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1 Introduction

• Many physical processes like vector meson radiative decays, heavy

quarkonium decays, B decays with η and η′ in the final states, as well as

the two-photon decays of η and η′, depend on the η − η′ mixing angle.

• The usual η − η′ mixing angle used in the past is based on the

assumption that the off-diagonal octet-singlet mixing mass term does not

depend significantly on the energy of the state.

• There is only one momentum-independent off-diagonal octet-singlet

mixing mass term. If this is the only mixing term, the η − η′ system

could be described by one parameter, the η − η′ mixing angle.

• Recent works in chiral perturbation theory

(Leutwyler,Kaiser,Schechter,Feldmann) show that a quadratic derivative

off-diagonal octet-singlet mixing term could exist and requires two angles

θ8 and θ0 to describe the pseudo-scalar meson decay constants.
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• The reason is that the derivative off-diagonal octet-singlet mixing term

gives rise to an additional momentum-dependent pole term in the decay

amplitudes.

LSB = d ∂µη0 ∂µη8 (1)

• The decay amplitudes become:

Aη = Aη8
cos(θ) − Aη0

sin(θ) + d (m2

η/m2

η′)Aη0
,

Aη′ = Aη8
sin(θ) + Aη0

cos(θ) − d Aη8
. (2)

• If one absorbs the d term into the sin(θ) term in the above expressions,

one would consider Aη is, to first order in SU(3) breaking parameter,

given by the old mixing angle, while Aη′ gets a new mixing angle which

differs from the old mixing angle by the additional d terms by making

the substitution sin(θnew) = sin(θ) − d, assuming d small.
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• This seems to be the origin of the two-angle description of the

pseudo-scalar decay constants in the current literature.

(Leutwyler,Kaiser,Schechter,Feldmann)

• Thus the quadratic momentum-dependent off-diagonal mixing mass

term, while leaves the amplitude with η almost unaffected, could

enhance or suppress the η′ amplitude, as in non-leptonic K → 3π decays,

for which the K meson pole term is suppressed relative to the pion pole

term by the factor m2
π/m2

K .

• To first order in SU(3) breaking, one could treat the

momentum-dependent mixing term as a perturbation as in K → 3π

decays. The Lagrangian for the η − η′ system now contains this term

and the usual mixing angle.
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• A basic question. To include higher order terms, one needs to

diagonalize both the momentum-independent and momentum-dependent

mixing terms to put the Lagrangian in a canonical form.

2 The diagonalized η − η
′ Lagrangian

• Consider the Lagrangian for the pure octet η8 and singlet η0

L0 =
1

2
(∂µη8 ∂µη8+∂µη0 ∂µη0+m2

8η
2

8+m2

0η
2

0)+d ∂µη8 ∂µη0+m2

08η8η0 (3)

• A simple way to diagonalize this Lagrangian is to make the

substitution :

η8 =
(η01 − η81)√

2
, η0 =

(η01 + η81)√
2

. (4)

• L0 becomes L1

L1 =
(1 − d)

2
∂µη81 ∂µη81 +

(1 + d)

2
∂µη01 ∂µη01 +

1

2
(m2

81η
2

81 + m2

01η
2

01)

+m2

081η81η01 (5)
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with

m2

81 =
(m2

0 + m2

8 − 2m2

08)

2
, m2

01 =
(m2

0 + m2

8 + 2m2

08)

2
, m2

081 =
(m2

0 − m2

8)

2
.

