Nanophotonics

Yu-Chieh Wen

- Basic concepts of optics
- Optical response of (noble) metals
- Near-field optics and Super-resolution microscopy
- Plasmonics
- Low-dimensional materials
- Surface nonlinear optical spectroscopy

Nanostructures and Nanotechnology

DOUGLAS NATELSON Rec University, Housian

enkaded from https://www.cambridge.org/tore. Inst of European and American Studies, on 12 Feb 2019 at 08:17:22, subject to the Cambridge Care terms of use, avail pr://www.cambridge.org/tore/terms.https://doi.org/10.1017/CE09701109025485

Contents 8 Photonics 357 Electromagnetic radiation in a nutshell 8.1 357 8.2 Lasers 384 A brief overview of optical communications 397 8.3 Photonic band gap systems 8.4 401 8.5 Nanophotonics: near-field optics 407 Nanophotonics: plasmonics 8.6 409 Summary 8.7 422 8.8 Suggested reading 423 424 Exercises

Basic concepts of optics

What is optics ?

- Optical phenomena
 - Reflection
 - Refraction
 - Absorption
 - > Scattering
 - > Interference
 - Diffraction
- Optics is not a theory of light
- Optics talks about the interaction between light and matter

of light

How to describe such an interaction ?

<u>Light \leftrightarrow electromagnetic wave</u> Matter \leftrightarrow positive and negative charges

Electromagnetic wave

Maxwell Equations

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$
$$\nabla \times \vec{B} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} + \frac{4\pi}{c} \vec{J}$$
$$\nabla \cdot \vec{E} = 4\pi\rho$$
$$\nabla \cdot \vec{B} = 0$$

Charge conservation law

$$\nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$$

Wave equation

$$\left[\nabla \times (\nabla \times) + \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right] \vec{E}(\vec{r}, t) = -\frac{4\pi}{c^2} \frac{\partial^2}{\partial t^2} \vec{P}(\vec{r}, t)$$

, where generalized polarization is defined as $\vec{J} = \frac{d\vec{P}}{dt}$

Light: an electromagnetic wave

E

B

k

• The wave equation writes (in vacuum) :

 $\frac{\partial^2 \boldsymbol{E}}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \boldsymbol{E}}{\partial t^2}$

• Monochromatic (ω) plane wave solution: $E(x, y, z, t) = \Re e[E_0 e^{i(kz-\omega t)}]$

$$\succ E_x = E_{0,x} \cos(\omega t - kz)$$
 and $E_y = E_{0,y} \cos(\omega t - kz - \varphi)$

$$\triangleright$$
 E_z = 0 (transverse wave)

$$> k = \omega / c$$

$$\frac{\partial}{\partial z} \boldsymbol{E}_{0} e^{i(kz-\omega t)} = ik\boldsymbol{E}_{0} e^{i(kz-\omega t)}$$
$$\frac{\partial^{2}}{\partial z^{2}} \boldsymbol{E}_{0} e^{i(kz-\omega t)} = -k^{2} \boldsymbol{E}_{0} e^{i(kz-\omega t)}$$
$$\frac{\partial^{2}}{\partial t^{2}} \boldsymbol{E}_{0} e^{i(kz-\omega t)} = -\omega^{2} \boldsymbol{E}_{0} e^{i(kz-\omega t)}$$

Plane wave: $|\mathbf{E}| = E(z,t)$

Electro Magnetic Wave

Electric field Magnetic field Wave vector

Light: an electromagnetic wave

When matter comes into play

- The electric field of light interacts with bound charges inside matter (nuclei, electrons)
- Electric force: F = q E \longrightarrow the charges move

For one (apolar) atom or molecule

When matter comes into play

- The electric field of light interacts with bound charges inside matter (nuclei, electrons)
- Electric force: F = q E \square Creates oscillating electric dipoles p
- Electric dipoles emit electric field

Linear response

Polarisability Relative charge displacement Induced dipolar, $\mathbf{p} = q\mathbf{r} = \alpha \mathbf{E}_{\mu}$ momentum Local field

• Local field E_{ℓ} on one atom/molecule is the sum of incoming and emitted fields

A macroscopic point of view

• Macroscopic point of view: linear, homogeneous, isotropic material

• Polarisation = new sources of electric field inside the material

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon_0 (1 + \chi) \mathbf{E} = \varepsilon_0 \varepsilon_r \mathbf{E}$$
Refractive
index
$$Dielectric_{function} = Relative_{permittivity}$$

