$$
\eta-\eta^{\prime} \text { mixing }
$$

T. N. PHAM

Centre de Physique Théorique, CNRS
Ecole Polytechnique, 91128 Palaiseau Cedex, France
Talk at the 11th Particle Physics Phenomenology Workshop (PPP11)
May 12-15, 2015 Taipei Taiwan
Based on recent works:
T. N. Pham, Phys. Lett. B 694 (2010) 129 ; ArXiv :hep-ph/1504.05414.

1 Introduction

- Many physical processes like vector meson radiative decays, heavy quarkonium decays, B decays with η and η^{\prime} in the final states, as well as the two-photon decays of η and η^{\prime}, depend on the $\eta-\eta^{\prime}$ mixing angle.
- The usual $\eta-\eta^{\prime}$ mixing angle used in the past is based on the assumption that the off-diagonal octet-singlet mixing mass term does not depend significantly on the energy of the state.
- There is only one momentum-independent off-diagonal octet-singlet mixing mass term. If this is the only mixing term, the $\eta-\eta^{\prime}$ system could be described by one parameter, the $\eta-\eta^{\prime}$ mixing angle.
- Recent works in chiral perturbation theory
(Leutwyler,Kaiser,Schechter,Feldmann) show that a quadratic derivative off-diagonal octet-singlet mixing term could exist and requires two angles θ_{8} and θ_{0} to describe the pseudo-scalar meson decay constants.
- The reason is that the derivative off-diagonal octet-singlet mixing term gives rise to an additional momentum-dependent pole term in the decay amplitudes.

$$
\begin{equation*}
\mathcal{L}_{\mathrm{SB}}=d \partial_{\mu} \eta_{0} \partial_{\mu} \eta_{8} \tag{1}
\end{equation*}
$$

- The decay amplitudes become:

$$
\begin{align*}
& A_{\eta}=A_{\eta_{8}} \cos (\theta)-A_{\eta_{0}} \sin (\theta)+d\left(m_{\eta}^{2} / m_{\eta^{\prime}}^{2}\right) A_{\eta_{0}} \\
& A_{\eta^{\prime}}=A_{\eta_{8}} \sin (\theta)+A_{\eta_{0}} \cos (\theta)-d A_{\eta_{8}} \tag{2}
\end{align*}
$$

- If one absorbs the d term into the $\sin (\theta)$ term in the above expressions, one would consider A_{η} is, to first order in $S U(3)$ breaking parameter, given by the old mixing angle, while $A_{\eta^{\prime}}$ gets a new mixing angle which differs from the old mixing angle by the additional d terms by making the substitution $\sin \left(\theta_{\text {new }}\right)=\sin (\theta)-d$, assuming d small.
- This seems to be the origin of the two-angle description of the pseudo-scalar decay constants in the current literature.
(Leutwyler,Kaiser,Schechter,Feldmann)
- Thus the quadratic momentum-dependent off-diagonal mixing mass term, while leaves the amplitude with η almost unaffected, could enhance or suppress the η^{\prime} amplitude, as in non-leptonic $K \rightarrow 3 \pi$ decays, for which the K meson pole term is suppressed relative to the pion pole term by the factor m_{π}^{2} / m_{K}^{2}.
- To first order in $S U(3)$ breaking, one could treat the momentum-dependent mixing term as a perturbation as in $K \rightarrow 3 \pi$ decays. The Lagrangian for the $\eta-\eta^{\prime}$ system now contains this term and the usual mixing angle.
- A basic question. To include higher order terms, one needs to diagonalize both the momentum-independent and momentum-dependent mixing terms to put the Lagrangian in a canonical form.

2 The diagonalized $\eta-\eta^{\prime}$ Lagrangian

- Consider the Lagrangian for the pure octet η_{8} and singlet η_{0}

$$
\begin{equation*}
\mathcal{L}_{0}=\frac{1}{2}\left(\partial_{\mu} \eta_{8} \partial_{\mu} \eta_{8}+\partial_{\mu} \eta_{0} \partial_{\mu} \eta_{0}+m_{8}^{2} \eta_{8}^{2}+m_{0}^{2} \eta_{0}^{2}\right)+d \partial_{\mu} \eta_{8} \partial_{\mu} \eta_{0}+m_{08}^{2} \eta_{8} \eta_{0} \tag{3}
\end{equation*}
$$

