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Nucleon’s internal structure 

q  Our understanding of  the nucleon evolves 

Nucleon is a strongly interacting, relativistic bound state 
of  quarks and gluons 

q QCD bound states: 

²  Neither quarks nor gluons appear in isolation! 
²  Understanding such systems completely is still beyond the 

capability of  the best minds in the world 

q  The great intellectual challenge: 

Probe nucleon structure without “seeing” quarks and gluons? 

1970s 1980s/2000s Now 
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Predictive power:   
       Universal Parton Distributions 
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Operator definition of  PDFs 

q Quark distribution (spin-averaged): 

q Cut-vertex notation: 

q  Independent of  hadron momentum  P 

q Parton interpretation emerges in  n.A = 0  gauge 

PDFs are not direct physical observables, such as cross sections! 
But, well-defined in QCD and process independent! 

+ UVCT 
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Global QCD analyses – a successful story 

q World data with “Q” > 2 GeV 
    + Factorization: 
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Partonic luminosities 

q - qbar g - g 



PDFs at large x 

q  Testing ground for hadron structure at x è1:  
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Can lattice QCD help? 



Lattice QCD 

q Hadron masses: Predictions with limited inputs 

Cannot calculate PDFs directly, whose operators  
are time-dependent 

q  Lattice “time” is Euclidean: ⌧ = i t



PDFs from lattice QCD 

q Moments of  PDFs – matrix elements of  local operators 

hxn(µ2)iq ⌘
Z 1

0
dx x

n
q(x, µ2)

q Works, but, hard and limited moments: 

hx3iqhx2iq

Dolgov et al., hep-lat/0201021                        Gockeler et al.,  hep-ph/0410187	


Limited moments – hard to get the full x-dependent distributions! 



From quasi-PDFs to PDFs (Ji’s idea) 

Ji, arXiv:1305.1539	

q  “Quasi” quark distribution (spin-averaged): 

q  Features: 
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q Proposed matching: 

•  Size of  O(1/Pz
2) terms, non-perturbative subtraction of  power divergence 

•  Mixing with lower dimension operators cannot be treated perturbatively, … 

Ji, arXiv:1305. 1539	


•  Quark fields separated along the z-direction – not boost invariant! 

•  Perturbatively UV power divergent:                      with             - renormalizable?       
 
•  Quasi-PDFs  è  Normal PDFs   when Pz è∞  

•  Quasi-PDFs could be calculated using standard lattice method 

/ (µ/Pz)
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Lattice calculation of  quasi-PDFs 
Lin et al., arXiv:1402.1462	


q Exploratory study: 

Quasi-Quark Distribution 
with different Pz 

Predicted quark distribution 
along with global fitted one 

Matching – taking into account: 

Target mass:        (MN/Pz)2  
Power corrections:       a+b/Pz

2 



Our observation 

q QCD factorization of  single-hadron cross section: 

²  PDFs are UV and IR finite, but, absorb perturbative CO divergence! 
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² With a large momentum transfer, PDFs completely cover all leading power 
CO divergence of  single hadron matrix elements 
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² With a large momentum transfer, PDFs completely cover all leading power 
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are the same for both Minkowski and Euclidean time  

q Collinear divergences are from the region when kT è0: 
Leading power perturbative CO divergences of  single hadron matrix 

elements are logarithmic,                             , and  /
Z

dk2T /k
2
T



Our ideas 

q  Lattice QCD can calculate “single” hadron matrix elements: 

With an Euclidean time 

h0| O( , , A) |0i = 1
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Normal PDFs 

²  Perturbatively,                          and                 have the same CO divergence e�(x̃, Pz;µ
2) f(x, µ̄2)

² Matching coefficients,       ,  are IR safe and perturbatively calculable  Cf

Ma and Qiu,  
arXiv:1404.6860 
           1412.2688	


E

²  Pz > μ  is finite 

E

Off-diagonal for GPDs 



Differences between Ji’s approach and ours 

q  For the quasi-PDFs: 
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q Our approach goes beyond quasi-PDFs: 

Ji, arXiv:1305.1539 
                 1404.6680	


²  Ji’s approach – high Pz effective field theory: 

² Our approach – QCD collinear factorization: Ma and Qiu,  
arXiv:1404.6860 
           1412.2688	
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All lattice calculable single hadron matrix elements  
with a large momentum transfer – “factorization” 