- The dielectric function links the electric displacement to the electric field and <u>implicitly</u> includes all the microscopic polarisation processes
- If local field effects are neglected (E~E_{ℓ}) $N\alpha = \epsilon_0 \chi$

Linear optical response of the medium is described by susceptibility (χ), dielectric function (ϵ_r), and refractive index (n)

Light waves in a medium

Interaction of light with medium

$$[\nabla \times (\nabla \times) + \frac{1}{c^2} \frac{\partial^2}{\partial t^2}]\vec{E}(\vec{r}, t) = -\frac{4\pi}{c^2} \frac{\partial^2}{\partial t^2} \vec{P}(\vec{r}, t)$$

• Wave equation

$$E_{x} = \operatorname{Re}[E_{0,x} e^{i(kz - \omega t)}] = E_{0,x} \cos(\omega t - kz)$$

$$k = \frac{\omega}{v} = \frac{n\omega}{c} \neq k(vacuum) = \frac{\omega}{c}$$

v = c/n: speed of light waves in the medium

Lifeguard theorem

Complex optical response

- Complex refractive index \tilde{n} and wavevector k

$$\tilde{k} = \tilde{n}\frac{\omega}{c} = k + \frac{i\kappa\omega}{c}$$

1/2

• Complex dielectric function :

$$\varepsilon_r = \tilde{n}^2$$
$$= \varepsilon_1 + i\varepsilon_2$$

• Real and imaginary parts:

$$\varepsilon_{1} = n^{2} - \kappa^{2}$$

$$\varepsilon_{2} = 2n\kappa$$

$$\kappa = \frac{1}{\sqrt{2}} \left(\varepsilon_{1} + \sqrt{\varepsilon_{1}^{2} + \varepsilon_{2}^{2}} \right)^{1/2}$$

$$\kappa = \frac{1}{\sqrt{2}} \left(-\varepsilon_{1} + \sqrt{\varepsilon_{1}^{2} + \varepsilon_{2}^{2}} \right)^{1/2}$$

Absorption

tric field wave $E_{x} = E_{0,x} e^{i(\tilde{k}z - \omega t)} = E_{0,x} e^{-\kappa \omega z/c} e^{i(kz - \omega t)} \qquad \tilde{k} = \tilde{n} \frac{\omega}{c}$ Electric field wave • Intensity: $I = \frac{1}{2} c \varepsilon_0 n |\boldsymbol{E}_{\boldsymbol{\theta}}|^2$ I_0 --I(z=L) $I(z) = I_0 e^{-\beta z}$ Beer-Lambert law $\beta = \frac{2\kappa\omega}{c} = \frac{4\pi\kappa}{\lambda}$ Absorption coefficient **δ (nm)** metal @620 nm • Absorbance $\ln \frac{I_0}{I(L)} = \beta L$ 31 Au 24 Ag • Penetration depth $\delta = \frac{2}{\beta}$ Cu 30 Al 13

Optical resonance

• Refractive index n is related to the movement of the charges as a response to the excitation by the electric field of light

n
$$\leftrightarrow$$
 $\mathbf{P} = \varepsilon_0 \chi \mathbf{E}$

- Charges don't move freely (e.g. along x)
 - Restoring force: -K x

Electric force

- > Resisting force: $-m\gamma (dx/dt)$ for example collisions
- \blacktriangleright Electric force: q.E_{ℓ,x}
- Fundamental equation of dynamics along x

Mass of the moving charge $m\frac{d^2x}{dt^2} = -Kx - m\gamma\frac{dx}{dt} + qE_{\ell,x}$ Acceleration Restoring force Resisting force

Optical resonance

- For an oscillating electric field (ω =excitation frequency) $E_{\ell,x} = E_0 e^{-i\omega t}$
- Response of the charge

$$x = \frac{q/m}{\omega_0^2 - \omega^2 - i\gamma\omega} E_0$$

with
$$\omega_0^2 = \frac{K}{m}$$
 Kesonance frequency

Polarisability α

- When $\omega \thicksim \omega_0$ and $\gamma << \omega_0$

$$x \sim \frac{q/2m\omega_0}{\omega_0 - \omega - i\Gamma} E_0 \qquad p_x = qx \sim \frac{q^2/2m\omega_0}{\omega_0 - \omega - i\Gamma} E_0 \qquad (\Gamma = \gamma/2)$$

Lorentzian resonance

• Neglecting local field effects

$$\chi = N\alpha / \varepsilon_0 \sim \frac{Nq^2 / 2\varepsilon_0 m\omega_0}{\omega_0 - \omega - i\Gamma} = \varepsilon_r - 1$$

