of Fig. 8. This es-
timate was obtained by combining Wilson action calcu-
lations of a/r0 with values of the lattice spacing a deter-
mined using quenched simulation results of various phys-
ical quantities, such as the masses of the ρ and φ mesons,
the decay constant fπ, and the 1P −1S splittings in char-
monium and bottomonium. Note that the errors shown
in Fig. 8 do not include the uncertainty in r−1

0 . For the
lowest-lying glueballs, we obtain m(0++) = 1730(50)(80)
MeV and m(2++) = 2400(25)(120) MeV, where the first
error comes from the uncertainty in r0mG and the second
error comes from the uncertainty in r−1

0 . A great deal of
care should be taken in making direct comparisons with
experiment since these values neglect the effects of light
quarks and mixings with nearby conventional mesons. It
is this mixing which has made the search for an incontro-
vertible experimental signal so difficult. A glueball hav-
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FIG. 8. The mass spectrum of glueballs in the pure SU(3)
gauge theory. The masses are given in terms of the hadronic
scale r0 along the left vertical axis and in terms of GeV along
the right vertical axis (assuming r−1

0 = 410 MeV). The mass
uncertainties indicated by the vertical extents of the boxes
do not include the uncertainty in setting r0. The locations
of states whose interpretation requires further study are indi-
cated by the dashed hollow boxes.

ing exotic JPC will not mix with conventional hadrons
and would be ideal for establishing the existence of glue-
balls. Unfortunately, our results indicate that the lightest
such state, the 2+− glueball, has a mass greater than 4
GeV.

Kuti has recently pointed out [19] that the glueball
spectrum shown in Fig. 8 can be qualitatively understood
in terms of the interpolating operators of minimal dimen-
sion which can create glueball states. With the expecta-
tion that higher dimensional operators create higher mass
states, the authors in Ref. [20], following an approach
suggested in Refs. [21,22], constructed all operators of
dimension 4, 5, and 6 capable of creating glueballs from
the QCD vacuum. Such operators are gauge-invariant
combinations of the chromoelectric and chromomagnetic
fields; operators equivalent to a total derivative or re-
lated to a conserved current are excluded. The lowest
dimensional operators capable of creating glueballs are
of dimension four and have the form TrFµνFαβ , where
Fµν is the gauge field strength tensor; these operators
create glueballs with JPC = 0++, 2++, 0−+ and 2−+.

13

Morningstar and Peardon	

arXiv:9901004

Jpc notation; spin J, parity P and charge conjugation parity C



Michael G. Endres (MIT) • Lattice QCD • PPP 11 • Taipei, Taiwan • May 12, 2015

Glueball spectrum (QCD)
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30

TABLE 1: Continuum-limit glueball masses (in MeV) from
quenched lattice QCD. The first parentheses contain the sta-
tistical errors, while the second, where present, include the
scale uncertainty.

JPC Bali [384] Morningstar [385] Chen [386]
0++ 1550(50) 1730(50)(80) 1710(50)(80)
2++ 2270(100) 2400(25)(120) 2390(30)(120)
0�+ 2330(270) 2590(40)(130) 2560(35)(120)

overlaps with state n. States with high spins, up to 4, are
resolved. The resulting spectrum, as well as the strange-
nonstrange mixing of isoscalar mesons, compares well
with the currently known states [251]. The calculated
masses come out about 15% too high, probably owing to
the unphysical pion mass, m⇡ = 396 MeV. The lattice-
QCD simulations also predict a number of extra states,
that are not yet well established experimentally. These
include a series of exotic states with quantum numbers
which cannot be produced by pairing a quark and an an-
tiquark, like JPC = 0+�, 1�+, 2+�, . . ., which have been
previously postulated to exist also in various models. For
some states, a significant overlap with operators contain-
ing the gluon field strength tensor has been found, mak-
ing them candidates for hybrids. It is interesting to note
that the quantum numbers and the degeneracy pattern
predicted by lattice QCD for hybrid mesons are quite
di↵erent from those of most models. Lattice QCD pre-
dicts four low-mass hybrid multiplets at masses around
2 GeV with quantum numbers 1�+, 0�+, 1��, 2�+, in
agreement with the bag model [380, 381], but at variance
with the flux-tube model [343, 382], which predicts eight
nearly degenerate hybrid multiplets. At masses larger
than 2.4 GeV, lattice QCD predicts a group of ten hybrid
multiplets, in disagreement with bag and flux-tube model
predictions. The pattern emerging from lattice QCD, i.e.,
of four low-mass and ten higher-mass multiplets, can be
reproduced by a qq0 pair in an S- or P -wave coupled to
a 1+� chromomagnetic gluonic excitation, which can be
modeled by a quasi-gluon in a P -wave with respect to
the qq0 pair [383].

