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Antibody Binding Sites
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Antibody

Check
https://www.youtube.com/watch?v=Cvu1ApHkhYM
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COVID-19 Antibodies

Monoclonal & Polyclonal Antibodies to SARS-CoV-2

The antibodies available below have been validated to bind to proteins from SARS-CoV-2 (COVID-19),
but were developed originally to target proteins from SARS-CoV-1, the virus responsible for the 2003
outbreak. We are currently developing monoclonal mouse and polyclonal rabbit antibodies specific to
SARS-CoV-2 spike and nucleocapsid proteins. The polyclonal antibodies will be available in May. The
monoclonal antibodies will be available sometime between July - August.

o P2 Rabbit Anti-SARS-CoV-2 Nucleocapsid Protein
?‘E . Rabbit Anti-SARS-CoV-2 Coronavirus Nucleocapsid Protein
w | WO— " CODE: 128-10165-1

i $1,450.00

o~ {H—

ADD TO COMPARISON LIST

Mouse Anti-SARS-CoV-2 Nucleocapsid Protein
Mouse Anti-SARS-CoV-2 Coronavirus Mucleocapsid protein
CODE: 128-10166-1

$1,450.00

ADD TO COMPARISON LIST

- : Rabbit Anti-SARS-CoV-2 Spike Protein
- . I—— Rabbit Anti-SARS-Associated Coronavirus (COVID-19) Spike Protein
| | CODE: 128-10168-1

$1,450.00



Real-time RT PCR
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Fast Screening Kit
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G-Protein Signaling Pathway

FIGURE 1: GPCR SIGNALLING
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G Protein

https://www.youtube.com/watch?v=Glu_T6DQuLU



https://www.youtube.com/watch?v=fLGgD5Lm7wY
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The correlation between RNA expression levels and protein expression is often not
perfect due to various factors influencing the process from transcription (RNA synthesis)
to translation (protein synthesis) and beyond. Here are several key reasons why RNA
expression levels may not always align well with protein expression levels:

Post-transcriptional Regulation: After RNA is transcribed, it can undergo various
modifications and processing steps that affect its stability, localization, and efficiency of
translation. For example, microRNAs can bind to mRNAs and promote their
degradation or inhibit their translation.

Translation Efficiency: The efficiency of translation can vary between different
MRNAs depending on factors like the sequence context around the start codon, the
length of the 5' untranslated region (UTR), secondary structures, and the availability of
tRNAs for rare codons.

Protein Stability: Once synthesized, the stability of proteins can vary widely, with
some proteins rapidly degraded and others being very stable. This difference can lead
to discrepancies between the amount of mMRNA present and the level of corresponding
protein.

Post-translational Modifications: Proteins can undergo various post-translational
modifications that can affect their activity, localization, and stability. These
modifications are not predictable from mRNA levels and can significantly
influence protein function and abundance.

Biological Noise: Both transcription and translation are subject to stochastic variation,
which can lead to cell-to-cell variability in protein levels that is not predicted by mRNA
levels alone.



Post Translational Modification

Brief Introduction of Post-
translational Modifications

m Craotive
Presented by Creative Proteomics

https://www.youtube.com/watch?v=AeVDoDp3lll



Post-translational modification (PTM) refers to the chemical modification of a protein
after its synthesis (translation) in the ribosome. PTMs are crucial processes that
expand the diversity of the proteome (the entire set of proteins that can be
expressed by a cell, tissue, or organism) beyond what is dictated by the genome
alone. These modifications can occur at specific amino acid side chains or peptide
linkages and significantly influence the protein's function, localization, stability, and
interactions with other molecules.

Phosphorylation: The addition of a phosphate group, typically to serine, threonine,
or tyrosine residues, affecting the activity, localization, and interaction of proteins.
Ubiquitination: The attachment of ubiquitin, a small regulatory protein, to lysine
residues on a target protein, often tagging it for degradation by the proteasome but
also involved in regulating protein activity and location.

Acetylation: The addition of an acetyl group, commonly at lysine residues,
influencing gene expression and protein stability.

Glycosylation: The attachment of sugar moieties to proteins or lipids, impacting
their folding, stability, activity, and cellular location.