Enhanced near the resonance

• Real part
$$\varepsilon_1 = n^2 - \kappa^2 \approx n^2$$

Dispersion of the refractive index near a resonance

• Imaginary part $\varepsilon_2 = 2n\kappa$

Absorption spectroscopy

Optical response of (noble) metals

Structure of monovalent metals

Alkali metals

Metal	Atomic structure
Li	$1s^2 2s^1$
Na	[Ne] $3s^1$
K	$[Ar] 4s^1$
Rb	[Kr] 5 <i>s</i> ¹
Cs	[Xe] 6 <i>s</i> ¹

Crystal lattice: centered cubic (bcc)

Noble metals

Metal	Atomic structure
Cu	[Ar] $3d^{10}4s^1$
Ag	[Kr] $4d^{10} 5s^1$
Au	[Xe] $5d^{10}6s^1$

Band formation:

Intraband contribution

Elastically bound electron model (Lorentz)

(Nearly) free electron model (Drude)

Drude model

- Optical response of free electrons: identical to the optical response of a bound charge, without restoring force (K=0)
- For an oscillating electric field (ω = excitation frequency)

$$E_x = E_0 e^{-i\omega t}$$

• Response of the charge

$$x = \frac{e / m_e^*}{\omega (\omega + i\Gamma)} E_0 \qquad (\omega_0 = 0)$$

• Induced dipoles $Polarisability \alpha$

$$p_x = -ex = \frac{-e^2 / m_e^*}{\omega (\omega + i\Gamma)} E_0$$

Induced polarisation

$$P_{x} = Np_{x} = \frac{-Ne^{2} / m_{e}^{*}}{\omega (\omega + i\Gamma)} E_{0}$$

Drude model

• Finally

$$P_x \equiv \varepsilon_0 \chi^D E_x$$
 with $\chi^D = \frac{-Ne^2 / \varepsilon_0 m_e^*}{\omega (\omega + i\Gamma)}$

Drude electric susceptibility

$$\chi^{D}(\omega) = -\frac{\omega_{p}^{2}}{\omega(\omega + i\Gamma)}$$

• Plasma angular frequency of bulk metal

$$\omega_p = \sqrt{\frac{Ne^2}{m_e^* \varepsilon_0}}$$
 $\succ \hbar \omega_p \sim 9 \text{ eV} (\text{ultraviolet}) \text{ for Au and Ag}$

• Drude dielectric function

$$\varepsilon_r^D = 1 + \chi^D \implies \varepsilon_r^D(\omega) = 1 - \frac{\omega_p^2}{\omega(\omega + i\Gamma)}$$

Intraband contribution

• Real and imaginary parts of conduction electron contribution to dielectric function

$$\varepsilon_1^D(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + \Gamma^2}$$
$$\varepsilon_2^D(\omega) = \frac{\omega_p^2 \Gamma}{\omega(\omega^2 + \Gamma^2)}$$

• For photons in the near IR-visible-UV range, i.e. energies of the order of a few eV, these expressions simplify

• With
$$\hbar\Gamma$$
~0.1 eV and $\hbar\omega_p$ ~10 eV

$$\succ \quad \varepsilon_1^D(\omega) \approx 1 - \frac{\omega_p^2}{\omega^2}$$
$$\succ \quad \varepsilon_2^D(\omega) \approx \frac{\omega_p^2 \Gamma}{\omega^3}$$

Intraband contribution

In the medium, the wave does not propagate and rapidly vanishes

The energy is reflected by the metallic surface

A free electron metal is a perfect mirror below $\omega_{\rm P}$ (i.e. in the visible range) • $\omega > \omega_{\rm P}$ \longrightarrow $\tilde{k}^2 > 0$ \longrightarrow propagative wave

Experimental dielectric function

The dielectric function is the sum of the intraband and interband contributions

$$\varepsilon = 1 + \chi^D + \chi^{ib} = \chi^D + \varepsilon^{ib}$$

- E_{ib} = threshold for interband
- Experimental determination and analysis of the noble metal

E. D. Palik, Handbook of Optical Constants of Solids Johnson & Christy, PRB 6, 4370 (1972) Ehrenreich & Philips, PRB 128, 1622 (1962) Innes & Sambles, J. Phys. F 17, 277 (1987)

The various contributions

- The contributions clearly show up on the imaginary part
- ① Free electron behaviour
- ② Interband threshold
- ③ First maximum: transitions from d to s-p band at L point
- (a) Second maximum: transitions 0from d to s-p band at X point 10+ transition between low energy s-p 0and higher energy s-p bands at L point ω^-_{-10}
- bands are flat and s-p steeper,
 the maxima are broad

