Quantum transport TIGP course Advanced Nanotechnology（A）

March 13th， 2024
徐晨軒 Chen－Hsuan Hsu

Bibliography

- Supriyo Datta, Electric Transport in Mesoscopic Systems (1995)
- Douglas Natelson, Nanostructures and Nanotechnology (2015)
- Thierry Giamarchi, Quantum Physics in One Dimension (2003)
- additional references listed in the slides

Recruitment

- Quantum matter theory group at loP, AS
- we welcome postdocs, assistants, and students to join us
- welcome to share the information!

In this class

- goal: concept of quantum transport
- materials:
- single-particle regime:
- Douglas Natelson, Nanostructures and nanotechnology (Sec. 6.4) (unfortunately some typos ...)
- Supriyo Datta, Electronic Transport in Mesoscopic Systems (older but still useful)
- beyond the single-particle regime:
- Thierry Giamarchi, Quantum Physics in One Dimension
- additional references on interacting 1D systems
- warning: inconsistent notations from different sources

Outline

- review of useful concepts from quantum mechanics
- quantum transport in mesoscopic systems
- Landauer-Büttiker formalism (single-particle description)
- conductance quantization in ballistic systems
- Landauer formula for an imperfect conductor
- Büttiker formula for multiterminal devices
- application
- interacting systems (beyond single-particle regime)
- interacting electrons in 1D: Tomonaga-Luttinger liquid
- impurities (weak and strong)
- effects of spin-orbit-coupling

Outline

- review of useful concepts from quantum mechanics
- quantum transport in mesoscopic systems
- Landauer-Büttiker formalism (single-particle description)
- conductance quantization in ballistic systems
- Landauer formula for an imperfect conductor
- Büttiker formula for multiterminal devices
- application
- interacting systems (beyond single-particle regime)
- interacting electrons in 1D: Tomonaga-Luttinger liquid
- impurities (weak and strong)
- effects of spin-orbit-coupling

Charge transport in macroscopic devices

- Ohm's law:

$$
V=I R
$$

R : resistance, V : voltage, I : current

- resistance (geometry) vs resistivity (material)

$$
R=\rho \frac{L}{A}
$$

Wikipedia page of Ohm's law
ρ : resistivity, L : length of a conductor, A : cross-section area

- question: what if we shrink the conductor $(A \searrow)$ so that there can be only few electrons passing through it at a time?
- typical length scales $\sim O(100 \mathrm{~nm}) \Rightarrow$ comparable to the size of coronavirus!
- recall: how electrons move in simple 1D potential

Electron tunneling through a barrier

- Schrödinger equation with effective $m: i \hbar \partial_{t} \psi(x, t)=\left[-\frac{\hbar^{2}}{2 m} \partial_{x}^{2}+V(x)\right] \psi(x, t)$
- for time-independent potential: $\left[-\frac{\hbar^{2}}{2 m} \partial_{x}^{2}+V(x)\right] \phi(x)=E \phi(x)$
- tunneling through a barrier with square potential (height V_{0} and width $2 a$)

$$
\text { general solution for } \mathrm{E}<V_{0} \text { : }
$$

$$
\begin{gathered}
\phi(x)=\left\{\begin{array}{lr}
A \mathrm{e}^{\mathrm{i} k x}+B \mathrm{e}^{-\mathrm{i} k x}, & x<-a, \\
C \mathrm{e}^{\gamma x}+D \mathrm{e}^{-\gamma x}, & -a<x<a, \\
F \mathrm{e}^{\mathrm{i} k x}+G \mathrm{e}^{-\mathrm{i} k x}, & x>a,
\end{array}\right. \\
k
\end{gathered}=\sqrt{\frac{2 m E}{\hbar^{2}}, \quad \gamma=\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}}}
$$