Methylation: The addition of methyl groups, usually on lysine or arginine residues,
affecting protein interaction and function.

Sulfation: The addition of sulfate groups to tyrosine residues, affecting protein
interaction and function.

Lipidation: The addition of lipid molecules to proteins, which can affect their
membrane localization and function.



Protein phosphorylation

Phosphorylation in post-translational modification (PTM) refers to the addition of a
phosphate group (PO,*7) to a protein, typically to the amino acid residues serine,
threonine, or tyrosine in eukaryotic proteins. This modification is catalyzed by
enzymes known as kinases, while phosphatases remove phosphate groups.
Phosphorylation is a reversible and dynamic modification that plays a crucial role in
the regulation of various cellular processes.

ADP

Kinase + ATP
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Protein phosphorylation

https://www.youtube.com/watch?v=xG2WOd_fWqo



The importance of phosphorylation includes:

Cell Signaling: Phosphorylation is pivotal in cell signaling pathways, where it can activate or
deactivate enzymes and receptor proteins, thereby transmitting signals inside the cell. This process
is fundamental for the cellular responses to hormones, growth factors, and environmental stimuli.
Protein Function: Phosphorylation can change a protein's function by altering its conformation,
activity, stability, or interaction with other proteins or molecules. This can activate or inhibit the
protein's function or redirect its cellular localization.

Cell Cycle Control: Phosphorylation regulates the cell cycle, ensuring proper cell division and
replication. For example, cyclin-dependent kinases (CDKs) phosphorylate various target proteins to
control the progression through different phases of the cell cycle.

Metabolism: Phosphorylation plays a key role in metabolic regulation by activating or inhibiting
enzymes involved in various metabolic pathways, thus helping to control the energy balance of the
cell.

Transcription and Translation: Phosphorylation regulates transcription factors and components of
the transcription and translation machinery, impacting gene expression and protein synthesis, which
are crucial for cell growth, differentiation, and response to external signals.

Apoptosis: Phosphorylation is involved in the regulation of apoptosis or programmed cell death,
which is vital for removing damaged or unneeded cells and maintaining tissue homeostasis.
Neuronal Function: In the nervous system, phosphorylation is essential for neuron function,
including neurotransmitter release, receptor activation, and the modulation of ion channel activity,
critical for signal transmission and brain function.



Methylation

Methylation, a specific type of PTM, involves the addition of a methyl group
(CH3) to amino acids in a protein, typically to the side chains of arginine or
lysine residues in eukaryotic proteins. This modification is carried out by
enzymes known as methyltransferases, which use S-adenosylmethionine
(SAM) as the methyl donor.
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The importance of methylation includes:

Regulation of Gene Expression: Methylation of histone proteins, which help package
DNA in the nucleus, can influence gene expression. For example, methylation of histone
tails can either repress or activate transcription, depending on the specific amino acid
methylated and the context within which methylation occurs.

Protein Function: Methylation can alter the function of non-histone proteins by affecting
their interaction with other proteins, their localization within the cell, and their activity. For
instance, methylation can change the conformation of a protein, thereby influencing its
function and interactions.

Protein Stability: Methylation can also impact the stability of proteins. Certain
methylations can protect proteins from ubiquitin-mediated degradation, thereby
prolonging their half-life in the cell.

Signal Transduction: Methylation plays roles in signal transduction pathways,
modifying signaling proteins and modulating their activity to ensure appropriate cellular
responses to external stimuli.

Cellular Differentiation and Development: Proper methylation is crucial for normal
development and cellular differentiation, influencing processes ranging from embryonic
development to the maintenance of adult tissue homeostasis.



Acetylation

Acetylation in post-translational modification (PTM) refers to the addition of an acetyl
group (COCH,) to a protein, often at a lysine amino acid residue. This modification is
catalyzed by enzymes known as acetyltransferases, which transfer the acetyl group

from acetyl-coenzyme A (acetyl-CoA) to the target protein. Conversely, deacetylases
remove acetyl groups from proteins.