- A simple way to diagonalize this Lagrangian is to make the substitution :

$$
\begin{equation*}
\eta_{8}=\frac{\left(\eta_{01}-\eta_{81}\right)}{\sqrt{2}}, \quad \eta_{0}=\frac{\left(\eta_{01}+\eta_{81}\right)}{\sqrt{2}} . \tag{4}
\end{equation*}
$$

- \mathcal{L}_{0} becomes \mathcal{L}_{1}

$$
\begin{align*}
\mathcal{L}_{1}= & \frac{(1-d)}{2} \partial_{\mu} \eta_{81} \partial_{\mu} \eta_{81}+\frac{(1+d)}{2} \partial_{\mu} \eta_{01} \partial_{\mu} \eta_{01}+\frac{1}{2}\left(m_{81}^{2} \eta_{81}^{2}+m_{01}^{2} \eta_{01}^{2}\right) \\
& +m_{081}^{2} \eta_{81} \eta_{01} \tag{5}
\end{align*}
$$

with

$$
\begin{equation*}
m_{81}^{2}=\frac{\left(m_{0}^{2}+m_{8}^{2}-2 m_{08}^{2}\right)}{2}, m_{01}^{2}=\frac{\left(m_{0}^{2}+m_{8}^{2}+2 m_{08}^{2}\right)}{2}, m_{081}^{2}=\frac{\left(m_{0}^{2}-m_{8}^{2}\right)}{2} . \tag{6}
\end{equation*}
$$

- After renormalization by:

$$
\begin{equation*}
\eta_{81}=\frac{\eta_{82}}{\sqrt{1-d}}, \quad \eta_{01}=\frac{\eta_{02}}{\sqrt{1+d}} \tag{7}
\end{equation*}
$$

- \mathcal{L}_{1} becomes \mathcal{L}_{2}

$$
\begin{align*}
\mathcal{L}_{2}= & \frac{1}{2}\left(\partial_{\mu} \eta_{82} \partial_{\mu} \eta_{82}+\partial_{\mu} \eta_{02} \partial_{\mu} \eta_{02}+\frac{m_{81}^{2}}{(1-d)} \eta_{82}^{2}+\frac{m_{01}^{2}}{(1+d)} \eta_{02}^{2}\right) \\
& +\frac{m_{081}^{2}}{\sqrt{1-d^{2}}} \eta_{82} \eta_{02} \tag{8}
\end{align*}
$$

- Back to the octet-singlet basis by:

$$
\begin{equation*}
\eta_{82}=\frac{\left(\eta_{03}-\eta_{83}\right)}{\sqrt{2}}, \quad \eta_{02}=\frac{\left(\eta_{03}+\eta_{83}\right)}{\sqrt{2}} . \tag{9}
\end{equation*}
$$

- \mathcal{L}_{2} becomes \mathcal{L}_{3}

$$
\begin{equation*}
\mathcal{L}_{3}=\frac{1}{2}\left(\partial_{\mu} \eta_{83} \partial_{\mu} \eta_{83}+\partial_{\mu} \eta_{03} \partial_{\mu} \eta_{03}+m_{82}^{2} \eta_{83}^{2}+m_{02}^{2} \eta_{03}^{2}\right)+m_{082}^{2} \eta_{83} \eta_{03} \tag{10}
\end{equation*}
$$ with

$$
\begin{align*}
m_{82}^{2} & =\frac{\left(1-\sqrt{1-d^{2}}\right) m_{0}^{2}+\left(1+\sqrt{1-d^{2}}\right) m_{8}^{2}}{2\left(1-d^{2}\right)}+\frac{d m_{08}^{2}}{\left(1-d^{2}\right)} \\
m_{02}^{2} & =\frac{\left(1+\sqrt{1-d^{2}}\right) m_{0}^{2}+\left(1-\sqrt{1-d^{2}}\right) m_{8}^{2}}{2\left(1-d^{2}\right)}+\frac{d m_{08}^{2}}{\left(1-d^{2}\right)} \\
m_{082}^{2} & =\frac{m_{08}^{2}-d\left(m_{0}^{2}+m_{8}^{2}\right) / 2}{\left(1-d^{2}\right)} \tag{11}
\end{align*}
$$