[note] typo in Fig. 6.14

Tunneling through a barrier

- boundary conditions: continuous $\phi(x)$ and $\partial_{x} \phi(x)$ at $x= \pm a$:

$$
\begin{aligned}
&\binom{A}{B}=\left(\begin{array}{cc}
\frac{i k+\gamma}{2 i k} e^{(i k-\gamma) a} & \frac{i k-\gamma}{2 i k} e^{(i k+\gamma) a} \\
\frac{i k-\gamma}{2 i k} e^{-(i k+\gamma) a} & \frac{i k+\gamma}{2 i k} e^{-(i k-\gamma) a}
\end{array}\right)\binom{C}{D},\binom{C}{D}=\left(\begin{array}{cc}
\frac{i k+\gamma}{2 \gamma} e^{(i k-\gamma) a} & -\frac{i k-\gamma}{2 \gamma} e^{(i k+\gamma) a} \\
-\frac{i k-\gamma}{2 \gamma} e^{-(i k+\gamma) a} & \frac{i k+\gamma}{2 \gamma} e^{-(i k-\gamma) a}
\end{array}\right)\binom{F}{G} \\
& \Rightarrow\binom{A}{B}=\boldsymbol{M}\binom{F}{G}, \boldsymbol{M}=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right) \\
&=\left(\begin{array}{cc}
\frac{i k+\gamma}{2 i k} e^{(i k-\gamma) a} & \frac{i k-\gamma}{2 i k} e^{(i k+\gamma) a} \\
\frac{i k-\gamma}{2 i k} e^{-(i k+\gamma) a} & \frac{i k+\gamma}{2 i k} e^{-(i k-\gamma) a}
\end{array}\right)\left(\begin{array}{cc}
\frac{i k+\gamma}{2 \gamma} e^{(i k-\gamma) a} & -\frac{i k-\gamma}{2 \gamma} e^{(i k+\gamma) a} \\
-\frac{i k-\gamma}{2 \gamma} e^{-(i k+\gamma) a} & \frac{i k+\gamma}{2 \gamma} e^{-(i k-\gamma) a}
\end{array}\right)
\end{aligned}
$$

- transfer matrix M : describing how a particle tunnels through the barrier
- diagonal terms: transmission through the barrier
\Rightarrow related to charge current

Current density and transmission coefficient

- particle current density from quantum mechanics:

$$
J=\frac{\hbar}{2 m i}\left(\phi^{*} \partial_{x} \phi-\phi \partial_{x} \phi^{*}\right)
$$

- left side of the barrier $(x<-\mathrm{a})$:

$$
J_{<}=\frac{\hbar k}{m}\left(|A|^{2}-|B|^{2}\right)
$$

- right side of the barrier $(x>\mathrm{a})$:

$$
J_{>}=\frac{\hbar k}{m}\left(|F|^{2}-|G|^{2}\right)
$$

- for a particle coming from $x=-\infty(G \rightarrow 0)$, the probability that it passes through the barrier and that it gets reflected:

$$
T(E) \equiv|F|^{2} /|A|^{2}=1 /\left|M_{11}\right|^{2}, \quad R(E) \equiv|B|^{2} /|A|^{2}
$$

- current related to transmission probability and element of M

Transmission coefficient

$$
\begin{aligned}
& E<V_{0}: T(E)=\frac{1}{1+\frac{V_{0}^{2}}{4 E\left(V_{0}-E\right)} \sinh ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(V_{0}-E\right)}\right)} \\
& E>V_{0}: T(E)=\frac{1}{1+\frac{V_{0}^{2}}{4 E\left(E-V_{0}\right)} \sin ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(E-V_{0}\right)}\right)}
\end{aligned}
$$

[note] typo in Eq. (6.43)

- nonzero probability for $E<V_{0}$ (classically forbidden regime)
- weak-tunneling regime (a wide and/or tall barrier, $\gamma a \gg 1$)

$$
T(E) \approx \frac{4 E\left(V_{0}-E\right)}{V_{0}^{2}} e^{-\frac{4 a}{\hbar} \sqrt{2 m\left(V_{0}-E\right)}} \propto e^{-\frac{4 a}{\hbar} \sqrt{2 m\left(V_{0}-E\right)}}
$$