⑥ Real part of interband contribution is positive
 Photom
 ⇒ shift of the Drude contribution towards lower energies
 ⇒ $ω_P$ (real) < $ω_P$ (theory)

Optical study of the topological materials LnSbTe (Ln = La, Ce, Sm, Gd)

$$\sigma(\omega) = \sum_{i} \frac{\omega_{Pi}^2}{4\pi} \frac{1}{\gamma_{Di} - i\omega} + \sum_{j} \frac{S_j^2}{4\pi} \frac{\omega}{i(\omega_j^2 - \omega^2) + \omega\gamma_j}$$

Near Field optics & Super-resolution microscopy

Diffraction (far-field approximation)

$$\psi_{\rm d}(\mathbf{r}) \approx -\frac{\mathrm{i}k}{4\pi} \frac{\mathrm{e}^{\mathrm{i}kr}}{r} (\cos\theta_{\rm i} + \cos\theta_{\rm d}) \int_{S} \mathrm{d}a' \psi_{\rm i}(\mathbf{r}') \mathrm{e}^{-\mathrm{i}\mathbf{k}\cdot\mathbf{r}'}.$$
 (8.72)

$$I = I_0 \frac{k^2 (1 + \cos \theta_{\rm d})^2}{\pi^2 r^2} \frac{\sin^2 k_x a \sin^2 k_y b}{k_x^2 k_y^2}.$$
(8.74)

$$I = I_0 \frac{k^2 a^4}{4r^2} \left(\frac{2J_1(ka\sin\theta_d)}{ka\sin\theta_d} \right).$$
(8.75)

Fig. 8.6

Geometry considered for generic scalar diffraction. A plane wave is incident on an opaque screen at z = 0 containing a hole. Of interest is the field at some position \mathbf{r} with z > 0. A point on the screen has position \mathbf{r}' , and $\mathbf{R} \equiv \mathbf{r} - \mathbf{r}'$.

Far field "Airy" diffraction pattern from a circular aperture, as described by Eq. (8.75); image from Indiana University. Fig. 8.8

Diffraction limitation

- Resolution is diffraction limited.
- Abbe (1873) reported that smallest resolvable distance between two points (d) using a conventional microscope may never be smaller than half the wavelength of the imaging light (~200 nm)

$$d = \frac{\lambda}{2n\sin\theta} = \frac{\lambda}{2\mathrm{NA}}$$

Ernst Abbe (1840-1905)

Near field regime

Near-Field Scanning Optical Microscopy (NSOM)

Apertured modes of operation: a) illumination, b) collection, c) illumination collection, d) reflection and e) reflection collection.^[19]

Near-Field Scanning Optical Microscopy (NSOM)

- Scanning Near-Field Optical Microscopy (SNOM)
- But only for superficial structures
- A form of Scanning Probe Microscopy (SPM)

- Aperture diameter less than the wavelength of light
- In 1993 Eric Betzig and Robert Chichester used NSOM for *repetitive* single molecule imaging

maps recorded from a molybdenum disulfide flake using NSOM with a campanile probe (top) and conventional confocal microscopy (bottom). Scale bars: 1 µm.^[2]

Super-Resolution Microscopy 2014 Nobel Prize in Chemistry

STED (Stimulated Emission Depletion) Stefan Hell

PLAM (PhotActivated Localization Microscopy) Eric Betzig

STORM (STOchastic Optical Reconstruction Microscopy) Xiaowei Zhuang

Stimulated Emission Depletion (STED) Microscopy (Hell)

Basic Principle of PLAM or STORM

E. Betzig

- Position of a point source can be determined to < 10 nm.
- Point sources separated at ~10 nm apart can be distinguished in imaging if they do not light up at the same time.

Basic Principle of PLAM or STORM

Different random sets of photoswitchable dye molecules can be lighted up at different times

Plasmonics

Bulk plasmon

• Electron plasma effects are most pronounced in free-electron-like metals. The dielectric constant of such materials can be expressed as

$$\varepsilon_1^D(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + \Gamma^2}$$
$$\varepsilon_2^D(\omega) = \frac{\omega_p^2 \Gamma}{\omega (\omega^2 + \Gamma^2)}$$

• A plasmon is the quantum of the collective excitation of free electrons in solids.

