Spin Accumulation Resolved by Coulomb Blockade in a Ferromagnetic Single Electron Transistor

T.H. Lee1,2 and C.D. Chen1

1Institute of Physics, Academia Sinica, Taipei, 115 Taiwan
2Taiwan International Graduate Program, Department of Physics, National Taiwan University, Taipei, 106 Taiwan

We report fabrication and measurement of a ferromagnetic single electron transistor. Clear magneto resistance plateaus indicate well controlled states of parallel- and antiparallel-magnetization. A distinct shift in the Coulomb blockade diamond in gate charge between these two states suggests that the island chemical potential for spin-up and spin-down electrons are separated. This shift is attributed to the enhanced spin accumulation arising from Coulomb blockade of spin tunneling in anti parallel magnetization state. The proposed model is confirmed by numerical Monte Carlo calculation.

Fabrication of Ferromagnetic Single electron transistor

![Fabrication of Ferromagnetic Single electron transistor](image)

Figure 1: Device fabricated using shadow evaporation method, with Py island of size approximately 180nm x 40nm

Well controlled states of Parallel- & Anti parallel-

![Well controlled states of Parallel- & Anti parallel-](image)

Figure 2: Tunneling magneto resistivity (TMR) observed at 8.68mV of source-drain bias voltage (V_b), showing a sharp anti parallel switching at approximately 2000Oe and parallel switching near 6000Oe. At each stable plateau marked in alphabetical order, conductance(G) as function of V_b and gate voltage, V_g was measured and shown here in four corners respectively. (to be cont.)

![Figure 2 (cont.)](image)

Figure 2 (cont.): Inset of each stability diagram illustrates the possible relative magnetic domains’ orientation in the vicinity around Py island, which best explains the evolution of ‘polarization’ of Coulomb diamond apex. It’s also consistent with the shift of Coulomb diamond gate dependence, which is shown between each upper and lower stability diagrams.