\Rightarrow exponential dependence on the barrier thickness
\Rightarrow sensitivity useful for STM/STS

Double-barrier tunneling

$$
\binom{A}{B}=\boldsymbol{M}_{\boldsymbol{L}}\binom{F}{G}, \quad\binom{F}{G}=\boldsymbol{M}_{\boldsymbol{W}}\binom{A^{\prime}}{B^{\prime}}, \quad\binom{A^{\prime}}{B^{\prime}}=\boldsymbol{M}_{\boldsymbol{R}}\binom{F^{\prime}}{G^{\prime}}
$$

- $\boldsymbol{M}_{\boldsymbol{L}(\boldsymbol{R})}$: tunneling through the left (right) barrier
- $\boldsymbol{M}_{\boldsymbol{W}}$: propagation in the well with inter-barrier distance $b \quad \boldsymbol{M}_{\boldsymbol{W}}=\left(\begin{array}{cc}e^{-i k b} & 0 \\ 0 & e^{i k b}\end{array}\right)$

Double-barrier tunneling (conti.)

- total transmission coefficient

$$
\boldsymbol{M}_{\boldsymbol{t o t}}=\boldsymbol{M}_{\mathbf{L}} \boldsymbol{M}_{\boldsymbol{W}} \boldsymbol{M}_{\boldsymbol{R}}, \quad T_{t o t}(E)=1 /\left|M_{t o t, 11}\right|_{\text {[note] typo in Eq. (6.50) }}
$$

- resonance condition with transmission probability $=1$
- generalized for multiple barriers via multiplication of \boldsymbol{M} matrix

Scattering matrix formalism

- instead of expressing $\phi(x)$ for $x<-a$ in terms of that for $x>a$, we can express the outgoing wave in terms of the incoming wave

$$
\begin{aligned}
& \binom{A}{B}=\boldsymbol{M}\binom{F}{G}, \quad \boldsymbol{M}=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right) \\
& \Rightarrow\binom{B}{F}=\boldsymbol{S}\binom{A}{G}, \quad \boldsymbol{S}=\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)
\end{aligned}
$$

- the role of \boldsymbol{M} replaced by the scattering matrix \boldsymbol{S}
- transmission probability in terms of the element of $\boldsymbol{S}: T(E)=\left|S_{12}\right|^{2}$

Two scattering regions

- combining scattering matrices in regions $1 \& 2$:

$$
\boldsymbol{S}_{\boldsymbol{t} \boldsymbol{t}}=\boldsymbol{S}^{(1)} \otimes \boldsymbol{S}^{(1-2)} \otimes \boldsymbol{S}^{(2)}
$$

- $\boldsymbol{S}^{(1-2)}$: how regions $1 \& 2$ are connected
- \otimes : combining $\boldsymbol{S}^{(1)} \& \boldsymbol{S}^{(2)}$ in a way depending on their coherence
- full coherence: combining amplitudes (elements of \boldsymbol{S})

$$
\text { given } \begin{aligned}
\left(\begin{array}{ll}
r_{1} & t_{1}^{\prime} \\
t_{1} & r_{1}^{\prime}
\end{array}\right) \text { and }\left(\begin{array}{ll}
r_{2} & t_{2}{ }^{\prime} \\
t_{2} & r_{2}^{\prime}
\end{array}\right) \Rightarrow T_{t o t} & =\left|\frac{t_{1} t_{2}}{1-r_{1}^{\prime} r_{2}}\right|^{2}=\frac{T_{1} T_{2}}{1-2 \sqrt{R_{1} R_{2}} \cos \theta+R_{1} R_{2}} \text { (resonance!) } \\
T_{1,2} & =\left|t_{1,2}\right|^{2}=\left|t^{\prime}{ }_{1,2}\right|^{2} R_{1,2}=\left|r_{1,2}\right|^{2}=\left|r_{1,2}^{\prime}\right|^{2} \\
\theta & =\text { phase }\left(r_{1}^{\prime}\right)+\text { phase }\left(r_{2}\right)
\end{aligned}
$$