(1) (KA + <Con>
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The importance of acetylation in proteins includes several key aspects:

Gene Regulation: Acetylation of histone proteins, which DNA wraps around in chromatin,
is crucial for the regulation of gene expression. When histones are acetylated, the
chromatin structure becomes more open, allowing gene transcription machinery to
access the DNA. Conversely, deacetylation typically tightens chromatin structure and
represses gene transcription.

Protein Function: Beyond histones, acetylation can regulate the activity, stability, and
interaction of non-histone proteins with other molecules. By altering the charge of lysine
residues, acetylation can change protein conformations and interactions, influencing
various cellular pathways.

Protein Stability: Acetylation can also affect the stability and degradation of proteins.
For instance, acetylation can prevent ubiquitination at the same lysine residue, thereby
inhibiting proteasome-mediated degradation and extending the protein's half-life.
Cellular Localization: Acetylation can influence where proteins are located within the
cell, affecting their function. For example, certain proteins are shuttled between the
nucleus and cytoplasm depending on their acetylation status.

Signal Transduction: Acetylation plays a role in signal transduction, impacting how cells
respond to external or internal signals. This can have wide-ranging effects on cell growth,
division, and response to stress.

Interaction with Other Molecules: Acetylation can regulate the interaction between
proteins and DNA, proteins and other proteins, or proteins and small molecules, which is
fundamental for numerous cellular processes.



Glycosylation

There are two main types of protein glycosylation:

N-linked Glycosylation: This occurs when a sugar molecule is attached to an asparagine

(Asn) residue of a protein. It is typically found in the consensus sequence Asn-X-Ser/Thr,
where X can be any amino acid except proline.

O-linked Glycosylation: This occurs when a sugar molecule is attached to the oxygen ato
of serine (Ser) or threonine (Thr) residues in proteins.
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Glycosylation

Check
https://www.youtube.com/watch?v=RorGifz6C2Y



The importance of glycosylation includes:

Protein Folding: Glycosylation helps in proper protein folding and stability, aiding in the
correct three-dimensional conformation necessary for protein function. It also assists in
the quality control mechanisms within the cell, such as in the endoplasmic reticulum,
where improperly folded glycoproteins are targeted for degradation.

Cellular Recognition and Signaling: Glycosylated proteins on the cell surface play
critical roles in cell-cell recognition, communication, and signaling. They are involved in
various processes such as immune response, where they contribute to the recognition of
antigens by immune cells.

Protein Stability and Half-life: Glycosylation can increase the stability of proteins and
protect them from proteolysis, thus extending their half-life in the circulatory system.
Cell Adhesion: Glycosylation contributes to cell adhesion processes, crucial for the
development and maintenance of tissues and for the immune system's function, by
mediating the interaction between cells and the extracellular matrix.

Pathogen Recognition: Many pathogens are recognized by their glycan structures.
Host organisms can detect these structures and mount an immune response.
Conversely, pathogens can exploit host glycosylation processes for cell entry or immune
evasion.

Therapeutic Proteins: Many biopharmaceuticals, including antibodies and hormones,
are glycosylated. The glycosylation patterns can significantly affect the efficacy and
pharmacokinetics of these therapeutic proteins.



Ubiquitination

Ubiquitination in post-translational modification (PTM) refers to the covalent attachment
of a small protein called ubiquitin to a target protein. This process is carried out through
a cascade involving three types of enzymes: E1 (ubiquitin-activating enzyme), E2
(ubiquitin-conjugating enzyme), and E3 (ubiquitin ligase), which work together to attach
ubiquitin to lysine residues on substrate proteins.

0}
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Ubiquitination

What is

ubiquitin?

Check
https://www.youtube.com/watch?v=e29F7R3K_5A



Ubiquitination

https://www.youtube.com/watch?v=jbc1QCu9hFg



Proteasomal Degradation: The most well-known function of ubiquitination is targeting
proteins for degradation by the 26S proteasome. Polyubiquitin chains, particularly those
linked through lysine 48 of ubiquitin, serve as a signal for proteins to be recognized and
degraded by the proteasome, thereby regulating protein levels within the cell.
Regulation of Protein Function and Activity: Ubiquitination can also regulate protein
activity, function, and localization independently of degradation. For example,
monoubiquitination or polyubiquitination with chains linked through other lysine residues
(like K63) can influence protein interactions, cellular localization, and activity without
targeting the protein for degradation.