(6)

• After renormalization by:

η81 =
η82√
1 − d

, η01 =
η02√
1 + d

(7)

• L1 becomes L2

L2 =
1

2

(

∂µη82 ∂µη82 + ∂µη02 ∂µη02 +
m2

81

(1 − d)
η2

82 +
m2

01

(1 + d)
η2

02

)

+
m2

081√
1 − d2

η82η02 (8)

• Back to the octet-singlet basis by:

η82 =
(η03 − η83)√

2
, η02 =

(η03 + η83)√
2

. (9)
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• L2 becomes L3

L3 =
1

2
(∂µη83 ∂µη83 +∂µη03 ∂µη03 +m2

82η
2

83 +m2

02η
2

03)+m2

082η83η03 (10)

with

m2

82 =
(1 −

√
1 − d2)m2

0 + (1 +
√

1 − d2)m2

8

2(1 − d2)
+

d m2

08

(1 − d2)
,

m2

02 =
(1 +

√
1 − d2)m2

0 + (1 −
√

1 − d2)m2

8

2(1 − d2)
+

d m2

08

(1 − d2)
,

m2

082 =
m2

08 − d(m2

0 + m2

8)/2

(1 − d2)
. (11)
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• L3 is now of the usual form with only the energy-independent mixing

mass term like L0, except that the mass and mixing terms are modified

by additional contributions from the momentum-dependent mixing term.

• η8 and η0 in terms of η83 and η03

η8 =

(√
1 − d +

√
1 + d

2
√

(1 − d2)

)

η83 +

(√
1 − d −

√
1 + d

2
√

(1 − d2)

)

η03,

η0 =

(√
1 − d −

√
1 + d

2
√

(1 − d2)

)

η83 +

(√
1 − d +

√
1 + d

2
√

(1 − d2)

)

η03. (12)

• Vice versa:

η83 =

(√
1 − d +

√
1 + d

2
√

(1 − d2)

)

η8 −
(√

1 − d −
√

1 + d

2
√

(1 − d2)

)

η0,

η03 =

(

−
√

1 − d −
√

1 + d

2
√

(1 − d2)

)

η8 +

(√
1 − d +

√
1 + d

2
√

(1 − d2)

)

η0. (13)

• For d = 0, η83 and η03 are just the pure octet η8 and pure singlet η,

rspectively.
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• Thus the momentum-dependent mixing term has caused the mixing of

η8 and η0.

• This is an example of mixing caused by renormalization of the field

operators due to the momentum-dependent derivative coupling SU(3)

breaking terms.

• The Lagrangian in Eq. (10 ) can now be brought to the diagonal form

by writing η83 and η03 in terms of the physical η and η′ states and the

mixing angle θ :

• In terms of the physical η and η′ states and the mixing angle θ :

η83 = cos(θ)η + sin(θ)η′,

η03 = − sin(θ)η + cos(θ)η′. (14)

with θ given by:

tan(2 θ) =
2 m2

08 − d (m2

0 + m2

8)

(m2

0
− m2

8
)
√

1 − d2
,
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sin(θ) =

(

cos(2 θ)

cos(θ)

)(

m2

08 − d (m2

0 + m2

8)/2

(m2

0
− m2

8
)
√

1 − d2

)

(15)

• The diagonalized Lagrangian

L =
1

2
(∂µη ∂µη + ∂µη′ ∂µη′ + mη

2η2 + mη′
2η′2) (16)

mη
2 =

(m2

0 + m2

8)

2
− (m2

0 − m2

8)

2
√

(1 − d2) cos(2θ)
− (d tan(2θ))(m2

0 − m2

8)

2
√

(1 − d2)

mη′
2 =

(m2

0 + m2

8)

2
+

(m2

0 − m2

8)

2
√

(1 − d2) cos(2θ)
− (d tan(2θ))(m2

0 − m2

8)

2
√

(1 − d2)
(17)

which now depend only on m2

0, m2

8 and d. • Taking the mass difference

mη′
2 − m2

8 and mη
2 − m2

8 :

mη
2 − m2

8 =
(m2

0 − m2

8)

2

(

−1 +
1

√

(1 − d2) cos(2θ)
− d tan(2θ)

√

(1 − d2)

)

mη′
2 − m2

8 =
(m2

0 − m2

8)

2

(

1 +
1

√

(1 − d2) cos(2θ)
− d tan(2θ)