The spectrum of glueballs has first been calculated
on a lattice in pure SU(3) Yang-Mills theory, i.e. in
the quenched approximation to QCD [384–386] at a lat-
tice spacing of a ⇠ 0.1 � 0.2 fm. A full spectrum of
states is predicted with the lightest one having scalar
quantum numbers, 0++, and a mass between 1.5 GeV
and 1.7 GeV. Also the next-higher glueball states have
nonexotic quantum numbers, 2++ (mass 2.3–2.4 GeV)
and 0�+ (mass 2.3–2.6 GeV), and hence will be di�-
cult to identify experimentally. In a simple constituent
gluon picture, these three states correspond to two-gluon
systems in relative S wave, with di↵erent combinations
of helicities. Table 1 summarizes the quenched lattice
results for the masses of the lightest glueballs.

While the glueball spectrum in pure SU(3) Yang-Mills
theory is theoretically well defined, because the glue-

FIG. 18: Glueball masses resulting from unquenched lattice
QCD [389], compared with experimental meson masses [251,
390]. From [389].

ball operators do not mix with fermionic operators, un-
quenched lattice calculations are more di�cult. The dy-
namical sea quarks will cause the glueball and flavor sin-
glet fermionic 0++ interpolating operators to couple to
the same physical states. In addition, decays of the 0++

states into two mesons are allowed for su�ciently light
quark masses, and may thus play an important role and
dynamically modify the properties of the glueball state.
Hence, lattice-QCD calculations of the glueball spectrum
with dynamical qq contributions are still at a relatively
early stage [387–389]. One particular problem is the
unfavorable signal-to-noise ratio of the relevant correla-
tion functions, which requires large statistics. The au-
thors of [389], using 2+1 flavors of ASQTAD improved
staggered fermions and a variational technique which in-
cludes glueball scattering states, found no evidence for
large e↵ects from including dynamical sea quarks. Their
mass for the 0++ glueball, 1795(60) MeV, is only slightly
higher compared to the quenched result of [386]. Fig-
ure 18 shows the glueball masses calculated in [389],
compared to some experimental meson masses. No ex-
trapolation to the continuum, however, was performed,
and no fermionic scattering states were included. Much
higher statistics will be needed for precise unquenched
calculations of flavor singlet sector on the lattice, with a
200 MeV resolution needed, e.g., to distinguish the three
isoscalar mesons in the 1.5 GeV mass range. A technique
designed to overcome the problem of an exponentially in-
creasing noise-to-signal ratio in glueball calculations has
been proposed and tested in the quenched approxima-
tion [391]. However, it is not known whether it can be
generalized to full QCD.

b. Light baryons In addition to the meson spec-
trum, also the spectrum of baryons containing the light
quarks u, d, and s has been calculated recently by dif-

• 2+1 flavors, a = 0.092 fm, 360 MeV pions	


• Variational analysis using O(30) glueball operators	


• Assignment of quantum numbers a challenge (e.g., multiple l  in a lattice irrep)	


• Consistent with quenched studies,  although continuum extrapolation needed

Gregory, et al. [arXiv:1208.1858]

I=0 meson masses 
(experiment)

`
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Light meson spectrum

• Isoscalar meson spectrum (labeled JPC)	


• Black/green mixing angle between light/strange quark basis 
states; determined from overlap factors obtained from GEVP

110

4

0.5

1.0

1.5

2.0

2.5

exotics

isoscalar

isovector

YM glueball

negative parity positive parity

FIG. 4: Isoscalar meson spectrum labeled by JPC . The box height indicates the one sigma statistical uncertainty above and
below the central value. The light-strange content of each state (cos2 α, sin2 α) is given by the fraction of (black, green) and
the mixing angle for identified pairs is also shown. Horizontal square braces with ellipses indicate that additional states were
extracted in this JPC but were not robust. Grey boxes indicate the positions of isovector meson states extracted on the same
lattice (taken from [9]). The mass scale is set using the procedure outlined in [9, 12]. Pink boxes indicate the position of
glueballs in the quark-less Yang-Mills theory [6].
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Maiani-Testa no-go theorem/Luscher formalism

• Monte Carlo calculations are performed in Euclidean space; Wick 
rotation required for measure positivity of path integral	


• single hadron energies remain straight-forward to extract	


• in general, scattering matrix elements cannot be extracted from 
infinite volume Euclidean space correlation functions	


