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Quantum magnets offer a unique platform for exploring exotic quantum phases and quantum phase transitions
through external magnetic fields. A prominent example is the field-induced Bose–Einstein condensation (BEC)
of magnons near the saturation field. While this behavior has been observed in low-spin systems, its realiza-
tion in high-spin, quasi-two-dimensional magnets—where multiple on-site excitations are possible—remains
exceptionally rare. Here, we report thermodynamic and density functional theory results on single crystals of the
honeycomb-lattice antiferromagnet K4MnMo4O15 with S = 5

2 . The system undergoes a field-induced transition
to a fully polarized state at the critical field μ0Hs = 6.4 T. Our results reveal possible thermodynamic signatures
of magnon BEC, TN ∼ (Hs − H )2/d (d = 3), expanding the purview of BEC-driven quantum criticality to a
high-spin, quasi-two-dimensional antiferromagnets with negligibly small anisotropy.

DOI: 10.1103/8wdy-2zbw

I. INTRODUCTION

Low-dimensional quantum magnets provide a fertile plat-
form for realizing exotic quasiparticle excitations and explor-
ing their many-body collective behavior [1–7]. External stim-
uli, particularly magnetic fields near the saturation point, can
further induce novel quantum phases, resulting in rich phase
diagrams with unconventional field-induced states includ-
ing fractional magnetization plateaus [8,9], Bose–Einstein
condensation (BEC) [2,10,11], spin-nematic [12–15], and su-
persolid phases [16,17].

Among quasiparticle excitations in magnetic systems,
bosonic spin excitations such as magnon and triplon can,
under suitable conditions, condense into a single quantum
state—giving rise to the phenomenon known as BEC under
magnetic fields [2,10]. This field-induced condensation repre-
sents a quantum phase transition and serves as a paradigmatic
example of quantum criticality in some magnetic systems
[11,18]. In earlier decades, aside from ultracold atomic gases,
three-dimensional (3D) dimerized antiferromagnets—such as
TlCuCl3, BaCuSi2O6, and Pb2V3O9—have been extensively
studied as platforms for triplon BEC [11,19–22]. In these
magnets an applied magnetic field closes the singlet–triplet
gap, giving rise to field-induced XY -type magnetic order
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characterized by a low density of bosons [23]. However,
in such 3D magnets, tuning the boson density via the
Zeeman energy to approach the BEC quantum critical
point (BEC-QCP) remains relatively unexplored due to the
experimental challenges of reaching high magnetic fields
required to overcome strong intradimer interactions [2,24,25].

In addition to BEC of triplons, conventional 3D and
quasi-2D antiferromagnets exhibit field-induced saturation
transitions, providing a versatile platform to study magnon
BEC across a broad range of spin systems [26–29]. Within
a widely discussed universal framework, the saturation field
Hs marks the onset of magnon BEC, with the transition
temperature scaling as TN ∝ (Hs − H )α with α = 2/3, in
agreement with mean-field predictions and independent of the
spin quantum number [27,30,31]. While this universality is
well established in many 3D spin systems, its validity in the
quasi-2D limit is more subtle, with stability often strongly
influenced by magnetic anisotropy.

Noticeably, magnon condensation in 2D ordered magnets
initially received little attention in the context of BEC. More-
over, BEC in 2D systems was long considered unattainable
due to the finite density of states at zero energy; instead,
a Berezinskii–Kosterlitz–Thouless transition is typically ex-
pected near the saturation field [32–34]. However, recent ob-
servations of magnon BEC with an exponent α = 1, in quasi-
2D magnets with weak interplanar exchange interactions and
easy-axis anisotropy have opened new avenues for exploring
BEC-driven quantum criticality near the field-polarized phase,
where 2D physics still dominates [35]. For example, the
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condensation of two-magnon bound state at the BEC-
QCP driven by magnetic field and easy-axis anisotropy
has been proposed in a nearly perfect S = 1 triangular
lattice Na2BaNi(PO4)2 [36]. This system is particularly no-
table due to its weak exchange interactions, which allow
the full temperature–magnetic field phase diagram to be
mapped within a low field range of 2 T, revealing the elu-
sive spin-nematic phase in proximity to the BEC-QCP [36].
Another example of magnon BEC in a quasi-2D honey-
comb lattice is YbCl3 (Jeff = 1/2), which lies close to the
2D limit, with an interplanar-to-intraplanar coupling ratio
of J⊥/J = 2 × 10−3 [35].

