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Phenomena SC Properties:

1. Zero resistance: No resistance is detectable, even for high scattering rates of conduction
electrons.

2. Absence of thermoelectric effects: No Seebeck voltage, no Peltier heat, no Thomson
heat is detectable

3. ldeal diamagnetism: x,, = -1. Weak magnetic fields are completely screened away from
the bulk of a superconductor

4. Meissner effect: If a superconductor is cooled down in the presence of a weak
magnetic field, below Tc, the field is completely expelled from the bulk of the
superconductor.

5. Flux quantization: The magnetic flux through a superconducting ring is quantized and
constant in time. This phenomenon was theoretically predicted by F. London in 1950
and experimentally verified 1961.

Helmut Eschrig, THEORY OF SUPERCONDUCTIVITY
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Normal state

Normal state

Meissner state
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T..K H. Oe Hgs, Oc M, A o, A K Type

Al 118 105 500 16000  0.01 I
Hg 4.15 400 400 I
Nb 925 1600 2700 4700 300 1.2 11
Ph 7.2 800 300 830 0.47 I
Sn 3.7 305 510 2300 0.15 I
In 34 300 400 3000 I

\Y% 5.3 1020 400 ~300 ~ 0.7 1
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London theory:

At T=0, we expect to have the supercurrent as a property of quantum states

ng = |¥|?, Ny is the bosonic density, and Wis the corresponding field amplitude

From Schrodinger’s equation:

1 (kO
——~—A)¢ U = (E — jug) W,
2mp ( 1 Or d T4 ( HB) ,.

U(r,t) = /nge?™ t),
Skipping the immediate steps, we arrived
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Njs =~ — A, A=—L2
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London theory:

d(Ags)

The first London equation: o L — E.a

“A supercurrent is freely accelerated by an applied voltage, or, in a bulk superconductor
with no supercurrent or with a stationary supercurrent there is no effective electric field
(constant electrochemical potential).”

(f_')

The second London equation: | —
Or

(Ajs) - _B

It yields the ideal diamagnetism, the Meissner effect, and the flux quantization.



Phase transition of superconductors:

oo

T.(p)

Entropy of superconductor

AC,

T.(p)

T

Heat capacitor of superconductor



Now, we should introduce two more important SC theories:
Free energy form from Landau theory

1. Landau theory F(t,|U]*) = F,(t)+ At)|¥]* + ;B(f)l‘l’ﬁ 4.
Ginsburg-Landau equation

B , 0
E X Btot = H0J s Bt.ot =B + B-m. — % X A-.
- a c 9,2
2. BCS theory Je = ;ﬁ'ﬁ' (\I}“ ;) U — \Ip?\l}*) _ ZL\IJ*A\IJ.
. e . v or or m
Landau Fermi-liquid and Cooper for




Now, we should introduce two more important SC theories:

1. Landau theory

Ginsburg-Landau equation

2. BCStheory
Landau Fermi-liquid and Cooper formation

H = {Hk‘iﬂ- + /Hint

IH int

Hiin = Z/dg-ﬂlﬁ(r.a)ﬁelﬂ(r, «)

32/‘53"‘1d?’?‘Q‘I’T(I‘z0-')‘1”(1'1.,:'3)11-"(1*1..1*2)\1}(1«1.5)\1}(1-2.0;-)
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- Ct’:ﬁ'

(Heps) = Z < P [Hey sl ?.él‘;.«.> exp(—1/T)
Herrtn = Exte

Z = Z exp(—Ex/T)
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Now, we should introduce two more important SC theories:

1. Landau theory
Ginsburg-Landau equation

2. BCS theory
Landau Fermi-liquid and Cooper formation

To understand the critical temperature and critical field of the superconductors and link
to Josephson junction. And we can understand the formation of the Cooper pair leading
to condensation of SC ground state.

However, we need to skip them now. Please refer to Theory of Superconductivity, etc..



Josephson junction

A Josephson junction is defined as two bulk superconductors are separated
by an insulator layer. The current can tunnel from one side of
superconductors to another.

X=0



Josephson junction

X=0

A Josephson junction is defined as two bulk superconductors are separated

by an insulator layer. The current can tunnel from one side of
superconductors to another.