Cell Signaling: Ubiquitination plays critical roles in various signaling pathways. For
instance, in the NF-kB pathway, the ubiquitination of certain components leads to their
activation and translocation to the nucleus, where they affect gene expression.

DNA Repair: In the cellular response to DNA damage, ubiquitination helps regulate the
repair process. Specific patterns of ubiquitination can recruit DNA repair enzymes to
damaged sites, facilitating repair mechanisms that maintain genomic integrity.

Cell Cycle Regulation: Ubiquitination controls the levels and activity of various cell
cycle regulators, ensuring proper cell cycle progression and division. Key regulatory
proteins are ubiquitinated and degraded at specific points, allowing the cell cycle to
proceed or be halted as necessary.

Immune Response: Ubiquitination is involved in the regulation of innate and adaptive
immune responses, including the presentation of antigens on major histocompatibility
complex (MHC) molecules, the regulation of inflammatory signaling pathways, and the
modulation of immune cell function.
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Key Points

*Our understanding of cellular function depends on exquisite knowledge of all of the
molecular components acting in a system. Mass spectrometry (MS)-based proteomics
has matured immensely in the last decade, allowing quantitative system-wide analysis
of the proteome, including post-translational modifications (PTMs), protein—protein
interactions and cellular localization.

*Quantification of the entire set of proteins expressed in a complex biological system
(for example, mammalian cells) is now possible with a high sensitivity and in a
reasonable amount of time.

*With the availability of genomic information, the massive capacity for peptide
identification by MS is being used to annotate gene sequences and to find new protein-
coding genes and splicing variants.

*In combination with new approaches to isolate specific PTMs, MS-based studies are
revealing a much higher order of proteome complexity in which most proteins are
modified by several PTMs that crosstalk in intricate mechanisms to regulate protein
function.

*Protein affinity strategies allow purification of candidate proteins and their interacting
partners, which are subsequently identified by MS. These studies describe, with a high
degree of detail, dynamic and context-specific protein—protein interaction networks
and protein complexes.

*The improvements in sensitivity, robustness and high-throughput of MS-based
proteomics now permits applications in the clinical field, including the possibility of
discovering disease-related biomarkers and screening molecular targets of candidate
drugs.
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* Magnetic ranking cytometry (MagRC)

+ Cellular indexing of transcriptomes and epitopes by /| * Single-cell barcode chips (SCBCs)
sequencing (CITE-seq) .| * Flow cytometry

* RNA expression and protein sequencing assay (REAP-seq)

Cell-surface protein * Microengraving

* Droplet microfluidics

- ;,,f"?Secrered

protein

* Microscopy ' Cytoplasmic
* Single-cell Western blotting protein
* Proximity ligation assay (PLA)
= Proximity extension assay (PEA)
* Mass cytometry (CyTOF)
* Mass spectrometry

Fig. 1| Classification of single-cell protein analysis methods based on the location of target protein. Cell-surface-
protein analysis methods include magnetic ranking cytometry (MagRC), cellular indexing of transcriptomes and
epitopes by sequencing (CITE-seq), and RNA expression and protein sequencing assay (REAP-seq). Methods that can
be used for the analysis of cell-surface and cytoplasmic proteins include microscopy, single-cell Western blotting,
proximity ligation assay (PLA), proximity extension assay (PEA), mass cytometry (cytometry by time of flight; CyTOF) and
mass spectrometry. Methods utilized for secreted-protein analysis include droplet microfluidics and microengraving
techniques. Methods used for comprehensive analysis of the three proteins include flow cytometry and single-cell

barcode chips (SCBCs).
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Protein structure predictions to atomic accuracy with AlphaFold

AlphaFold

Experimentally determined

Expanded coverage with structure prediction



RoseTTAFold accurately predicts structures of de-novo-designed proteins from their amino
acid sequences.
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Distribution of average confidence scores for AlphaFold2 models of human proteins with
and without homologs available in the PDB.