- complete decoherence: probability instead of amplitude

$$
\text { given }\left(\begin{array}{ll}
R_{1} & T_{1} \\
T_{1} & R_{1}
\end{array}\right) \text { and }\left(\begin{array}{ll}
R_{2} & T_{2} \\
T_{2} & R_{2}
\end{array}\right) \Rightarrow T_{t o t}=\frac{T_{1} T_{2}}{1-R_{1} R_{2}} \text { (no resonance) }
$$

- partial coherence: modeling with fictitious leads

Scattering matrix for multiple modes

$$
\boldsymbol{S}=\left(\begin{array}{ccc}
S_{11} & \cdots & S_{1 N} \\
\vdots & \ddots & \vdots \\
S_{N 1} & \cdots & S_{N N}
\end{array}\right)
$$

- matrix \boldsymbol{S} : unitary (ensured by current conservation)
- transmission from mode n to mode $m: T_{m \leftarrow n}=\left|S_{m \leftarrow n}\right|^{2}$
- important concept for the development of Büttiker formula

Outline

- review of useful concepts from quantum mechanics

- quantum transport in mesoscopic systems
- Landauer-Büttiker formalism (single-particle description)
- conductance quantization in ballistic systems
- Landauer formula for an imperfect conductor
- Büttiker formula for multiterminal devices
- application
- interacting systems (beyond single-particle regime)
- interacting electrons in 1D: Tomonaga-Luttinger liquid
- impurities (weak and strong)
- effects of spin-orbit-coupling

Transport through a ballistic conductor

- ballistic conductor:
a 1D or (quasi-1D) system with length L much shorter than the mean free path of carriers (no scattering inside)
- quantum coherent scattering region connected via contacts to classical reservoirs

- no reflection within the conductor
\Rightarrow transmission probability $=1$

Electric conductance of a ballistic conductor

- Q1D conductor with M transverse modes
- at $T=0$: electrons filled up to $\mu_{L}\left(\mu_{R}\right)$ in the left (right) contact
- number of modes with energies $E_{j}<E: M(E)=\sum_{j} \Theta\left(E-E_{j}\right)$
- $M=3$ here
- difference in μ_{L} and μ_{R} set by a bias $V=\frac{\mu_{L}-\mu_{R}}{-e}$
- occupation prob. for right-moving carriers

$$
f_{+}\left(E, T, \mu_{L}\right)
$$

- current from left to right:

$$
I_{+}=-\frac{e}{L} \sum_{k} v(E(k)) f_{+}\left(E, T, \mu_{L}\right) M(E(k)) \rightarrow-\frac{2 e}{h} \int_{0}^{\infty} d E f_{+}\left(E, T, \mu_{L}\right) M(E)
$$

- occupation prob. for left-moving carriers

$$
f_{-}\left(E, T, \mu_{R}\right)
$$

- current in the opposite direction (from right to left):

$$
I_{-}=-\frac{e}{L} \sum_{k} v(E(k)) f_{-}\left(E, T, \mu_{R}\right) M(E(k)) \rightarrow-\frac{2 e}{h} \int_{0}^{\infty} d E f_{-}\left(E, T, \mu_{R}\right) M(E)
$$

- net current at $T=0$:

$$
\begin{aligned}
I=I_{+}-I_{-} & =-\frac{2 e}{h} \int_{0}^{\infty} d E\left[f_{+}\left(E, T, \mu_{L}\right)-f_{-}\left(E, T, \mu_{R}\right)\right] M(E) \\
& =-\frac{2 e}{h} M\left(\mu_{L}-\mu_{R}\right)=\frac{2 e^{2}}{h} M V
\end{aligned}
$$

- 2-terminal conductance of a M-channel ballistic conductor:

$$
G=\frac{d I}{d V}=\frac{2 e^{2}}{h} M
$$

- contact resistance: $1 / G=\frac{h}{2 e^{2}} \frac{1}{M}$
- physical meaning:
resistance arising from the process where most of the electron wave packet from a 3D
reservoir (a large number of modes) gets reflected when trying to enter a Q1D conductor (a few conduction modes) \Rightarrow the contact resistance arises at the interface!
- apart from the number of channels, the contact resistance is given by universal constants (independent of material parameters)!