In large-spin systems (S > 1), the presence of multiple in-
ternal spin levels on each site allows for a variety of excitation
pathways, enabling richer collective behavior and potentially
more complex forms of BEC [37]. A rare realization of a field-
induced double BEC dome has been reported in the square-
lattice compound Ba2Co1−xZnxGe2O7 (S = 3/2; x = 0.25),
where the first dome arises from condensation within the low-
est spin doublet (| ± 1

2 〉), while the second emerges at higher
magnetic fields, where a level crossing between the | + 1

2 〉 and
| + 3

2 〉 states enables a secondary magnon condensation [38].
Motivated by the recent renewed interest in magnon BEC

in 2D systems and the intriguing question of how dimen-
sionality and magnetic anisotropy can critically shape the
character of the BEC transition across a wide variety of spin
systems, we explore the possibility of realizing BEC in sin-
gle crystals of a honeycomb-lattice compound K4MnMo4O15

(hereafter KMMO), where Mn2+ ions with spin S = 5/2
form a 2D honeycomb network perpendicular to the crystallo-
graphic c axis. In zero field, KMMO undergoes long-range
magnetic ordering at TN = 2.21 K, evidenced by a λ-like
anomaly in the specific heat and in the temperature derivative
of magnetic susceptibilities. Density functional theory (DFT)
calculations reveal small intraplanar antiferromagnetic inter-
actions of J1 = 1.038 K, along with much weaker interplanar
and second-neighbor intraplanar couplings, consistent with a
negative Curie–Weiss temperature. Upon applying a magnetic
field perpendicular to the ab plane, the system evolves from
Heisenberg-type order toward XY -like behavior, eventually
entering a field-polarized phase beyond the critical field of
μ0Hs = 6.4 T. At this transition, critical scaling of thermo-
dynamic quantities provides signatures of the realization of a
BEC-QCP in the 3D limit.

II. EXPERIMENTAL AND THEORETICAL DETAILS

Polycrystalline samples of KMMO have been prepared by
the standard solid-state reaction method. High-purity starting
materials of K2CO3, MnO, MoO3 (with a purity of 99.95%)
were thoroughly mixed and ground. The mixture was cal-
cined in air at 400 ◦C for 48 hours in a ceramic crucible.
To achieve a single-phase compound, the sample was further
sintered at 450 and 500 ◦C for 48 hours, with intermediate
grindings.

For single crystal growth, the polycrystalline powder was
heated to 550 ◦C at a rate of 100 ◦C/h, held at 550 ◦C for 48
hours, then cooled to 525 and 500 ◦C at rate of 0.5 ◦C/h, and
finally cooled down to room temperature with a cooling rate

of 50 ◦C/h. Deep blue crystals (∼5 × 2 × 2 mm³) were suc-
cessfully grown and mechanically collected from the crucible.

Powder x-ray diffraction (XRD) measurements were car-
ried out at room temperature on crushed single crystals of
KMMO using a Bruker AXS D8 Advance diffractometer with
Cu Kα radiation (λ = 1.54 Å). The diffraction pattern was
obtained with the x-ray beam aligned perpendicular to the
(h00) planes of a single crystal using the same setup.

Magnetic measurements were carried out using a su-
perconducting quantum interference device vibrating-sample
magnetometer (SQUID-VSM, Quantum Design, USA) in the
temperature range 2 K � T � 300 K and in magnetic
fields up to 7 T. Additional magnetization measurements were
performed using the 3He option of the MPMS3 SQUID mag-
netometer from Quantum Design. Specific heat measurements
were conducted using a standard relaxation method with a
physical property measurement system (PPMS, Quantum De-
sign, USA) in the temperature range 0.13 K � T � 300 K in
several magnetic fields up to 9 T.

DFT calculations were carried out using the OpenMX
code with the Perdew–Burke–Ernzerhof (PBE) generalized
gradient approximation (GGA) as the exchange-correlation
functional [39]. To account for strong electronic correlations
in Mn atoms, a Hubbard on-site Coulomb parameter U was
applied with varying values. The plane-wave energy cutoff
was set to 300 Ry, and self-consistent field (SCF) convergence
was achieved with a threshold of 1.0 × 10−9 Hartree. The
Brillouin zone was sampled using a 4 × 4 × 6 Monkhorst–
Pack k-point mesh. SCF iterations employed the RMM-DIIS
mixing scheme, with a maximum of 300 steps and adaptive
mixing parameters.