1,200 -
B No PDB structure ! PDB structure available
1,000 -

800 -

600 -

400 -

Number of AlphaFold models

200 -

0
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
Average confidence score for model

>200 M protein structure prediction



The number of entries at resolutions better than 6 A released by the Electron
Microscopy Data Bank per year from 2012 to 2021
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An Introduction to Carbohydrates

Carbohydrates are a large class of naturally
occurring  polyhydroxy aldehydes and
ketones.

Monosaccharides also known as simple
sugars, are the simplest carbohydrates
containing 3-7 carbon atoms.

sugar containing an aldehydes is known as
an aldose.

sugar containing a ketones is known as a
ketose.



« The number of carbon atoms In an
aldose or ketose may be specified as
by tri, tetr, pent, hex, or hept. For
example, glucose is aldohexose and
fructose iIs ketohexose.

 Monosaccharides react with each other
to form disaccharides and
polysaccharides.

 Monosaccharides are chiral molecules
and exist mainly in cyclic forms rather
than the straight chain.



Carbohydrate

Carbohyd rates

Check
https://www.youtube.com/watch?v=LeOUIXbFyqgk
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 Anomers: Cyclic sugars that differs only in
positions of substituents at the hemiacetal
carbon; the a-form has the —OH group on
the opposite side from the —CH,OH; the -
form the —OH group on the same side as
the —CH,OH group.

o-D-Galactose B-D-Galactose



Some Important Monosaccharides

Monosaccharides are generally high-melting,
white, crystalline solids that are soluble 1n water
and 1nsoluble 1n nonpolar solvents. Most

monosaccharides are sweet tasting, digestible, and
nontoxic.
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Some Common Disaccharides
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Polysaccharides

CHzOH CHOH
o o
OH oH
OH [a} .
oH aH
CHzOH CHz CHzOH CHzOH
[u} [u} o a
OH OH OH OH
OH g o [a} OH
OH [al] OH OH
OH

MNonreducing end

R
O _/
OH
OH Ol HO

14 link o
. o o141 linkage . Y,
/ OH OH
HO =) . =
o @ e 416 linkage
OH o
e}
OH
HO
OH
Q0
OH
HO
OHO 5
GLYCOGEN OH
HO ~
"

Reducing end

CH,OH

HG% “
HO

OH

Non-reducing end

L

OH

CH,OH

CH,OH

HO OH

OH

n-2
Reducing end

Sometimes shown as

f
CH,OH

Cellulose



Cell-Surface Carbohydrates Involved in Molecular Recognition
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Lectin

Lectins are sugar-binding proteins which are highly specific for their sugar
moieties. They typically play a role in biological recognition phenomena involving
cells and proteins. For example, some bacteria use lectins to attach themselves
to the cells of the host organism during infection.
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The Nobel Prize in Chemistry 2022

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 2027 to

Carolyn R. Bertozzi Morten Meldal K. Barry Sharpless

Stanford University, CA, USA University of Copenhagen, Denmark Scripps Research, La Jolla, CA, USA
Howard Hughes Medical Institute, USA

“for the development of click chemistry and bioorthogonal chemistry”

a)
0 0
cu'
R-Ns + é,)J\FGFGO — R;N/“\“ir/]\FGFG-O
base, THF =N
25 °C N’
b) =
CuS0,5H,0 |

Na-ascorbate

™~ N3 + Q >
(g/\ o A H,O/'BUOH

25°C

Figure 6: Copper-catalysed reactions from a) Meldal and coworkers 151 and b) Sharpless and
coworkers;7 F: phenylalanine, G: glycine, filled circle: solid support, THF: tetrahydrofuran,
tBuOH: tert-butanol.
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Figure 7: Strain-promoted azide-alkyne cycloaddition (SPAAC).



Click Chemistry

The click reaction that
changed chemistry
Azides and alkynes react very efficiently when copper ions

are added. This reaction is now used globally to link
molecules together in a simple manner.
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Bioorthogonal chemistry
illuminates the cell

3 In the next step, Bertozzi used 4 A fluorescent green
an alkyne that was forced into molecule sat on the ring-

a ring-shaped molecule. The shaped molecule. This
alkyne clicked with the azide. allowed Bertozzi to track the
glycans on the cell's surface.
Fluorescent green
molecule Click reaction 2z

2 The modified sugarwas
incorporated into glycans -
special carbohydrates located
on the surface of cells.

Cell membrane

Uiy 11T

Bertozzi fed cells with a modified
sugar with an azide on it. The azide
functioned as a type of molecular
handle.