From Ginzburg-Landau (zero field)

" Order parameter for SC
—EV% + aih + Blu[Ph = 0. Vol = —a/B
Ginzburg-Landau coherent length |w|2
272
¢ =h/V/=2ma PV e

By considering £ >>d, the barrier thickness and the continuity of the order parameter of
three regions

Y(x) = wo[(% —x/d)e™ + (% + 2 /d)e™?] For -d/2<x<d/2



Josephson junction

A Josephson junction is defined as two bulk superconductors are separated
by an insulator layer. The current can tunnel from one side of
superconductors to another.
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Josephson junction

Now recall another form of the Ginzburg-Landau formula

C

j:

h 2
V X B = i (V" — 0"V — |2 A

A7 2m* m*c

Under zero magnetic field, we plugin the previous order parameter form

n

J o= g0V = VY]
m
2eli

= m*d|¢0|QSiH(X2 — X1)-

X 1 and X , are the phase terms of the bulk SC

X=0

This can refer to the DC Josephson relationship



The electron’s wave function in SC can be written as

V=> Colt)ta a=1.2

This will obey the time-dependent Schrodinger's equation:

?'Tz(—Z\If = WV
dt

One can obtain the following equations:

1l E (-/‘Ya UQ + (jc‘c UO, — E (-/TQ'H UQ

Multiply by % and integral over the space:

/ 1h E V5Ca0a + L",} CothodV = / E C, L’;H Vo dV
¥ X

Ref. Peder Heiselberg
Niels Bohr Institute



The electron’s wave function in SC can be written as

V=) Coltita a=1.2

This will obey the time-dependent Schrodinger's equation:

?h—Z\I! HWV
dt

One can obtain the following equations:

if E Cotha + Cothy = E CoaHq

Multiply by % and integral over the space:

/ in Y s Catha + V5CatadV = / Z(Q’L»*qudv

Ref. Peder Heiselberg
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Using the uncoupled condition,
The formula can be written as

?h("aoa,; + JolaadV = o H ga
> [ v >

Z ?h CYQ 5&' B — Z [H Ba — E o 50@ I6] ] C/Ya'

(8 X

Finally, we reach the following equation

L d S 1
?h%(/ 6] — Z [H Ba — E « 0&;‘3] (‘/ o

(@

Hgo = / VsH Y dV



Hzo = / | VsHYdV
Now, we can figure out the matrix elements of H 5 ,
With a voltage, V across the junction, the diagonal terms
Hyy=FE +eV/2=F +¢eV Hy = FEy — e*V/2 = FEy — eV
The off-diagonal term k, represents the transition between states

Hyy = Hy = —K

Therefore, one can arrive at the equations by plugging in all the terms

d
d

Ref. Peder Heiselberg
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Hzo = / VsH Y dV With the coefficient to be normalized

Now, we can figure out the matrix elements of H 5 , ICi|? =N, C,=+/Nex1
. o . OL12 =N, O, = /N,exe
With a voltage, V across the junction, the diagonal terms CofF = N2 Cy fY2e
Here N1 and N2 represent the number

of superconducting electrons in the SC1
and SC2. We can arrive at the following

H11:E1+€*V/2:E1—|—€V HQQZEQ_B*V/QZEQ_ev

The off-diagonal term k, represents the transition between states

equation:
Hi,=Hy = —K d - - -
2 ?! th—+/ NieXt = eV y/ NieXt — K/ Nye'X?
dt
Therefore, one can arrive at the equations by plugging in all the terms
L d . Multiply by C1
’ Lod . d . es—————
mi@ — —eVOy(t) — KCy(1) ih[= N1 + 82N 1] = 2¢V Ny = 2K/ Vi Noe 2=x1)

dt
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So, we can do the same for two equations:

d .
—X1] = 2eV N — QK’\/W(Q%(XQ—M)

d
?h[al\a + ?Qi\frl dIL

d d
?h[ \Q + ?2 \2 ] — —26‘/4&"‘?2 — 2[{ \J_i\r X (x1—x2)

dt H

Now, we compare the real and imaginary parts:

Real part Imaginary part
1 d —
fh\l%/\l = —eVNl + K iN"TliNTQ COS(@) h?i\l = 2K i\li\Q Sll](@)
al
1 d —
ﬁﬂ-’rg %/\2 = 6‘/¢N’TQ + ]\: 1%'?1;%?’2 COS((;)) h? \2 — ‘i_QJX 4\11\2 Sll](@)
at

d d
BN, = —h—N.
) M= -hgs

N,+N,=const. Conversation of the total charges
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Still from the imaginary part

1
BN, — £2K /N, N, sin(¢
zdti o = +2K /N1 Nysin(o)

N,=const.-N,

d 4K
dt N !