The converged SCF results from OpenMX served as input
for the JX code [40], which evaluates exchange coupling pa-
rameters JGGA

i j between localized spins based on the Green’s
function formulation of the Liechtenstein approach.

III. RESULTS AND DISCUSSION

A. Crystal structure

To confirm the crystal structure of KMMO, Rietveld re-
finement of powder XRD data–obtained from crushed single
crystals–was carried out at room temperature. The refinement
results indicate that the title compound KMMO crystallizes in
a trigonal structure (space group P -3) with the lattice param-
eters a = b = 10.37 Å, c = 8.16 Å, and angles α = β = 90◦,
γ = 120◦. The obtained lattice parameters and atomic coor-
dinates (not shown here) are consistent with earlier reported
values [41]. Figure 1(a) shows a schematic of several unit cells
of KMMO, where the magnetic Mn2+ ions occupy a unique
crystallographic site, without any detectable antisite disorder
among the constituent ions. Interestingly, the Mn2+ ions form
a nearly perfect 2D honeycomb lattice with a nearest-neighbor
distance of 6.01 Å, oriented perpendicular to the c axis. No-
tably, the interplanar Mn–Mn distance (8.16 Å) is shorter than
the intraplanar second-nearest-neighbor distance (10.37 Å).
Each Mn2+ ion is coordinated by six O2− ions, forming an
MnO6 octahedron. Two of these oxygen atoms are shared
with the two adjacent MoO4 tetrahedra, each of which shares
one of its corners with the nearest-neighbor oxygen atoms of
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FIG. 1. (a) Schematic of unit cells of K4MnMo4O15, where Mn2+ ions form a honeycomb lattice stacked along the c axis. The interplanar
interaction is indicated by the red dotted line labeled as J2. (b) Perpendicular view of the honeycomb plane formed by octahedrally coordinated
Mn2+ ions, where each Mn2+ ion is connected to its nearest neighbor via the MoO4 tetrahedra. The intraplanar nearest- and next-nearest-
neighbor interactions are labeled as J1 and J3, respectively. (c) Powder x-ray diffraction pattern of a single crystal which has a preferred
orientation of indexed (h00) peaks. Inset shows the optical images of single crystals of K4MnMo4O15.

the MnO6 octahedron [see Fig. 1(b)]. This arrangement estab-
lishes an intraplanar nearest-neighbor superexchange pathway
mediated through the Mn–O–Mo–O–Mn connection. The
XRD pattern obtained with the incident beam oriented per-
pendicular to the (h00) plane is shown in Fig. 1(c), which
corresponds to the orientation perpendicular to the honey-
comb plane. The inset of Fig. 1(c) displays photos of KMMO
crystals with their top surfaces corresponding to the (h00)
plane.

B. Thermodynamic properties and DFT calculations

In order to investigate the behavior of local moments of Mn2+

(S = 5/2) ions, their exchange interactions, and anisotropic
properties, magnetic susceptibility ([χ (T )] measurements
were performed in a field of μ0H = 0.01 T applied parallel
and perpendicular to the ab plane as shown in Fig. 2(a). Upon
lowering the sample temperature, χ (T ) exhibits no significant
directional dependence at high temperatures; however, devia-
tions between the two directions begin to emerge below 30 K,
indicating the onset of magnetic correlations with moderate
anisotropy. Above T > 30 K, the inverse susceptibility re-
mains linear, indicating the Curie–Weiss (CW) regime, and is
well described by the CW law, χ (T ) = χ0 + C/(T − θCW).
Here, χ0 represents the temperature-independent contribu-
tions from core diamagnetism and Van Vleck paramagnetism,
C is the Curie constant, and θCW reflects the strength and
nature of magnetic exchange interactions. The green solid line
in Fig. 2(a) represents the CW fit, yielding χ0 = −3.27 ×
10−4 cm3/mol, C = 4.7 ± 0.01 cm3K/mol, and θCW =
−9 ± 0.25 K. The calculated effective magnetic moment
μeff = √

8C = 6.13 μB is slightly larger than the spin-only
value of μeff = 5.91 μB for high-spin Mn2+(S = 5

2 ) [42]. The
obtained negative CW temperature indicates that the dominant
magnetic interactions between the S = 5

2 moments are antifer-
romagnetic in nature.