• Luscher developed formalism for relating two particle infinite volume 
elastic scattering phase-shifts to energy shifts in a finite volume	


• Recent extensions of the formalism to three particles in a finite box	


• Polejaeva, & Akaki [arXive:1203.1241]	


• Briceno & Davoudi [arXive:1212.3398]	


• Hansen & Sharpe [arXiv:1408.5933]
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Luscher’s formula: two particle s-wave phase shifts

112

p cot �(p) =
1

⇡L
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pL

2⇡
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S(⌘) =
⇤X

n
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n2 � ⌘2
� 4⇡⇤

quantization condition for 
three-momentum p = |p|

well-defined limit as Λ removed

p cot �(p) = �1

a
+

r

2

p2 + · · · (higher order shape parameters)

scattering length effective range
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Luscher’s formula: two particle s-wave phase shifts

• r<<L	


• no assumption on a	


• s-wave scattering 
(generalizes to   ≠0)	


• below inelastic threshold
113

p cot �(p) =
1

⇡L
S

✓
pL

2⇡

◆

S(⌘) =
⇤X

n

1

n2 � ⌘2
� 4⇡⇤

-4 -2 0 2 4 6 8 10-150

-100

-50

0

50

100

150

h

SHhL

quantization condition for 
three-momentum p = |p|

well-defined limit as Λ removed

Above assumes:

2

`



Michael G. Endres (MIT) • Lattice QCD • PPP 11 • Taipei, Taiwan • May 12, 2015

Luscher’s formula: two particle s-wave phase shifts

• If energies spectrum in known in a finite box (determined via 
numerical calculation) then the scattering phase shifts can be 
determined at the corresponding scattering momenta

114

• If scattering phase shifts are known as a function of 
momentum, then the allowed scattering momenta (and 
therefore) energy spectrum is predicted in a finite box

p cot �(p) =
1

⇡L
S

✓
pL

2⇡

◆

En = 2
p

m2 + p2n�(p) pn

En = 2
p

m2 + p2npn�(pn)

quantization condition for 
three-momentum p = |p|
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Luscher’s formula: two particle s-wave phase shifts

• Practical issue:	


• Luscher’s formula gives δ(p) for discrete values of p, determined by two-
particle energy eigenstates of the system	


• a scan in δ(p) requires accessing more energies; changing lattice volume 
computationally expensive	


• Methods developed for accessing wider range of energies from a single 
simulation, e.g.,	


• use of asymmetric lattices, include nonzero total momentum operators	


• imposing twisted boundary conditions

115

En = 2
p

m2 + p2npn�(pn)
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• Resonances appear as rapid change in scattering phase shift in the corresponding 
scattering channel	


• Mapping out δ requires:	


• basis includes single hadron and multi-hadron operators	


• determination of many energy levels (e.g., using GEVP)	


• use of          form of Luscher’s formula
116

I=1 P=1 ππ scattering (contains ρ resonance)
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Dudek, Edwards, Thomas	

[arXiv:1212.0830]

` = 1

Breit-Wigner fit



Michael G. Endres (MIT) • Lattice QCD • PPP 11 • Taipei, Taiwan • May 12, 2015

Luscher’s formula — bound states
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Many hadron systems — nuclei
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• Signal/noise (related to sign 
problem)	


• Contraction problem

Major challenges:
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Multi-baryon contractions
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Multi-baryon contractions

120
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Multi-baryon contractions

121

quark perms	

(naive)spinorcolor
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Multi-baryon contractions
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Multi-baryon contractions

123
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Multi-baryon contractions
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Multi-baryon contractions

• General strategies now exist which eliminate all redundancies 
for multi-baryon correlation functions	


• unified contraction lists [arXiv:arXiv:1205.0585]	


• underlying principle: takes advantage of Pauli exclusion	


• exponential reduction in computational cost	


• efficient methods developed for construction of contraction 
lists needed: use of recursion relations [arXiv:1207.1452] 
and [arXiv:1301.4895]	


• Multi-baryon contractions methods enable A>4 calculations, 
however signal/noise remains an issue

125
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Lattice QCD: light nuclei and hypernuclei

• A<4, strangeness<2	


• SU(3) flavor limit, single lattice spacing a~0.145 fm	


• Infinite volume extrapolated
126

S. Beane, et al. (NPLQCD),	

Phys. Rev. D 87, 034506 [arXiv:1206.5219]

m⇡ ⇠ 800MeV
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Isospin breaking effects on hadron masses

• Lattice QCD simulations often performed in the isospin limit	


• mπ ~ 140 MeV; mN ~ 940 MeV	


• isospin breaking effects are very small by comparison:	