NN,
7

2e—| V.
6dt[ 2

sin(o)

Xe > d _ de K

So, we can tell that the left side of the equation is the number of Cooper pairs flowing as the time which
resembles the supercurrent density similar to the Ginzburg- Landau theory, Therefor we can define the
supercurrent equation as the following:

[y = I.sin(o)

Known as DC Josephson relationship
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1 . .
h;\li\l = —tﬂ/ :\l — [ﬁ
dt

1 . .
fZiNTQ (—/\2 = eV ¢\2 + K
dt

ier 4\1’ 9 COS (())

Divided the top equation with N1 and the bottom equation with N2 then subtract one from another

- cos(o)

In general, the last term can be ignored due to the small K and phase oscillation cosine term.
We then can arrive at a simpler equations

hio = 2¢V  This equation is known as the AC Josephson relationship

dt
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DC Josephson effect, IV:

Voltage
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Feynman’s approach
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Ref. : N. B. Kopnin. Theory of
superconductivity

(a) (b)
N , S N N
e
- A, E
c Eo | ‘
; I:::::"'.:';::::: <
Y S -
h 4
' E : >
x=0 i k k_k k

In the previous discussion, the two superconductors are connected by a weak link or a thin insulating
layer. Therefore, cooper pair tunneling through the insulator barrier. Now if we replace the insulating
barrier with a normal metal. We will have an interesting behavior at the SN interface.

Electrons propagate toward the SN interface and try to enter the superconductor. To make electrons
into the superconducting condensate, forming a cooper pair, an electron has to pair with another
electron coming from the quasiparticle states. Therefore, the corresponding hole will have to leave the
superconductor to enter the normal region. This process is called Andreev reflection.



We first consider the Bogoliubov de Gennes
(BdG) equations based on the BCS model:

h? e .
B 2m (V B %‘4)2“ - EFU- + Av = eu
B2

(V+ %4)21 — Erv + A%u = ev
C

2m

where A is the vector potential, E; is the
Fermi energy, Aisthe complex coupling
strength for quasiparticles, and € is the
energy for the quasiparticles. u and v are
quasiparticle wave functions for positive (e)
and negative (h) energy



We first consider the Bogoliubov de Gennes
(BdG) equations based on the BCS model:

h? e .
B 2m (V B %‘4)2“ - EFU- + Av = eu
B2

(V+ %4)21 — Erv + A%u = ev
C

2m

where A is the vector potential, E; is the
Fermi energy, Aisthe complex coupling
strength for quasiparticles, and € is the
energy for the quasiparticles. u and v are
quasiparticle wave functions for positive (e)
and negative (h) energy

Assuming wave function is slowly varying position.

(1) (V)

The BdG equations with zero magnetic field:

dU

—hVp— + AV = €U
dx
1V

Ve AT — eV
dx
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For x>0 and e>A
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a=Uy/Vy, c¢=1/U;

For x>0 and <A

( U(l) ) = ce7AT) ( U{S )
V(x) V!

)\{S‘:\/|A2| — €2/hV

V2 €
, 1 Al2.e2 .,
and V5 =—(1- W)L,z
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a=U)/Vy, c=1/U]



(a)
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1
> |
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With the help of the BTK model, we
can analyze the NS interface with a
reflection.

Here one can define a dimensionless
barrier height Z that can be
considered as a delta function
between N and S interface.

Here T=1/(1+ Z?) and R=Z7?%/(1+ Z?)

For x>0 and >A For x>0 and <A

a=Uy/Vy, c¢=1/U, a = [ f["] Vd’ , c=1/ Ué

In a perfect case, |a|?=1 meaning the conversion of electron and hole
is 100%. Therefore, one obtains a perfect Andreev reflection.
(b)

dl
RNy

eV

A\J& ] L 1

A(T) E

eV




S N S Now, a barrier region is formed with a normal material

! i sandwiched between two superconductors. Between two
| S superconductors, Andreev bond states will be established.
A @----->»- A
| E | ° Similarly, we can apply the previous BdG formalism to
::::::'!.t‘-:::!::: ::::::{:‘;:::::: ana|yze three regions_
Ad | | ‘
- RS SRR
Ao | h I AO T(. !, —ip/4
| I 1) X > (1/9 . [x’l (lﬁ) _ (, 6))\;5‘3: [xofj _II;
’ - Vir) L Vel
S N S
1 | (/Y(l) ez/\\x
2) d/2>x> -d/2 : . = A
| o | ) / / ( V(l) ) ( aez/\\x )
- @
SRR TR
| h
S (U@, e U
| | 3) x < -d/2: ( V() ) = dye <" Ve i/t
< >