Upon further cooling below 30 K, χ (T ) increases mono-
tonically for both directions (χ⊥ and χ‖), reaching a broad
maximum around Tmax = 4.2 K, indicating the presence
of short-range spin correlations (SRO), typical of low-
dimensional magnetic systems [25]. Below Tmax, χ⊥ begins to
decrease, with a distinct change in slope across TN = 2.21 K,

as evidenced by the anomaly in dχ (T )/dT shown in the
inset of Fig. 2(a). In contrast, χ‖ continues to increase, dis-
playing a weak dip near TN. The observation of χ‖ > χ⊥
suggests the presence of easy-plane anisotropy. Figure 2(b)
shows the isothermal magnetization as a function of magnetic
field, which tends toward saturation above 7 T, consistent with
the estimated CW temperature. It is worth noting that the

FIG. 2. (a) Temperature dependence of magnetic susceptibility
measured in a field of μ0H = 0.01 T applied parallel and perpen-
dicular to the ab plane, with the x axis plotted on a logarithmic
scale. The solid green line represents the Curie–Weiss fit, while the
dashed vertical lines indicate the broad maximum at Tmax = 4.2 K
and the Néel temperature at TN = 2.21 K. The top inset displays
the derivative of magnetic susceptibility as a function of temperature
for the field applied perpendicular to the ab plane. (b) Isothermal
magnetization as a function of magnetic field parallel and perpen-
dicular to the ab plane at 1.8 K. (c) Temperature dependence of
specific heat in zero field, where the solid orange line represents
the Debye–Einstein model of the lattice contribution. The bottom
inset enlarges the low-temperature region, revealing an anomaly at
TN. (d) Magnetic specific heat as a function of temperature showing
an anomaly at TN. The top inset shows the temperature dependence
of the calculated entropy change in zero field.
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isothermal magnetization exhibits no noticeable anisotropy
up to 1.6 T, beyond which a moderate anisotropic behavior
begins to emerge. This crossover may be associated with the
transition from Heisenberg-like to XY -like antiferromagnetic
behavior, as also supported by the field-dependent specific
heat measurements (see below).

To further confirm the presence of long-range magnetic
order, specific heat (Cp) measurements were performed in zero
field as shown in Fig. 2(c).

A clear λ-like anomaly is observed around TN [see
inset of Fig. 2(c)] which corresponds to the anomaly
observed in the dχ/dT data, further supporting the pres-
ence of long-range magnetic order in KMMO. To sub-
tract the phonon contribution to the specific heat, the
Cp data were fitted [solid orange line in Fig. 2(c)] us-
ing a model comprising one Debye term and three Ein-
stein terms, i.e., Clatt (T ) = CD[9R( T

θD
)3

∫ θD/T
0

x4ex

(ex−1)2 dx] +
∑3

i=1 CEi [R(
θEi
T )2 eθEi

/T

(eθEi
/T −1)2

], where θD = 120 ± 0.30 K is

the Debye temperature, θE1 = 177 ± 0.54 K, θE2 = 302 ±
0.76 K, and θE3 = 671 ± 1.6 K are the Einstein temperatures
of the three optical phonon modes, and R is the molar gas.
To reduce the number of fitting parameters, CD was fixed
at 3 to represent the three acoustic phonon modes, while
CE1 = 15, CE2 = 20, and CE3 = 25 were assigned to account
for the 69 optical modes, corresponding to the (3n–3) optical
branches for n = 24 atoms in KMMO [43]. After subtraction
of the lattice contributions, the resulting magnetic specific
heat is shown in Fig. 2(d), revealing an anomaly around TN

and indicating that magnetic correlations begin to develop at
temperatures higher than the CW temperature, consistent with
the χ (T ) data. Next, the change of magnetic entropy associ-
ated to the magnetic ordering was calculated by integrating
the magnetic specific heat divided by temperature as shown
in the inset of Fig. 2(d). The total entropy released above
the CW temperature is about 13.65 J/mol·K, corresponding
to roughly 91% of the expected value, R ln(2S + 1), for a
S = 5/2 system. The missing 10% of the entropy might be
due to the overestimation of lattice contribution or because of
short-range spin correlations that exist above TN. Interestingly,
only about 40% of the total entropy is released at TN, meaning
that the rest is released at higher temperatures due to short-
range magnetic interactions. This agrees well with the broad
maximum seen in the temperature dependence of the χ (T )
data [Fig. 2(a)].