Extract PDFs from lattice “cross sections” 

q  Lattice “cross section”: 

“Collision energy”                                 “rapidity” x̃ ⇠ “y”Pz ⇠ “
p
s”

“Hard momentum transfer” 1/a ⇠ µ̃ ⇠ “Q”

q CO Factorization – IR safe matching coefficients: 

²  It is calculable in lattice QCD with an Euclidean time, “E” 

²  It is infrared (IR) safe, calculated in lattice perturbation theory 

²  All CO divergences of  its continuum limit (            ) can be factorized 
into the normal PDFs with perturbatively calculable hard coefficients  

a ! 0

²  Its continuum limit is UV renormalizable 

q UV renormalization: 
² No UVCT needed if                        is made of  conserved currents O( , , A)

²  The quasi-PDFs are not made of  conserved currents – UVCT needed 

e�Lat
E (x̃, 1/a, Pz) / F.T. of hPz|O( , , A)|Pzi+UVCT

(1/a)

QCD Global  
analysis of   
lattice data 



Matching overview 

q Goal:  Match lattice “cross sections” to normal PDFs 

e�Cont.
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Lattice – continuum 

Euclidean 

Same 

² One-loop matching in continuum Minkowski space has been done 

Ji (2013), Xiong et. al. (2013), Ma and Qiu (2014) [all flavors] 

² One-loop matching between lattice and continuum in Euclidean space 

Ishikawa, Qiu and Yoshida (just completed, paper is in preparation) 

Direct 
Matching 

in 
progress 



Case study – factorization of  quasi-PDFs 

q  The “Quasi-quark” distribution, as an example:   

²  Feynman diagram representation: 
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²  Like PDFs, it is IR finite 

²  Like PDFs, it is UV divergent, but, worse (linear UV divergence) 

Potential trouble!  - mixing with the Log UV of  PDFs? 

²  Like PDFs, it is CO divergent – factorizes CO divergence into PDFs 

Show to all orders in perturbation theory 

Sufficiently large 



All order QCD factorization of  CO divergence 

Mueller, PRD 1974	


q Generalized ladder decomposition in a physical gauge  

n ·A = A+ = 0

² Only process dependence: 

q                     2PI kernels C0, K0 :

²  2PI are finite in a physical gauge for fixed k and p: 

Ellis, Georgi, Machacek, Politzer, Ross, 1978, 1979	


Ma and Qiu, arXiv:1404.6860	




All order QCD factorization of  CO divergence 

q  2PI kernels – Diagrams: 

q Renormalized kernel - parton PDF: 
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q Ordering in virtuality: P 2 ⌧ k2 . µ̃2

Cut-vertex for normal quark distribution 
Logarithmic UV and CO divergence 

+ power suppressed 

– Leading power in  
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f̃i/h(x̃, µ̃
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All order QCD factorization of  CO divergence 

q Projection operator for CO divergence:  

bPK Pick up the logarithmic CO divergence of   K 

q  Factorization of  CO divergence:  

CO divergence free All CO divergence of   
quasi-quark distribution 

Normal Quark 
distribution 
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UV renormalization 

q UV divergences (difference in gauge link):   
Ma and Qiu, arXiv:1404.6860, …	
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Dotsenko and Vergeles NPB, 1980) 

²  Power divergence:  Diagram (a) – independent of  ξz  

Removed by “mass” renormalization of  a test particle – the gauge link 

In coordinate space: 
ξz 

Independence! 

²  Left-over log divergence: 

Dimensional regularization – ξz independence of  1/ε – finite CTs 

²  Log(ξz) – term:  Artifact of  dimensional regularization 



One-loop example:  quark èquark 

q Expand the factorization formula:   
Ma and Qiu, arXiv:1404.6860	
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q Generalized “+” description:   
For a testing function 

h(t)

where 
t = x̃/x

CO, IR, UV finite! 