Nucleus



Glycobiology

Glycobiology is the scientific study of glycomes, which are the entire complement of
sugars, whether free or present in more complex molecules, of an organism. This field
encompasses the structure, biochemistry, and biology of carbohydrates (sugars and
their derivatives) and glycoconjugates (molecules that contain sugar residues attached
to another structure, such as proteins or lipids).

Carbohydrates are crucial components of all living organisms and are involved in a
variety of biological processes, including cell-cell recognition, cell adhesion, immune
response, and inflammation. They play key roles in the structure and function of many
proteins and lipids, which are modified by the addition of sugar molecules in a process
known as glycosylation.

Glycobiology integrates various disciplines, including biochemistry, molecular biology,
cell biology, and biotechnology, to understand the roles of carbohydrates in biology and
to utilize this knowledge in applications ranging from biomedicine to bioenergy. This
research has significant implications for understanding diseases, developing new
vaccines and therapeutics, and advancing biotechnological applications.



Carbohydrates are essential biomolecules that play numerous vital roles in biological systems,
impacting both the structure and function of organisms. Here are some key aspects of their
importance:

Energy Source: Carbohydrates are a primary energy source for most organisms. Glucose, a simple
sugar, is a crucial energy substrate in cells and is central to cellular respiration and ATP production,
which fuels various biological processes.

Energy Storage: Carbohydrates also serve as energy storage molecules. Plants store energy in the
form of starch, while animals store energy as glycogen in the liver and muscles, which can be rapidly
mobilized to meet energy demands.

Structural Components: Certain carbohydrates are integral to the structural integrity of cells and
organisms. For example, cellulose, a polysaccharide found in plant cell walls, provides structural
support to plants. In animals, chitin, a component of the exoskeletons of insects and other
arthropods, serves a similar structural role.

Cell Recognition and Signaling: Carbohydrates on the surfaces of cells play key roles in cell-cell
recognition and signaling. They are involved in various biological processes, including immune
responses, where they help in the identification of foreign substances and pathogens.

Biological Lubrication: Mucins, which are glycoproteins, rely on their carbohydrate components to
maintain viscosity and lubrication in biological tissues, crucial for the proper functioning of respiratory,
digestive, and reproductive systems.

Glycosylation of Proteins and Lipids: Many proteins and lipids undergo glycosylation, where
carbohydrates are covalently attached. This modification can affect the molecules' stability, activity,
and localization, impacting various physiological processes.

Dietary Fiber: Some carbohydrates, particularly those that are indigestible by humans like dietary
fiber, play important roles in maintaining gut health. They support bowel regularity and can influence
the composition of gut microbiota, which is crucial for overall health.

Understanding these roles of carbohydrates is fundamental not only in biochemistry and cell biology
but also in fields like nutrition, medicine, and biotechnology, showcasing their broad impact on life
and health.



Bioorthogonal chemistry refers to chemical reactions that can occur inside living
systems without interfering with native biochemical processes. This concept is crucial in
the fields of chemical biology and drug development, as it allows scientists to introduce
and track synthetic molecules within biological systems without affecting their normal
functions.

In practical terms, bioorthogonal reactions are highly selective and fast under
physiological conditions. They do not cross-react with biological molecules, thereby
enabling researchers to label, visualize, or manipulate biomolecules in real-time, in
living organisms. Some common bioorthogonal reactions include the copper-catalyzed
azide-alkyne cycloaddition (though copper-free versions are preferred in biological
contexts to avoid toxicity) and the strain-promoted alkyne-azide cycloaddition.

Overall, bioorthogonal chemistry offers a powerful set of tools for studying biological
processes at the molecular level, with applications ranging from imaging specific
proteins in cells to targeted drug delivery.