Conductance quantization in mesoscopic devices

- formation of conductance plateaus at $G=\frac{2 e^{2}}{h} \times M$

van Wees et al., PRL 60, 848 (1988)

Wharam et al., J. Phys. C: Sol. State Phys. 21, L209 (1988)

- observed in a gate-defined quantum point contact (QPC)
- voltage applied to gates to pinch off the constriction
- lowest plateau: anomaly at $0.7 \times\left(\frac{2 e^{2}}{h}\right)$
- macroscopic scale: $G=\sigma W / L$ vs mesoscopic scale: $G=\frac{2 e^{2}}{h} \times M$

Additional features on top of quantization

Tarucha et al., Sol. State. Commun. 94, 413 (1995)

Thomas et al., PRL 77, 135 (1996)

- uniformly reduced conductance plateau(s)
$\Rightarrow e-e$ interaction + disorder (discussed later)
- shoulder-like feature at $0.7 \times\left(\frac{2 e^{2}}{h}\right)$ in the lowest plateau
$\Rightarrow 0.7$ anomaly (spin effects? e-e interaction? fractionalization?)

Landauer formula

- for an imperfect conductor with multiple transverse modes
- 2-terminal conductance of a M-channel imperfect conductor:

$$
G=\frac{2 e^{2}}{h} M \bar{T}
$$

- \bar{T} : transmission coefficient through a scatterer/impurity (assumed to be energy-independent between μ_{L} and μ_{R})
- resistance of a conductor containing a scatterer:

$$
1 / G=\frac{h}{2 e^{2}} \frac{1}{M \bar{T}}=\left(\frac{h}{2 e^{2}} \frac{1}{M}\right)+\left(\frac{h}{2 e^{2}} \frac{1}{M} \frac{1-\bar{T}}{\bar{T}}\right)
$$

\Rightarrow total resistance of a "circuit" consisting of contact resistance and scattererinduced resistance in series

Resistance contributions from more scatterers

- total resistance of a conductor with a scatterer:

$$
1 / G=\frac{h}{2 e^{2}} \frac{1}{M \bar{T}}=\frac{h}{2 e^{2}} \frac{1}{M}+\frac{h}{2 e^{2}} \frac{1}{M} \frac{1-\bar{T}}{\bar{T}}
$$

- how about a conductor containing 2 scatterers?
- probability of a particle passing through both scatterers
(x) $\bar{T}_{1} \bar{T}_{2}$
(o) $\bar{T}_{12}=\bar{T}_{1} \bar{T}_{2}+\bar{T}_{1} R_{2} R_{1} \bar{T}_{2}+\bar{T}_{1} R_{2} R_{1} R_{2} R_{1} \bar{T}_{2}+\cdots$

$$
\begin{aligned}
& =\bar{T}_{1} \bar{T}_{2}+\bar{T}_{1} \bar{T}_{2} R_{1} R_{2}+\bar{T}_{1} \bar{T}_{2} R_{1}^{2} R_{2}^{2}+\cdots=\bar{T}_{1} \bar{T}_{2} \frac{1}{1-R_{1} R_{2}} \text { (incoherently) } \\
\Rightarrow & \frac{1-\bar{T}_{12}}{\bar{T}_{12}}=\frac{1-\bar{T}_{1}}{\bar{T}_{1}}+\frac{1-\bar{T}_{2}}{\bar{T}_{2}}
\end{aligned}
$$

- total resistance of a conductor with 2 scatterers: $1 / G=\frac{h}{2 e^{2}} \frac{1}{M}+\frac{h}{2 e^{2}} \frac{1}{M} \frac{1-\bar{T}_{1}}{\bar{T}_{1}}+\frac{h}{2 e^{2}} \frac{1}{M} \frac{1-\bar{T}_{2}}{\bar{T}_{2}}$