√

(1 − d2)

)

(18)
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• The relation

mη
2 − m2

8 = R (mη′
2 − m2

8). (19)

with

R =

(

−1+
√

(1−d2) cos(2θ)−d sin(2θ)

)(

1+
√

(1−d2) cos(2θ)−d sin(2θ)

)

−1

(20)

• Putting d = sin(α) and
√

1 − d2 = cos(α), R takes a simple form,

R = − tan(θ + α/2)2 (21)

• For small d, α ≈ sin(α) = d, θ + α/2 ≈ θP , the usual relation

R = − tan(θP )2 is thus not affected by the momentum-dependent mixing

term.
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• The pure octet η8 and singlet η0 can now be expressed terms of η and

η′

η8 = C8η η + C8η′ η′, η0 = C0η η + C0η′ η′. (22)

C8η =

(

− (
√

1 − d −
√

1 + d) sin(θ)

2
√

(1 − d2)
+

(
√

1 − d +
√

1 + d) cos(θ)

2
√

(1 − d2)

)

C8η′ =

(

(
√

1 − d −
√

1 + d) cos(θ)

2
√

(1 − d2)
+

(
√

1 − d +
√

1 + d) sin(θ)

2
√

(1 − d2)

)

C0η =

(

− (
√

1 − d +
√

1 + d) sin(θ)

2
√

(1 − d2)
+

(
√

1 − d −
√

1 + d) cos(θ)

2(1 − d2)

)

C0η′ =

(

(
√

1 − d +
√

1 + d) cos(θ)

2
√

(1 − d2)
+

(
√

1 − d −
√

1 + d) sin(θ)

2
√

(1 − d2)

)

(23)

For d = 0, we recover the usual expression given in Eq. (14) .
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• To first order in d,

η8 =

(

d sin(θ)/2 + cos(θ)

)

η +

(

−d cos(θ)/2 + sin(θ)

)

η′,

η0 =

(

− sin(θ) − d cos(θ)/2

)

η +

(

cos(θ) − d sin(θ)/2

)

η′ (24)

• In the above expressions, the η′ amplitude from η8 get −d/2 from the

cos(θ) term and another −d/2 from the sin(θ) term while the d term in

the η amplitude for η0 almost cancel out:

η8 =

(

d sin(θ)/2 + cos(θ)

)

η +

(

sin(θ0) +
d m2

0

(m2

0
− m2

8
)

)

η′,

η0 =

(

− sin(θ0) +
d m2

8

(m2

0
− m2

8
)

)

η +

(

cos(θ) − d sin(θ)/2

)

η′ (25)

• This agrees with the perturbation treatment of the

momentum-dependent mixing term.
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3 Mixing angle from vector meson

radiative decays

• The decay of a vector meson into a pseudo scalar meson and a photon

V → Pγ or a pseudo scalar meson into a vector meson and a photon

P → V γ can be described by an electromagnetic form factor V → P

defined as:

< P (pP )|Jem

µ |V (pV ) >= ǫµpP pV ǫV
gV P γ (26)

• Using Eq. (22) and Eq. (23) to express the V → η8 and V → η0 form

factor in terms of the measured V → η and V → η′ form factors, one

obtains sum rules relating the pure octet and singlet vector meson

radiative decay amplitudes to that for the measured decay amplitudes.
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• In terms of gV P γ , the sum rules read:

S(V → ηγ) = gV ηγ C8η + gV η′γ C8η′ =

(

gV η8γ

gV π0γ

)

th.

gV π0γ

S(η′ → V γ) = gV ηγ C0η + gV η′γ C0η′ =

(

gV η0γ

gV π0γ

)

th.

gV π0γ (27)

and similarly for other vector meson radiative decays.

• A nice feature of the sum rule is that we need only the gV η8γ and

gV η0γ form factors and the measured gV ηγ and gV η′γ to obtain solutions

for the mixing angle.