- \mathcal{L}_{3} is now of the usual form with only the energy-independent mixing mass term like \mathcal{L}_{0}, except that the mass and mixing terms are modified by additional contributions from the momentum-dependent mixing term.
- η_{8} and η_{0} in terms of η_{83} and η_{03}

$$
\begin{align*}
& \eta_{8}=\left(\frac{\sqrt{1-d}+\sqrt{1+d}}{2 \sqrt{\left(1-d^{2}\right)}}\right) \eta_{83}+\left(\frac{\sqrt{1-d}-\sqrt{1+d}}{2 \sqrt{\left(1-d^{2}\right)}}\right) \eta_{03}, \\
& \eta_{0}=\left(\frac{\sqrt{1-d}-\sqrt{1+d}}{2 \sqrt{\left(1-d^{2}\right)}}\right) \eta_{83}+\left(\frac{\sqrt{1-d}+\sqrt{1+d}}{2 \sqrt{\left(1-d^{2}\right)}}\right) \eta_{03} \tag{12}
\end{align*}
$$

- Vice versa:

$$
\begin{align*}
& \eta_{83}=\left(\frac{\sqrt{1-d}+\sqrt{1+d}}{2 \sqrt{\left(1-d^{2}\right)}}\right) \eta_{8}-\left(\frac{\sqrt{1-d}-\sqrt{1+d}}{2 \sqrt{\left(1-d^{2}\right)}}\right) \eta_{0} \\
& \eta_{03}=\left(-\frac{\sqrt{1-d}-\sqrt{1+d}}{2 \sqrt{\left(1-d^{2}\right)}}\right) \eta_{8}+\left(\frac{\sqrt{1-d}+\sqrt{1+d}}{2 \sqrt{\left(1-d^{2}\right)}}\right) \eta_{0} . \tag{13}
\end{align*}
$$

- For $d=0, \eta_{83}$ and η_{03} are just the pure octet η_{8} and pure singlet η, rspectively.
- Thus the momentum-dependent mixing term has caused the mixing of η_{8} and η_{0}.
- This is an example of mixing caused by renormalization of the field operators due to the momentum-dependent derivative coupling $S U(3)$ breaking terms.
- The Lagrangian in Eq. (10) can now be brought to the diagonal form by writing η_{83} and η_{03} in terms of the physical η and η^{\prime} states and the mixing angle θ :
- In terms of the physical η and η^{\prime} states and the mixing angle θ :

$$
\begin{align*}
& \eta_{83}=\cos (\theta) \eta+\sin (\theta) \eta^{\prime} \\
& \eta_{03}=-\sin (\theta) \eta+\cos (\theta) \eta^{\prime} \tag{14}
\end{align*}
$$

with θ given by:

$$
\tan (2 \theta)=\frac{2 m_{08}^{2}-d\left(m_{0}^{2}+m_{8}^{2}\right)}{\left(m_{0}^{2}-m_{8}^{2}\right) \sqrt{1-d^{2}}}
$$

$$
\begin{equation*}
\sin (\theta)=\left(\frac{\cos (2 \theta)}{\cos (\theta)}\right)\left(\frac{m_{08}^{2}-d\left(m_{0}^{2}+m_{8}^{2}\right) / 2}{\left(m_{0}^{2}-m_{8}^{2}\right) \sqrt{1-d^{2}}}\right) \tag{15}
\end{equation*}
$$

- The diagonalized Lagrangian

$$
\begin{gather*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \eta \partial_{\mu} \eta+\partial_{\mu} \eta^{\prime} \partial_{\mu} \eta^{\prime}+m_{\eta}{ }^{2} \eta^{2}+m_{\eta^{\prime}}{ }^{2} \eta^{\prime 2}\right) \tag{16}\\
m_{\eta}^{2}=\frac{\left(m_{0}^{2}+m_{8}^{2}\right)}{2}-\frac{\left(m_{0}^{2}-m_{8}^{2}\right)}{\left.2 \sqrt{(} 1-d^{2}\right) \cos (2 \theta)}-\frac{(d \tan (2 \theta))\left(m_{0}^{2}-m_{8}^{2}\right)}{\left.2 \sqrt{(} 1-d^{2}\right)} \\
m_{\eta^{\prime}}^{2}=\frac{\left(m_{0}^{2}+m_{8}^{2}\right)}{2}+\frac{\left(m_{0}^{2}-m_{8}^{2}\right)}{\left.2 \sqrt{(} 1-d^{2}\right) \cos (2 \theta)}-\frac{(d \tan (2 \theta))\left(m_{0}^{2}-m_{8}^{2}\right)}{\left.2 \sqrt{(} 1-d^{2}\right)} \tag{17}
\end{gather*}
$$

which now depend only on m_{0}^{2}, m_{8}^{2} and d. - Taking the mass difference $m_{\eta^{\prime}}{ }^{2}-m_{8}^{2}$ and $m_{\eta}^{2}-m_{8}^{2}$:

$$
\begin{align*}
& m_{\eta}^{2}-m_{8}^{2}=\frac{\left(m_{0}^{2}-m_{8}^{2}\right)}{2}\left(-1+\frac{1}{\left.\sqrt{(} 1-d^{2}\right) \cos (2 \theta)}-\frac{d \tan (2 \theta)}{\sqrt{\left(1-d^{2}\right)}}\right) \\
& m_{\eta^{\prime}}{ }^{2}-m_{8}^{2}=\frac{\left(m_{0}^{2}-m_{8}^{2}\right)}{2}\left(1+\frac{1}{\left.\sqrt{(} 1-d^{2}\right) \cos (2 \theta)}-\frac{d \tan (2 \theta)}{\left.\sqrt{(} 1-d^{2}\right)}\right) \tag{18}
\end{align*}
$$

- The relation

$$
\begin{equation*}
m_{\eta}^{2}-m_{8}^{2}=R\left(m_{\eta^{\prime}}^{2}-m_{8}^{2}\right) \tag{19}
\end{equation*}
$$

with
$R=\left(-1+\sqrt{\left(1-d^{2}\right)} \cos (2 \theta)-d \sin (2 \theta)\right)\left(1+\sqrt{\left.\left(1-d^{2}\right) \cos (2 \theta)-d \sin (2 \theta)\right)^{-1}}\right.$

- Putting $d=\sin (\alpha)$ and $\sqrt{1-d^{2}}=\cos (\alpha), R$ takes a simple form,

$$
\begin{equation*}
R=-\tan (\theta+\alpha / 2)^{2} \tag{21}
\end{equation*}
$$

- For small $d, \alpha \approx \sin (\alpha)=d, \theta+\alpha / 2 \approx \theta_{P}$, the usual relation $R=-\tan \left(\theta_{P}\right)^{2}$ is thus not affected by the momentum-dependent mixing term.
- The pure octet η_{8} and singlet η_{0} can now be expressed terms of η and η^{\prime}

$$
\begin{gather*}
\eta_{8}=C_{8 \eta} \eta+C_{8 \eta^{\prime}} \eta^{\prime}, \quad \eta_{0}=C_{0 \eta} \eta+C_{0 \eta^{\prime}} \eta^{\prime} . \tag{22}\\
C_{8 \eta}=\left(-\frac{(\sqrt{1-d}-\sqrt{1+d}) \sin (\theta)}{2 \sqrt{\left(1-d^{2}\right)}}+\frac{(\sqrt{1-d}+\sqrt{1+d}) \cos (\theta)}{2 \sqrt{\left(1-d^{2}\right)}}\right) \\
C_{8 \eta^{\prime}}=\left(\frac{(\sqrt{1-d}-\sqrt{1+d}) \cos (\theta)}{2 \sqrt{\left(1-d^{2}\right)}}+\frac{(\sqrt{1-d}+\sqrt{1+d}) \sin (\theta)}{2 \sqrt{\left(1-d^{2}\right)}}\right) \\
C_{0 \eta}=\left(-\frac{(\sqrt{1-d}+\sqrt{1+d}) \sin (\theta)}{2 \sqrt{\left(1-d^{2}\right)}}+\frac{(\sqrt{1-d}-\sqrt{1+d}) \cos (\theta)}{2\left(1-d^{2}\right)}\right) \\
C_{0 \eta^{\prime}}=\left(\frac{(\sqrt{1-d}+\sqrt{1+d}) \cos (\theta)}{2 \sqrt{\left(1-d^{2}\right)}}+\frac{(\sqrt{1-d}-\sqrt{1+d}) \sin (\theta)}{2 \sqrt{\left(1-d^{2}\right)}}\right) \tag{23}
\end{gather*}
$$

For $d=0$, we recover the usual expression given in Eq. (14) .