. . A can be found by matching the boundary

| € | conditions and normalization of the wave function.
A, - @ P- A,
I E |
..... ) ---eg--- E fmmm—— ':..*.... ; 5
t‘l I: ........ AP l( VIAR + € |
A, TR A, 2 R|Ve| + dy/|A]? + €
] |
With quasiparticle energy:
h o € 1
5 N 5 =1 — F arcsin(—— + m(l + =
| | € _|wx|(2+arcsm(|A|+u( _2)))
| o |
- Where w,=V:/d and | is the integer.
R St .
| h We can compare two limits:
| | 1. short junction 2. long junction
< > d<< 50 (W}>>|A|) d>> 50 (U‘J1<<|A|)




Where w,=V./d and | is the integer. We can compare two limits:

1. short junction

d<< & (w,>>|Al)

¢ = +|A|c:os(g)

2. long junction

d>> & (w,<<|A))

For the quasiparticle spectrum and M is an integer

(a)
A

0

For short and long, the dominated
energy is by A and hw, ,
respectively. That will correspond
to the superconducting gap and
Thouless energy for the ballistic
case.
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Relationship in displacement C

oV RC P

le=C%r = 50 e

D. E. McCumber JAP (1968), M. Tinkham, Introduction to superconductivity
Peder Heiselberg, Niels Bohr Institute

Here we use the resistor-capacitor shunt junction circuit to model the
current flow in the Josephson junction. There are three currents based on
Kirchhoff's law:

1. Josephson current [.sin(o)
5 Disol hC 9%
. Displacement current 5 2
3 Dissipati articl ; h 0o
. Dissipative(quasiparticle) curren 3R Ot
Therefore, we can have a total current |
CRCPo  h 09 hC oo h 99

=1 — I.sin(¢)

I

+ I.sin(o)  Or rewritten as

= ' — 4 -
Qe Ot2 + 2e R Ot Qe Ot? 2e R Ot

The right-hand side is the force term from the pendulum from the potential.



D. E. McCumber JAP (1968), M. Tinkham, Introduction to superconductivity
Peder Heiselberg, Niels Bohr Institute

Potential can be integral from the right hand side: W
U=— /(I — I.sin(@))dp = —1¢p — I.cos(¢) + k _ 15t
N AN
U=1.1—cos(o)] —Id =1, [1 — cos(¢) — Oli] 1\*_“ ;
C 7 ~ — ; o ¢
This is the tilted washboard potential. ‘ x,__‘_ _ﬂ|~ >|C
of

Another way of writing the equation :

12 1
F = J% + ?72 + Eysin(o)
dt dt We will reach to the same potential :
1
Feg )= o and Ej=tee U(0) = B5(1 — cos(0)) = Fo = L(1 — cos(6) = =)
o



overdamped junction

Dieter Koelle, School on Quantum Materials (2018)

2
/BC — —WI()RQC

underdamped junction
\ify
> > .
8 S without
E E I microwave
strong damping: friction term 5 dominates,
ie. fo <1
particle gets retrapped at /=/,
la ==) non-hysteretic IVC
o _.:_n=+5 o n=+1
& = 8 n=0 with - L
o S microwave Weak damping: inertial term ¢ dominates,
> n=-5 > |e /36‘ >> ]_
particle gets retrapped at /=/<I,

Current

m=) hysteretic IVC

Current
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By choosing a vector potential

04

X (—— — 0z

v

z>d/2
2 < —d/2

Ve

He(z—i—d/Q)/Al

(2—d/2)/As
ha(2) = { He

We can reach the relationship
between phase and magnetic
field.

C)C) 26()\1 + )\2 + d)H

()—y B he

Using Maxwell’s equation, we can reach the following results

\2 0%¢ - \ fic?
T——= = SInd = -
T o2 | / 87eje(Na + A1 + d)

By integral witkd¢/dy

€

TN |
~J (—C +cosp=A
2 \ Jy |

Let me skip a few steps

. o 2ﬁy+ﬁ
1s = ] S1 q
Js Je T on)

L BTN .
cH ()\1 —+ )\2 —+ d)H

ﬂ,’/ 2 2_ f‘. ,_TIT L
=i [ sin( = + 00) dy = W, ; ) in o,



We finally reached the total current which is the Experimentally, we can measure such a behavior that
function of the phase through the sample is similar to the single-slit diffraction pattern.

[m.a r — de

sin(m® /D)
W(I)/(Do

D= HW (M Ao l
( (A1 + Ao +d) 0 02 04

1.0 4

0.8 -

0.6 -

I

0.4 4

0.2 -

3
0.0 - - - - -1.0 -05 0.0 05 1.0
HP(T) B (mT)



1. Which is type | superconductor and which is type |l

H

2. draw a diagram to show the DC Josephson effect, | vs. phi

[s = I.sin(¢)
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