Glycan and Glycomic

https://www.youtube.com/watch?v=NqEgrAYN2Bc
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Common carbohydrates
in mammalian glycans
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N-glycans O0-GalNAc glycans Terminal epitopes Proteoglycans
(N- and O-GalNAc glycans)
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(R) - represents a broad array of additional carbohydrates that can be attached.

Main classes of glycans modulating cancer hallmarks. N-glycans, whose biosynthesis starts in the endoplasmic
reticulum (ER) with the addition of an oligosaccharide chain to an asparagine (Asn) residue, experience further
structural maturation in the golgi apparatus (GA) to yield complex bisected and branched structures. O-GalNAc
glycans, initiated in the GA by the attachment of a GalNAc to the hydroxyl groups of serine (Ser) or threonine (Thr)
residues, forming the simplest O-glycan Tn antigen (GalNAca-Ser/Thr), may be further elongated into different core
structures that serve as scaffolds for more complex O-GalNAc glycans. Both O- and N-glycan chains are generally
branched and/or elongated and may present sialic acids, Lewis blood group related antigens and/or their sialylated
counterparts as terminal structures. The figure highlights the structures of some of the most relevant glycans and
glycoconjugates driving cancer hallmarks.
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Lipid

Lipids are naturally occurring molecules
from plants or animals that are soluble in
nonpolar organic solvents.

Lipid molecules contain large
hydrocarbon portion and not many polar
functional group, which accounts for their
solubility behavior.
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https://www.youtube.com/watch?v=ebScOnAJdu0



https://www.youtube.com/watch?v=bUaJFg10nkc
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Properties of cell membranes:

Cell membranes are composed of a fluid like
phospholipid bilayer.

The bilayer incorporates cholesterol, proteins,
and glycolipids.

Small nonpolar molecules cross by diffusion
through the lipid bilayer.

Small ions and polar molecules diffuse through
the aqueous media in protein pores.

Glucose and certain other substances cross
with the aid of proteins without energy input.

Na*, K*, and other substances that maintain
concentration gradients inside and outside the
cell cross with expenditure of energy and the
aid of proteins.



Small ions and polar molecules diffuse
through the agqueous media in protein
pores.

Glucose and certain other substances
cross with the aid of proteins without
energy input.

Na*, K*, and other substances that
maintain concentration gradients inside
and outside the cell cross with
expenditure of energy and the aid of
proteins.



Lipids play several crucial and diverse roles in cells, influencing both their structure and function.

Structural Components of Membranes: Lipids, particularly phospholipids, are fundamental
constituents of cellular membranes. They form bilayers that provide the basic structure of the
plasma membrane and the membranes of various organelles within the cell. These lipid bilayers are
fluid and dynamic, allowing for membrane fluidity and flexibility, which are essential for various
cellular processes.

Energy Storage: Lipids serve as an important source of energy.

Signaling Molecules: Various lipids act as signaling molecules or precursors to signaling
molecules. For instance, steroid hormones, which are derived from cholesterol, are crucial signaling
molecules that regulate a wide range of physiological processes

Coenzymes and Vitamins: Certain lipids act as coenzymes or essential components of
coenzymes. For example, the lipid-soluble vitamins A, D, E, and K are critical for various biological
functions, including vision, bone metabolism, antioxidant protection, and blood coagulation.
Anchoring Membrane Proteins: Lipids can covalently attach to proteins to anchor them within the
cell membrane. This lipid modification is crucial for the localization, function, and signaling of
membrane proteins.

Insulation and Protection: In multicellular organisms, lipids provide insulation and protection.
Subcutaneous fat serves as an insulator, reducing heat loss, and provides mechanical cushioning
to protect internal organs.

Cell Recognition and Communication: Lipids are involved in cell recognition and communication
processes. For example, glycolipids, which are lipids with carbohydrate chains, are present on the
cell surface and play roles in cell-cell interactions, recognition, and immune responses.
Modulating Membrane Fluidity: The composition of lipids in membranes can influence their
fluidity, which in turn affects various membrane-associated functions such as vesicle formation,
fusion, and the activity of membrane-bound enzymes and receptors. For instance, cholesterol in
animal cell membranes modulates fluidity and permeability.
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The major classes of lipids found in cells are phospholipids, glycolipids, cholesterol, and
triglycerides. Each of these classes plays essential roles in cellular structure and function:

Phospholipids: These are the most abundant lipids in cell membranes. Phospholipids
are amphipathic molecules, meaning they have both hydrophilic (water-attracting) and
hydrophobic (water-repelling) regions.