In order to determine a spin Hamiltonian of KMMO, we
computed the interatomic exchange interactions using the
magnetic force linear response theory [44]. This approach
allowed us to quantify the strength of intraplanar nearest-
neighbor (J1) and second-nearest-neighbor (J3) interactions,
as well as the interplanar coupling (J2) [see Figs. 1(a) and
1(b)]. Figure 3 presents the variation of these three ex-
change interactions as a function of the on-site Coulomb
interaction U . It reveals the presence of a dominant antifer-
romagnetic nearest-neighbor exchange interaction J1 while
J2 and J3 remain relatively weak. Using the calculated
J1 = 1.038 K, J2 = −0.073 K, and J3 = 0.0165 K for
U = 7 eV, the Curie–Weiss temperature was estimated us-
ing the relation θCW = S(S + 1)(3J1 + 2J2 + 6J3)/3, yielding
|θCW| ≈ 9.03 K, in good agreement with the experimental
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FIG. 3. Variation of the three exchange interactions with re-
spect to the on-site Coulomb interaction strength U . The vertical
dashed pink line indicates the specific value for which the calcu-
lated exchange couplings reproduce the experimental Curie–Weiss
temperature.

value. The weak second-neighbor exchange within the honey-
comb plane underscores that the origin of TN being well below
θCW is due to the low-dimensional nature of the system, while
long-range magnetic order likely arises from a combination of
interplanar coupling and weak easy-plane anisotropy.

C. Field-induced thermodynamic properties

To further explore the field-tunable magnetic ground state,
thermodynamic measurements were carried out at several
fields applied perpendicular to the ab plane. Figure 4(a)
presents the isothermal magnetization at several temperatures,
while its field derivative is plotted in Fig. 4(b). In the antifer-
romagnetic state below TN, magnetization responds linearly
to the applied field up to 4 T. A steeper rise at higher fields
reflects a transition toward the fully polarized (FP) phase.
The critical field (μ0Hs) associated with this field-induced
transition is identified by an anomaly in the field derivative
of the magnetization [see Fig. 4(b)]. The dashed vertical line
at μ0Hs = 6.4 T indicates the quantum critical point at the
saturation field for the titled compound KMMO, as deter-
mined from field-dependent specific heat measurements at
T = 0.3 K (see below). As the temperature approaches TN,
the field-induced anomaly in dM/dH [Fig. 4(b)] gradually
disappears due to enhanced thermal fluctuations.

Figure 4(c) shows the temperature dependence of χ (T )
under several magnetic fields at low temperatures. The dashed
vertical lines correspond to Tmax = 4.2 K, associated with
SRO, and the Néel temperature TN, determined from the
anomaly in dχ/dT [see Fig. 2(b)] at μ0H = 0.01 T. As the
magnetic field increases, Tmax shifts to lower temperatures
(orange arrow), while TN initially shifts to higher temper-
atures (star pink arrow) before decreasing at higher fields.
This nonmonotonic behavior of TN suggests a crossover from
Heisenberg to XY -type spin order under an applied magnetic
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FIG. 4. (a) Isothermal magnetization as a function of magnetic field and (b) its derivative. The dashed vertical lines indicate the position
of the quantum critical point at the saturation field μ0Hs = 6.4 T. (c) Temperature dependence of magnetic susceptibility at low temperatures
under several magnetic fields. Dashed vertical lines indicate TN and Tmax at μ0H = 0.01 T, with their field-dependent shifts highlighted by
orange arrows (for Tmax) and pink star arrows (for TN). (d) Temperature dependence of magnetic susceptibility in fields μ0H � 6.4 T at low
temperatures. (e) Temperature dependence of specific heat at low-temperatures in several fields. The inset shows a magnified view of the
anomaly up to 1.6 T. The orange and sky-blue arrows indicate the progressive shifts of TN toward higher and lower temperatures, respectively.
(f) Temperature dependence of specific heat divided by temperature for fields μ0H > 6.4 T. The solid lines represent a combination of
fits to the nuclear Schottky contribution and the gapped behavior, as described in the text. Inset shows the field-dependent specific heat at
T = 300 mK. In all panels, the magnetic field was applied perpendicular to the ab plane.