• e.g., neutron is heavier than the proton: mN-mP ~ 1.29 MeV	


• Isospin breaking effects are only important when numerical 
precision reaches a level where they can be measured	


• Isospin breaking is nonetheless important in nature, e.g., 
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Isospin breaking effects on hadron masses

• Two sources for isospin breaking:	


• strong breaking due to md>mu (dictated by Yukawa couplings 
in the SM of weak interactions)	


• electromagnetic breaking due to Qu ≠ Qd	


• According to experiment, contributions to mN-mP are 
comparable in size, but opposite in sign; cancelation of effects	


• (mN-mP)strong ~ 2.0 MeV	


• (mN-mP)e+m ~ -0.8 MeV	


• Interesting to understand interplay of these contributions as a 
function of the fundamental parameters of nature
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Introducing lattice QED into the mix
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Noncompact lattice formulation of U(1) gauge theory:

Fµ⌫(x) = @µA⌫(x)� @⌫Aµ(x) @µ = forward di↵erence lattice operator

Gauge transformations: vanishes on the lattice

LQED =
1

4e2
F 2
µ⌫

Gauge invariant lattice gauge action:

Aµ(x) ! Aµ(x)� @µ↵(x) Fµ⌫(x) ! Fµ⌫(x)� [@µ, @⌫ ]↵(x)

Noncompact action requires gauge fixing	

(e.g., Coulomb gauge on the lattice)
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Introducing lattice QED into the mix

130

Coupling to matter:

eiQaAµ(x) ! eiQa[Aµ(x)�@µ↵(x)] = eiQa↵(x)eiQaAµ(x)eiQa↵(x+aeµ)

q(x) ! e

iQa↵(x)
q(x)

transforms as a link variable

transforms as a site variable

Gauge invariant lattice fermion action:

S
F

[U, q̄, q] = a4
X

x

q̄D[U ]q D = D
naive

, D
W

, D
st

, D
ov

, · · ·

Q = diag(Qu, Qd, · · · )

U

µ

(x) ! U

µ

(x)eiQaAµ(x)
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Introducing lattice QED into the mix

• Finite volume effects:	


• QED is a long-range interaction; expect power-law finite 
volume effects — need large volumes	


• Finite volume effects accounted for within an EFT 
framework [e.g., Davoudi & Savage, arXiv:1402.6741]	


• Number of studies using QED quenched approximation:	


• can use currently available QCD configs	


• numerical tricks for reducing noise: +/-e averaging, exploiting 
correlations in ratios of correlators to suppress excited 
state contamination	


• Recent results for full QCD+QED
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Mass differences, including QED effects

• 1+1+1+1 flavors of  Wilson fermions	


• Full accounting of systematic errors, physical pion masses, continuum limit	


• Predictions — errors exceeding those of experiment

132

0

2

4

6

8
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6
M

 [
M

e
V

]

6N

6Y

6U

6D

6
CG

6U
cc

experiment

QCD+QED

prediction

BMW 2014    HCH

BMW [arXiv:1406.4088]

mass splitting [MeV] QCD [MeV] QED [MeV]
�N = n� p 1.51(16)(23) 2.52(17)(24) -1.00(07)(14)

�⌃ = ⌃

� � ⌃

+ 8.09(16)(11) 8.09(16)(11) 0
�⌅ = ⌅

� � ⌅

0 6.66(11)(09) 5.53(17)(17) 1.14(16)(09)
�D = D± �D0 4.68(10)(13) 2.54(08)(10) 2.14(11)(07)
�⌅

cc

= ⌅

++
cc

� ⌅

+
cc

2.16(11)(17) -2.53(11)(06) 4.69(10)(17)
�CG = �N ��⌃+�⌅ 0.00(11)(06) -0.00(13)(05) 0.00(06)(02)

Table 1: Isospin mass splittings of light and charm hadrons. Also shown are the individual contributions to
these splittings from the mass difference (m

d

�m
u

) (QCD) and from electromagnetism (QED). The separation
requires fixing a convention, which is described in (17). The last line is the violation of the Coleman-Glashow
relation (30), which is the most accurate of our predictions.
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Physics results — summary

• Extraction of energies from correlation functions:	


• designing operators with correct quantum numbers, large 
overlap onto states of interest	


• challenges with signal/noise	


• many fermion contractions	


• Random sampling of specific applications to:	


• hadron spectroscopy and interactions	


• nuclei and hypernuclei	


• measurement of isospin breaking effects in QCD
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Thank you!
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