Glycolipids: Comprised of a lipid moiety and one or more sugar residues, glycolipids
are primarily found on the extracellular surface of cell membranes. They play crucial
roles in cell recognition, communication, and immune responses. The sugar moieties of
glycolipids interact with specific molecules and cells in the organism's environment,
facilitating cellular interactions and signaling.

Cholesterol: Though often associated with health risks when present in excess in the
bloodstream, cholesterol is a vital component of animal cell membranes. It modulates the
fluidity and permeability of the membrane and is involved in the formation of lipid rafts—
specialized membrane domains that serve as organizing centers for the assembly of
signaling molecules. Cholesterol is also a precursor for the synthesis of steroid
hormones, bile acids, and vitamin D.

Triglycerides (Triacylglycerols): These are the main form of stored energy in many
types of cells, particularly adipocytes (fat cells). Triglycerides consist of three fatty acids
linked to a glycerol backbone. They are stored in lipid droplets within cells and are
metabolized to provide energy when needed. Although not components of cell
membranes, triglycerides play a critical role in energy metabolism and homeostasis.



Lipids on Cell Membranes
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Liposome Preparation

/

Giant Lipnsomé
Preparation

https://www.youtube.com/watch?v=7UvUm2IrZk4



Liposome Preparation by
Microfluidics
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Liquid-Liquid Phase Separation

Liquid-liquid phase separations in cells refer to the process where biomolecules
undergo demixing from a homogenous solution into two distinct liquid phases, resulting
in the formation of membrane-less organelles or biomolecular condensates. These
phase transitions play crucial roles in cellular organization, function, and regulation:

Compartmentalization: Liquid-liquid phase separation (LLPS) allows cells to organize
their intracellular environment without the need for membrane-bound organelles. This
compartmentalization facilitates the concentration and sequestration of specific proteins
and nucleic acids, enhancing biochemical reactions and processes.

Regulation of Biochemical Reactions: By concentrating specific enzymes and
substrates within phase-separated droplets, cells can enhance or regulate the rates of
biochemical reactions. This mechanism allows for the spatial and temporal control of
metabolic pathways and signaling cascades.

Response to Environmental Stimuli: The dynamics of phase-separated droplets can
change rapidly in response to environmental cues, such as changes in temperature, pH,
or ion concentration. This responsiveness enables cells to adapt quickly to
environmental changes, modulating cellular processes accordingly.

Stress Response: Under stress conditions, cells can form stress granules through
LLPS. These granules sequester and protect mMRNA and proteins, preventing their
aggregation and facilitating their rapid reactivation when stress conditions abate. This
process is crucial for cell survival under adverse conditions.



Signal Transduction: Phase-separated compartments can concentrate signaling
molecules, enhancing signal transduction pathways. By bringing together key
components of a signaling pathway, LLPS can increase the efficiency and specificity
of signal transmission.

RNA Processing and Transport: LLPS plays a role in the formation of nuclear
speckles and other nuclear bodies that are involved in RNA splicing, processing, and
transport. These condensates can regulate gene expression by influencing RNA
metabolism and dynamics.

Protein Folding and Stability: By providing a unique microenvironment, phase-
separated droplets can influence protein folding and stability. This environment can
prevent protein aggregation and assist in the proper folding of proteins, which is
essential for their function and longevity.

Membrane Dynamics: LLPS can also influence the organization and dynamics of
cellular membranes. For example, the clustering of signaling receptors and other
membrane proteins into lipid rafts can be driven by phase separation processes,
affecting membrane fluidity and signaling.

In summary, liquid-liquid phase transitions are fundamental for cellular organization,
enabling cells to create dynamic, membrane-less compartments that regulate and
facilitate a myriad of biochemical processes essential for life.



Liquid-Liquid Phase Separation
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Liquid-Liquid Phase Separation
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Factors Regulate LLPS
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LLPS in Diseases

Representation of brain areas
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LLPS in Cancer
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