Recovering Ohm's scaling for a long conductor

- resistance of a M-channel conductor with a scatterer:

$$
R=\frac{h}{2 e^{2}} \frac{1}{M}+\frac{h}{2 e^{2}} \frac{1}{M} \frac{1-\bar{T}}{\bar{T}}
$$

- for 2 scatterers:

$$
R=\frac{h}{2 e^{2}} \frac{1}{M}+\frac{h}{2 e^{2}} \frac{1}{M} \frac{1-\bar{T}_{1}}{\bar{T}_{1}}+\frac{h}{2 e^{2}} \frac{1}{M} \frac{1-\bar{T}_{2}}{\bar{T}_{2}}
$$

- for a long conductor with many scatterers:

$$
1 / G=\frac{h}{2 e^{2}} \frac{1}{M}+\frac{h}{2 e^{2}} \frac{1}{M} \sum_{n} \frac{1-\bar{T}_{n}}{\bar{T}_{n}}
$$

- assuming N scatterers with the same transmission coefficient $\bar{T}_{n} \rightarrow \bar{T}_{1}$:

$$
\frac{1-\bar{T}_{N}}{\bar{T}_{N}}=\sum_{n} \frac{1-\bar{T}_{n}}{\bar{T}_{n}} \rightarrow N \frac{1-\bar{T}_{1}}{\bar{T}_{1}} \Rightarrow \bar{T}_{N}=\frac{\bar{T}_{1}}{N\left(1-\bar{T}_{1}\right)+\bar{T}_{1}} \rightarrow \frac{L_{0}}{L+L_{0}}
$$

- resistance of a long conductor with many scatterers: $R \propto \frac{h}{2 e^{2}} \frac{1}{M} \frac{1}{\overline{T_{N}}} \propto \frac{L}{W}$

Effects of disorder on transport

- in realistic systems, disorder or charge impurities are (omni)present
- they induce a random potential

$$
V_{\mathrm{dis}}(x)=\sum_{q} V_{\mathrm{dis}, q} e^{i q x}, \quad V_{\mathrm{dis}, q}: \text { Fourier component of the potential }
$$

- coupling to charge density $\rho=\sum_{\sigma} \psi_{\sigma}^{\dagger} \psi_{\sigma}$ with the electron field operator

$$
\psi_{\sigma} \approx e^{i k_{F} x} R_{\sigma}+e^{-i k_{F} x} L_{\sigma}
$$

- entering the Hamiltonian as a perturbation term:

$$
\begin{aligned}
H_{\mathrm{dis}} & =\int d x V_{\mathrm{dis}}(x) \rho(x) \\
& =\int d x V_{\mathrm{dis}}(x)\left(R_{\sigma}^{\dagger} R_{\sigma}+L_{\sigma}^{\dagger} L_{\sigma}+e^{-2 i k_{F} x} R_{\sigma}^{\dagger} L_{\sigma}+e^{2 i k_{F} x} L_{\sigma}^{\dagger} R_{\sigma}\right)
\end{aligned}
$$

\Rightarrow forward scattering of electrons: $R_{\sigma}^{\dagger} R_{\sigma}, L_{\sigma}^{\dagger} L_{\sigma}$ (transmission in "wave description") backscattering: $R_{\sigma}^{\dagger} L_{\sigma}, L_{\sigma}^{\dagger} R_{\sigma}$ with scattering strength depending on $V_{\mathrm{dis}, 2 k_{F}}$ (reflection)

Microscopic origin of electrical resistance

- backscattering $\left(R_{\sigma}^{\dagger} L_{\sigma}, L_{\sigma}^{\dagger} R_{\sigma}\right)$ in momentum space:

- disorder-induced backscattering in 1D channels
\Rightarrow origins of electrical resistance and dissipation in electronic devices
- at low T: Anderson localization of carriers in a long conductor
- exception: edge transport in quantum Hall states (topological protection) \Rightarrow remarkable quantization of conductance as a new standard of basic unit von Klitzing, Annu. Rev. Condens. Matter Phys. 8, 13 (2017)