field, which arises from the interplay between spin dimen-
sionality, anisotropy, and Zeeman energy in near-isotropic
Heisenberg magnets with small single-ion anisotropy. More
specific, when a magnetic field is applied perpendicular to the
easy plane, the magnetic field quenches the out-of-plane spin
fluctuations, effectively leading to a dimensional reduction in
spin space [35]. For fields μ0Hs � 6.4 T, χ (T ) [Fig. 4(d)]
exhibits a monotonic increase with decreasing temperature,
along with progressively reduced χ (T ) values with increasing
field, consistent with a FP phase. In this regime, the exter-
nal field aligns the magnetic moments, suppressing thermal
spin fluctuations and reducing the system’s susceptibility to
respond to further changes in field, resulting in lower χ (T ).

To support the symmetry crossover observed in the χ (T )
data and to accurately determine the critical field, specific heat
serves as a powerful probe. Figure 4(e) presents the tempera-
ture dependence of Cp under several magnetic fields. With in-
creasing field, the λ-like anomaly becomes more pronounced
and shifts to higher temperatures up to 1.6 T [as indicated
by the orange arrow in the inset of Fig. 4(e)]. Beyond this
field, the anomaly gradually moves to lower temperatures,
consistent with a crossover from Heisenberg to XY -type spin
order, as also reflected in the χ (T ) data. Interestingly, the
λ-like anomaly is completely suppressed at the critical field
μ0Hs = 6.4 T. Below 0.5 K, the upturn in the specific heat
is attributed to nuclear Schottky contributions, exhibiting the
characteristic 1/T 2 dependence [35]. The presence of the
critical field is further supported by an anomaly observed in
the field-dependent Cp data at 0.3 K, as shown in the inset of
Fig. 4(f).

To investigate the FP phase, Cp measurements were car-
ried out at several fields above μ0Hs. Figure 4(f) presents
Cp/T as a function of temperature, revealing a broad max-
imum at higher temperatures and a pronounced upturn at
low temperatures, indicating the presence of a field-induced
gap and nuclear Schottky contribution, respectively. The solid
line in Fig. 4(f) represents a fit using the model Cp(T ) ∝
1/T 2 + exp(−�/T ) [35], where � represents the value of
field-induced gap. The obtained gap values are plotted in
orange squares of Fig. 5(a).

D. Magnetic phase diagram and critical scaling behavior

To provide a comprehensive picture of the evolution of
the field-induced phase transition from the antiferromagnetic
(AFM) to the FP phase, we constructed the temperature–
magnetic field phase diagram [Fig. 5(a)] based on the
thermodynamic results. The different regions are labeled ac-
cording to the interpretations discussed in Secs. III B and
III C. Above μ0Hs, a gapped FP phase emerges. With increas-
ing magnetic field, the estimated gap value follows a linear
dependence of the form gμB(H − Hs) [Fig. 5(a)], yielding
g = 1.66. This effective g value is somewhat lower than the
typical g factor g ∼ 2.0 for Mn2+ ions. The phase boundaries
are plotted over the contour map of the magnetic specific heat
divided by temperature.

To assess whether the field-induced phase transition near
μ0Hs can be characterized as a BEC-QCP of magnons, we
plotted TN as a function of μ0(Hs − H) [2]. Remarkably,
the data follow a power-law behavior TN ∝ (Hs − H )0.60±0.01
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FIG. 5. (a) Temperature–magnetic field phase diagram with phase boundaries determined from the thermodynamic measurements, as
indicated in the legend. The background shows a contour map of the magnetic specific heat divided by temperature. The dashed red line shows
a linear field dependence of gap. (b) Scaling behavior of TN as a function of μ0(Hs − H ) on a logarithmic scale. (c) Temperature dependence
of magnetic specific heat at the critical field μ0Hs = 6.4 T on a logarithmic scale. The solid line indicates a ∼T 1.45 power-law behavior.