• From the measured values for gV P γ in Table. 1, the solutions we

obtained are:

θ = −(13.99 ± 3.1)◦, d = 0.12 ± 0.03, for ρ

θ = −(15.48 ± 3.1)◦, d = 0.11 ± 0.03, for ω

θ = −(12.66 ± 2.1)◦, d = 0.10 ± 0.03, for φ (28)
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• Since SU(3) breaking is due mainly to the factor fπ/fη8
in ρ → ηγ and

ω → ηγ decays, the values for θ and d obtained from ρ → ηγ and ω → ηγ

decays suffer from less theoretical uncertainties than the values obtained

from φ → ηγ decay.

• By treating exactly the derivative coupling mixing term with our

diagonalized Lagrangian, we have found a small mixing angle in vector

meson radiative decays.
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• The small values for the usual mixing angle are also obtained in

previous works in vector meson radiative

decays(Bramon,Benayoun,Escribano,KLOE).

• For example, a value between −13◦ and −17◦, or an average

θP = −15.3◦ ± 1.3◦ is obtained(Bramon et al.) and θP ≈ −11◦ is

obtained(Benayoun et.al), also a recent analysis(Escribano et al., KLOE)

using the more precise V → Pγ measured branching ratios found

θP = −13.3◦ ± 1.3◦.

• By subtracting the d term in θ, we obtain a value −(8 − 10)◦ for the

usual mixing angle. This value is smaller by a few degrees than the

values we obtained in our previous work. This could be due to the exact

treatment of the momentum-dependent mixing term in our Lagrangian.
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Decay gV P γ , θP = 0, k=0.85 gV P γ(exp.) BR(exp)[PDG]

ρ±
→ π±γ (1/3) gu 0.72 ± 0.04 (4.5 ± 0.5) × 10−4

ρ0
→ π0γ (1/3) gu 0.83 ± 0.05 (6.0 ± 0.8) × 10−4

ρ0
→ ηγ 0.58 gu (fπ/fη0

) 1.59 ± 0.06 (3.00 ± 0.20) × 10−4

ω → π0γ 0.99 gu 2.29 ± 0.03 (8.28 ± 0.28)%

ω → ηγ 0.17 gu (fπ/fη0
) 0.45 ± 0.02 (4.6 ± 0.4) × 10−4

φ → π0γ 0.06 gu 0.13 ± 0.003 (1.27 ± 0.06) × 10−3

φ → ηγ 0.47 gu (fπ/fη0
) 0.71 ± 0.01 (1.309 ± 0.024)%

φ → η′γ −0.31 gu (fπ/fη0
) −(0.72 ± 0.01) (6.25 ± 0.21) × 10−5

η′
→ ρ0γ 0.82 gu (fπ/fη0

) 1.35 ± 0.02 (29.1 ± 0.5)%

η′
→ ωγ 0.29 gu (fπ/fη0

) 0.44 ± 0.02 (2.75 ± 0.23)%

K∗±
→ K±γ 0.38 gu (fπ/fK) 0.84 ± 0.04 (9.9 ± 0.9) × 10−4

K∗0
→ K0γ −0.62 gu (fπ/fK) −(1.27 ± 0.05) (2.46 ± 0.22) × 10−3

Table 1: Theoretical values for V → Pγ with θP = 0, k=0.85 together with the

measured branching ratios and the extracted gV P γ(taken from previous paper )
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4 Conclusion

In conclusion, we have diagonalized both the mass term and the

momentum-dependent mixing term in the η − η′ Lagrangian and shown

that the η − η′ system can be described by two parameters, the meson

field renormalization and a new η − η′ mixing angle. From the measured

vector meson radiative decays, consistent solutions are obtained for the

mixing angle and the momentum-dependent mixing term. The small

mixing angle we found is consistent with previous determinations. It

seems that vector meson radiative decays would favor a small η − η′

mixing angle.
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