Matching overview 

q Goal:  Match lattice “cross sections” to normal PDFs 
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² One-loop matching in continuum Minkowski space has been done 

Ji (2013), Xiong et. al. (2013), Ma and Qiu (2014) [all flavors] 

² One-loop matching between lattice and continuum in Euclidean space 

Ishikawa, Qiu and Yoshida (just completed, paper is in preparation) 



Match lattice to continuum 

q Momentum space vs. coordinate space: 
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z

) =

Z
d�

z

2⇡
e�ix̃Pz�z hN (P

z

)| eO(�
z

)|N (P
z

)i
eO(�z) =  (�z) �

z Uz(�z, 0) (0)

Momentum space Coordinate space 

eqLatt.(x̃, a�1
, Pz)eq

Cont.(x̃, µ, Pz) eO
Cont.(�z) eOLatt.(�z)

²  z-component of  the momentum 
is restricted to be          . 

²  Loop-momentum becomes  
     3-dimensional 

xPz

² No restriction on 
momentum. 

²  Loop-momentum is 
4-dimensional. 



Feynman rule in a covariant gauge 

eO(�z) =  (�z) �
z Uz(�z, 0) (0)

q Tree, one-gluon, two-gluon (at one-loop level): 



Matching lattice to continuum at one-loop 

q One-loop matching coefficients: 

Wave function part is not included: 

(It is the same as usual local operator case) 

q Comments: 

²  Realistic lattice fermion should be used in the actual matching factor 

² Other lattice actions and the link smearing can be easily implemented 

² … 



Summary and outlook 

q  “lattice cross sections” = single hadron matrix elements  
       calculable in Lattice QCD and factorizable in QCD 

q  Conservation of  difficulties – complementarity: 
         High energy scattering experiments  

      – less sensitive to large x parton distribution/correlation 
    “Lattice factorizable cross sections” 
      – more suited for large x PDFs 

q  Lattice QCD can calculate PDFs, but, more works are needed!  

q  Extract PDFs by global analysis of  data on “Lattice x sections”.  
Same should work for other distributions (TMDs, GPDs)  

Key difference from Ji’s idea: 

Expansion in 1/μ instead of  that in 1/Pz 

Great potential: PDFs of  neutron, PDFs of  mesons, TMDs, …  
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Happy Retirement, Hai-Yang! 





The “Spin Crisis” and hadron structure 

I first met Hai-Yang at Stony Brook in 1989 (over 25 years ago) 

discussing issues on hadron structure and proton spin 

EMC (1988):  Quarks carry a very little of  proton’s spin!? 

The world got very excited! 

Was invited to the very first PPP workshop 

Wakamatsu’s talk 
  



“Quasi-PDFs” have no parton interpretation 

q Normal PDFs conserve parton momentum:   
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q  “Quasi-PDFs” do not conserve “parton” momentum:   
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Note: “Quasi-PDFs” are not boost invariant 



Uncertainties of  PDFs 

“non-singlet” 
sector 

“singlet” 
sector 



One-loop “quasi-quark” distribution in a quark 

q Real + virtual contribution:   

q Cancelation of  CO divergence:   

Only the first term is CO divergent for  0 < y < 1, which is the same 
as the divergence of  the normal quark distribution – necessary!  

Ma and Qiu, arXiv:1404.6860	


⇥

where 

Here, a UV cutoff  is used – other scheme is discussed in the paper 

q UV renormalization:   

Different treatment for the upper limit of           integration  - “scheme” l2?



Discretized quasi-PDFs  
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q Quasi-quark distribution: 

q Simplest case: 

Discretized operator is not unique!  



Lattice perturbation theory 

Feynman rules (Feynman gauge) 

q Gluon propagator: 

q Quark propagator: 

q Quark-Gluon vertex: 

q Quark-Two-Gluon vertex: 



Feynman diagrams at one-loop 



One-loop in Euclidean continuum 

q Divergence structure (P=0): 

²  Local case (                   ) can be safely reproduced. 

²  Linear divergence from the tad-pole like diagram. 

² UV(     ) and IR(     ) regulators are introduced in                        direction 

�z ! 0

µ � ?= (t, x, y)



Matching lattice to continuum at one-loop 

q One-loop matching coefficients: 

² UV cut-off  is set to be                 . 

² Naive fermion is used. 

     ( not practical, but OK.) 

µ = a�1



Matching lattice to continuum at one-loop 

q One-loop matching coefficients: 

²  There is a mismatch in linear 

divergence between 

continuum and lattice. 

²  The linear divergence should 

be subtracted, otherwise the 

continuum limit cannot be 

taken. 