- To first order in d,

$$
\begin{align*}
& \eta_{8}=(d \sin (\theta) / 2+\cos (\theta)) \eta+(-d \cos (\theta) / 2+\sin (\theta)) \eta^{\prime}, \\
& \eta_{0}=(-\sin (\theta)-d \cos (\theta) / 2) \eta+(\cos (\theta)-d \sin (\theta) / 2) \eta^{\prime} \tag{24}
\end{align*}
$$

- In the above expressions, the η^{\prime} amplitude from η_{8} get $-d / 2$ from the $\cos (\theta)$ term and another $-d / 2$ from the $\sin (\theta)$ term while the d term in the η amplitude for η_{0} almost cancel out:

$$
\begin{align*}
& \eta_{8}=(d \sin (\theta) / 2+\cos (\theta)) \eta+\left(\sin \left(\theta_{0}\right)+\frac{d m_{0}^{2}}{\left(m_{0}^{2}-m_{8}^{2}\right)}\right) \eta^{\prime} \\
& \eta_{0}=\left(-\sin \left(\theta_{0}\right)+\frac{d m_{8}^{2}}{\left(m_{0}^{2}-m_{8}^{2}\right)}\right) \eta+(\cos (\theta)-d \sin (\theta) / 2) \eta^{\prime} \tag{25}
\end{align*}
$$

- This agrees with the perturbation treatment of the momentum-dependent mixing term.

3 Mixing angle from vector meson radiative decays

- The decay of a vector meson into a pseudo scalar meson and a photon $V \rightarrow P \gamma$ or a pseudo scalar meson into a vector meson and a photon $P \rightarrow V \gamma$ can be described by an electromagnetic form factor $V \rightarrow P$ defined as:

$$
\begin{equation*}
<P\left(p_{P}\right)\left|J_{\mu}^{\mathrm{em}}\right| V\left(p_{V}\right)>=\epsilon_{\mu p_{P} p_{V} \epsilon_{V}} g_{V P \gamma} \tag{26}
\end{equation*}
$$

- Using Eq. (22) and Eq. (23) to express the $V \rightarrow \eta_{8}$ and $V \rightarrow \eta_{0}$ form factor in terms of the measured $V \rightarrow \eta$ and $V \rightarrow \eta^{\prime}$ form factors, one obtains sum rules relating the pure octet and singlet vector meson radiative decay amplitudes to that for the measured decay amplitudes.
- In terms of $g_{V P \gamma}$, the sum rules read:

$$
\begin{align*}
& S(V \rightarrow \eta \gamma)=g_{V \eta \gamma} C_{8 \eta}+g_{V \eta^{\prime} \gamma} C_{8 \eta^{\prime}}=\left(\frac{g_{V \eta_{8} \gamma}}{g_{V \pi^{0} \gamma}}\right)_{\mathrm{th} .} g_{V \pi^{0} \gamma} \\
& S\left(\eta^{\prime} \rightarrow V \gamma\right)=g_{V \eta \gamma} C_{0 \eta}+g_{V \eta^{\prime} \gamma} C_{0 \eta^{\prime}}=\left(\frac{g_{V \eta_{0} \gamma}}{g_{V \pi^{0} \gamma}}\right)_{\mathrm{th} .} g_{V \pi^{0} \gamma} \tag{27}
\end{align*}
$$

and similarly for other vector meson radiative decays.

- A nice feature of the sum rule is that we need only the $g_{V \eta_{8} \gamma}$ and $g_{V \eta_{0} \gamma}$ form factors and the measured $g_{V \eta \gamma}$ and $g_{V \eta^{\prime} \gamma}$ to obtain solutions for the mixing angle.
- From the measured values for $g_{V P \gamma}$ in Table. 1, the solutions we obtained are:

$$
\begin{array}{lll}
\theta=-(13.99 \pm 3.1)^{\circ}, & d=0.12 \pm 0.03, & \text { for } \rho \\
\theta=-(15.48 \pm 3.1)^{\circ}, & d=0.11 \pm 0.03, & \text { for } \omega \\
\theta=-(12.66 \pm 2.1)^{\circ}, & d=0.10 \pm 0.03, & \text { for } \phi \tag{28}
\end{array}
$$

- Since $S U(3)$ breaking is due mainly to the factor $f_{\pi} / f_{\eta_{8}}$ in $\rho \rightarrow \eta \gamma$ and $\omega \rightarrow \eta \gamma$ decays, the values for θ and d obtained from $\rho \rightarrow \eta \gamma$ and $\omega \rightarrow \eta \gamma$ decays suffer from less theoretical uncertainties than the values obtained from $\phi \rightarrow \eta \gamma$ decay.
- By treating exactly the derivative coupling mixing term with our diagonalized Lagrangian, we have found a small mixing angle in vector meson radiative decays.
- The small values for the usual mixing angle are also obtained in previous works in vector meson radiative decays(Bramon,Benayoun,Escribano,KLOE).
- For example, a value between -13° and -17°, or an average $\theta_{P}=-15.3^{\circ} \pm 1.3^{\circ}$ is obtained(Bramon et al.) and $\theta_{P} \approx-11^{\circ}$ is obtained(Benayoun et.al), also a recent analysis(Escribano et al., KLOE) using the more precise $V \rightarrow P \gamma$ measured branching ratios found $\theta_{P}=-13.3^{\circ} \pm 1.3^{\circ}$.
- By subtracting the d term in θ, we obtain a value $-(8-10)^{\circ}$ for the usual mixing angle. This value is smaller by a few degrees than the values we obtained in our previous work. This could be due to the exact treatment of the momentum-dependent mixing term in our Lagrangian.