[Fig. 5(b)], consistent with the BEC universality class
in 3D XY -type antiferromagnets, where TN ∼ (Hs − H )2/d

(d = 3) is expected [2,35]. Additionally, the magnetic spe-
cific heat after subtracting the nuclear Schottky contribution
exhibits a power-law dependence Cmag ∝ T 1.45±0.02, aligning
with the T d/2 behavior predicted for BEC in 3 D systems
[Fig. 5(c)]. These critical exponents of thermodynamic quan-
tities strongly support the realization of the field-induced
transition at μ0Hs as a BEC-QCP of magnons. Although
our initial data suggest the possibility of magnon BEC in
the 3D limit, further low-temperature experiments in the
vicinity of the critical field are required to confirm this be-
havior more unambiguously. In addition, at μ0Hs, one might
expect Ms − M ∝ T 3/2; however, due to the limited field
range, we are unable to reliably determine the saturation
magnetization (Ms).

In contrast to the BEC observed in 2D systems such as the
triangular lattice Na2BaNi(PO4)2 (S = 1) [36] and the hon-
eycomb lattice YbCl3 (Jeff = 1/2) [35] at the saturation field,
the present quasi-two-dimensional S = 5/2 system exhibits
magnon BEC behavior in the 3D limit, highlighting influence
of both interlayer interactions and spin magnitude in govern-
ing the nature of quantum phase transitions. Comparatively,
the S = 5

2 honeycomb-lattice antiferromagnet FeP3SiO11 does
not exhibit the BEC scenario, displaying markedly different
characteristics from the present compound. This distinction
primarily arises from the stronger magnetic anisotropy in-
trinsic to Fe3+-based systems compared with Mn2+ magnets
[45], as reflected in the distinct g values of g1 ≈ 2.018
and g2 ≈ 2.001 in FeP3SiO11 [43]. In addition, although
both systems feature comparable nearest-neighbor intraplanar
couplings, FeP3SiO11 hosts two additional inequivalent anti-
ferromagnetic interplanar interactions amounting to ∼ 16.7%
and 27.2% of J = 0.863 K [43], whereas KMMO exhibits
weak ferromagnetic interplanar coupling (J2 = −0.073 K)
alongside with dominant nearest-neighbor antiferromagnetic
exchange interactions. Notably, the sizable interplanar inter-
actions in FeP3SiO11, relative to its intraplanar couplings,
give rise to disparate magnetic correlations along the in-plane
and out-of-plane directions. These contrasts are further man-
ifested in their transition temperatures and the field-induced
evolution of TN , leading to distinct field–temperature phase
diagrams in the two systems. Our results thus demonstrate

that the combined effects of magnetic anisotropy and interpla-
nar interactions play a decisive role in determining whether
a field-induced transition can stabilize BEC criticality, even
in systems with the same spin quantum number. Moreover,
the occurrence of BEC in magnets with higher spin num-
ber underscores the importance of single-site quantum level
structure, where multiple spin projection states can enhance
magnon interactions. Future high-frequency electron spin res-
onance experiments are called for to probe magnon bound
states near the saturation field.

IV. CONCLUSION

In summary, we have successfully synthesized single
crystals and investigated the thermodynamic properties of
a quasi-two-dimensional compound K4MnMo4O15, where
Mn2+ ions with S = 5/2 form a honeycomb lattice perpen-
dicular to the c axis, supported by DFT calculations. Our
results establish KMMO as a rare example of a quasi-two-
dimensional honeycomb-lattice antiferromagnet with S =
5/2, exhibiting field-tunable quantum critical behavior as-
sociated with magnon BEC. A λ-like anomaly in the
derivative of magnetic susceptibilities and specific heat
confirms the presence of long-range ordered state below
TN = 2.21 K, while DFT calculations suggest a dominant
intraplanar antiferromagnetic exchange network with weaker
interplanar and next-nearest-neighbor intraplanar couplings—
consistent with the obtained Curie-Weiss temperature. Upon
increasing the magnetic field perpendicular to the ab plane,
the system exhibits a crossover from Heisenberg to XY
anisotropy, followed by a transition to a fully polarized state
across the critical field μ0Hs = 6.4 T. The observed critical
exponent near μ0Hs highlights the possible realization of a
Bose–Einstein condensation quantum critical point in this
higher-spin honeycomb lattice. Our study therefore broadens
the landscape of BEC associated quantum criticality into a
quasi-2D honeycomb lattice with higher spin degrees of free-
dom. More significantly, our findings provide valuable insight
into the conditions under which magnon BEC can emerge in
real spin systems with varying interplanar strengths and types
of magnetic anisotropy.
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