(a) Bulk plasmons

Surface plasmon

• (2D-confined) surface mode of plasmon

(b) Surface plasmons

Surface plasmon polariton

Polariton – any coupled oscillation of photons and dipoles in a medium

kx (arbitrary units)

Surface plasmon polariton

E-field of an SPP at the silver-air interface, at wavelength of 10 μm

E-field of an SPP at the silver-air interface, at wavelength of 370 nm

Optical response of a sphere

The electrons oscillate in time around the fixed nuclei

$$E_x = E_0 e^{-i\omega t}$$

• The particle behaves like an oscillating dipole, a polarisation appears

$$P_x = P_0 e^{-i\omega t} \longrightarrow P_0 = \varepsilon_0 (\varepsilon - 1) E_{int}$$

• E_{int} is the field inside the particle $E_{int} = \frac{3}{\epsilon + 2}E_0$ (constant in the quasi-static limit)

• Equivalent dipole $p = P_0 V_{sph \hat{R}e} = 4\pi R^3 \varepsilon_0 \frac{\varepsilon - 1}{\varepsilon + 2} E_0 = \alpha E_0 \implies \alpha = 4\pi R^3 \varepsilon_0 \frac{\varepsilon - 1}{\varepsilon + 2}$

polarisability of the sphere

Metallic sphere (free electrons)

• Drude dielectric function for a free electron gas in the visible range

• When
$$\omega_{SPR} = \frac{\omega_p}{\sqrt{3}}$$
, $\varepsilon^D(\omega_{SPR}) \approx -2$
Giant enhancement of $E_{int} = \frac{3}{\varepsilon+2}E_0$

- The electric field inside the particle is more intense than the exciting field $E_{\rm 0}$
- Explanation: due to the small size of the object (dielectric confinement), the free electrons may oscillate in a coherent way over the whole particle
- The field enhancement at $\omega_{\mbox{\tiny SPR}}$ corresponds to the resonant and coherent excitation of all the conduction electrons
- By analogy with the plasma wave, considering that the excess charges are present at the surface only, such a phenomenon is called:

Local surface plasmon resonance

 $\alpha = 4\pi R^3 \varepsilon_0 \frac{\varepsilon - 1}{\varepsilon + 2}$

Simulation

Au *R*=39 nm

> Calculation: Finite Difference Time Domaine (FDTD)

> > E₀

k

Intensity of light outside the Au sphere

Coupling between nanoparticles

Transverse coupling when the distance between particles decreases

Coupling between nanoparticles

Longitudinal coupling when the distance between particles decreases

E,

Surface enhanced Raman

Examples of applications: SERS

- Raman intensity: $I_{Raman} \propto I_{pump}$
- Molecule near a plasmonic source (nano-object, rough surface)

Examples of applications: TERS

- Tip enhanced Raman scattering (TERS)
 - same as SERS, but molecules located
 - between a sharp tip and a surface **plasmonic** effect
 - chemical imaging is possible
 - as with atomic force microscopy (AFM)
 - TERS imaging of single carbon nanotubes

A.Weber-Bargioni et al.; NanoLetters 11 (2011) 1201-1207

Other examples of applications

Low-dimensional Materials

Absorption-Reflection Spectrum of Single Carbon Nanotubes on a Substrate

b 80

Count

60

40

20

0

Diameter (nm)

Chiral angle (deg)

Nat. Nanotech. 8, 917 (2013)

Excitation Spectrum of Rayleigh Scattering of Suspended Single Carbon Nanotubes

M. Y. Sfeir et. al., Science 306, 1540 (2004)

2D Plasmons in Graphene

Carrier density

$$n = \pm \frac{1}{\pi} \left(\frac{E_F}{\hbar v_F}\right)^2$$

Drude conductivity

$$\sigma(\omega) = \frac{iD}{\omega + i\Gamma}, \qquad D = \frac{\mathbf{v}_F e^2}{\sqrt{\pi} \mathbf{h}} \sqrt{n}$$

Plasma frequency

$$\omega_p^2(k) = \left(\frac{e^2}{hv_F}\right)\left(v_F^2 \sqrt{g\pi |n|}\right)k$$

2D Plasmons in Graphene

Nat. Nanotech. 6, 630 (2011)56

Graphene as transparent conductor

transmittance of a freestanding SLG

Fresnel equations in the thin-film limit

$$T = (1 + 0.5 \pi \alpha)^{-2} \approx 1 - \pi \alpha \approx 97.7\%$$

 $\alpha = e^2/(4\pi\epsilon_0\hbar) \approx 1/137$ is the fine-structure constant

Possible applications: solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers

2D Materials beyond Graphene

Electron-Electron and Electron-Hole Interactions in Quasi 1D or 2D systems

- Enhanced Coulomb interaction reduced dimensionality/phase space
- Strange/strong spatial screening dependence.
- Subsrtate/environmental screening are important