Decay	$g_{V P \gamma}, \theta_{P}=0, \mathrm{k}=0.85$	$g_{V P \gamma}(\exp)$.	BR(exp)[PDG]
$\rho^{ \pm} \rightarrow \pi^{ \pm} \gamma$	$(1 / 3) g_{u}$	0.72 ± 0.04	$(4.5 \pm 0.5) \times 10^{-4}$
$\rho^{0} \rightarrow \pi^{0} \gamma$	$(1 / 3) g_{u}$	0.83 ± 0.05	$(6.0 \pm 0.8) \times 10^{-4}$
$\rho^{0} \rightarrow \eta \gamma$	$0.58 g_{u}\left(f_{\pi} / f_{\eta_{0}}\right)$	1.59 ± 0.06	$(3.00 \pm 0.20) \times 10^{-4}$
$\omega \rightarrow \pi^{0} \gamma$	$0.99 g_{u}$	2.29 ± 0.03	$(8.28 \pm 0.28) \%$
$\omega \rightarrow \eta \gamma$	$0.17 g_{u}\left(f_{\pi} / f_{\eta_{0}}\right)$	0.45 ± 0.02	$(4.6 \pm 0.4) \times 10^{-4}$
$\phi \rightarrow \pi^{0} \gamma$	$0.06 g_{u}$	0.13 ± 0.003	$(1.27 \pm 0.06) \times 10^{-3}$
$\phi \rightarrow \eta \gamma$	$0.47 g_{u}\left(f_{\pi} / f_{\eta_{0}}\right)$	0.71 ± 0.01	$(1.309 \pm 0.024) \%$
$\phi \rightarrow \eta^{\prime} \gamma$	$-0.31 g_{u}\left(f_{\pi} / f_{\eta_{0}}\right)$	$-(0.72 \pm 0.01)$	$(6.25 \pm 0.21) \times 10^{-5}$
$\eta^{\prime} \rightarrow \rho^{0} \gamma$	$0.82 g_{u}\left(f_{\pi} / f_{\eta_{0}}\right)$	1.35 ± 0.02	$(29.1 \pm 0.5) \%$
$\eta^{\prime} \rightarrow \omega \gamma$	$0.29 g_{u}\left(f_{\pi} / f_{\eta_{0}}\right)$	0.44 ± 0.02	$(2.75 \pm 0.23) \%$
$K^{* \pm} \rightarrow K^{ \pm} \gamma$	$0.38 g_{u}\left(f_{\pi} / f_{K}\right)$	0.84 ± 0.04	$(9.9 \pm 0.9) \times 10^{-4}$
$K^{* 0} \rightarrow K^{0} \gamma$	$-0.62 g_{u}\left(f_{\pi} / f_{K}\right)$	$-(1.27 \pm 0.05)$	$(2.46 \pm 0.22) \times 10^{-3}$

Table 1: Theoretical values for $V \rightarrow P \gamma$ with $\theta_{P}=0, \mathrm{k}=0.85$ together with the measured branching ratios and the extracted $g_{V P \gamma}($ taken from previous paper)

4 Conclusion

In conclusion, we have diagonalized both the mass term and the momentum-dependent mixing term in the $\eta-\eta^{\prime}$ Lagrangian and shown that the $\eta-\eta^{\prime}$ system can be described by two parameters, the meson field renormalization and a new $\eta-\eta^{\prime}$ mixing angle. From the measured vector meson radiative decays, consistent solutions are obtained for the mixing angle and the momentum-dependent mixing term. The small mixing angle we found is consistent with previous determinations. It seems that vector meson radiative decays would favor a small $\eta-\eta^{\prime}$ mixing angle.

5 Acknowledgments

I would like to thank Professor Tzu-Chiang Yuan for the invitation to PPP11 Workshop, and the members of Academia Sinica for the warm hospitality during the workshop.