Büttiker formula

- extending the 2-terminal formula to multiterminal devices:

$$
\begin{gathered}
I=\frac{2 e}{h} \bar{T}\left(\mu_{1}-\mu_{2}\right) \\
\rightarrow I_{i}=\frac{2 e}{h} \sum_{j}\left(\bar{T}_{j \leftarrow i} \mu_{i}-\bar{T}_{i \leftarrow j} \mu_{j}\right)
\end{gathered}
$$

- I_{i} : net current flowing out of the terminal i
- $\bar{T}_{j \leftarrow i}$: electron transferred from terminal i to j
- relating the multiterminal conductance of a mesoscopic conductor to its scattering properties (recall the introduced scattering matrix)
- without asking underlying scattering mechanism(s)

Büttiker formula

- at low T, for multiterminal devices:

$$
I_{i}=\frac{2 e}{h} \sum_{j}\left(\bar{T}_{j \leftarrow i} \mu_{i}-\bar{T}_{i \leftarrow j} \mu_{j}\right)
$$

- local chemical potential set by voltages:

$$
I_{i}=\sum_{j}\left(G_{j i} V_{i}-G_{i j} V_{j}\right) \text { with } G_{i j}=\frac{2 e^{2}}{h} \bar{T}_{i \leftarrow j \text { [note] typo before Eq. (6.71) }}
$$

- simplified with a sum rule: $\sum_{j} G_{j i}=\sum_{j} G_{i j}$ (to ensure zero current for identical V_{j})

$$
\Rightarrow I_{i}=\sum_{j} G_{i j}\left(V_{i}-V_{j}\right)
$$

- description in terms of measured current and voltage without involving underlying microscopic transmission or scattering mechanism(s)

Application of the Büttiker formula

- making use of $I_{i}=\sum_{j} G_{i j}\left(V_{i}-V_{j}\right)$ at low T
- simplified by setting one of the voltages to zero
- simplified further with the Kirchhoff's law: $\sum_{j} I_{j}=0$
- 3-terminal device as an example:

Q: given an external current I flowing from 3 to 1 , measuring V between probes $2 \& 3$, what is the resistance V / I ?

- from Büttiker formula:

$$
\left(\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right)=\left(\begin{array}{ccc}
G_{12}+G_{13} & -G_{12} & -G_{13} \\
-G_{21} & G_{21}+G_{23} & -G_{23} \\
-G_{31} & -G_{32} & G_{31}+G_{32}
\end{array}\right)\left(\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right)
$$

- let $V_{3}=0$, and we know I_{3} from $I_{1}+I_{2}+I_{3}=0$:

$$
\binom{I_{1}}{I_{2}}=\left(\begin{array}{cc}
G_{12}+G_{13} & -G_{12} \\
-G_{21} & G_{21}+G_{23}
\end{array}\right)\binom{V_{1}}{V_{2}}
$$

3-terminal device

Q : what is the resistance V / I ?

- inverting the matrix equation:

$$
\binom{V_{1}}{V_{2}}=\boldsymbol{R}\binom{I_{1}}{I_{2}}=\left(\begin{array}{cc}
G_{12}+G_{13} & -G_{12} \\
-G_{21} & G_{21}+G_{23}
\end{array}\right)^{-1}\binom{I_{1}}{I_{2}}
$$

- the matrix can be inverted straightforwardly
- expressing V_{1}, V_{2} in terms of matrix elements of \boldsymbol{R} and I_{1}, I_{2} :

$$
V_{1}=R_{11} I_{1}+R_{12} I_{2}, \quad V_{2}=R_{21} I_{1}+R_{22} I_{2}
$$

- V / I in terms of matrix element(s) of \boldsymbol{R} (which can be expressed in terms of $G_{i j}$):

$$
\frac{V}{I}=\left.\frac{-V_{2}}{-I_{1}}\right|_{I_{2}=0}=R_{21}
$$

4-terminal device

- Q: given external current I from 4 to 1 , measuring V between probes $2 \& 3$, what is the 4-terminal resistance V / I ?
- again, we have freedom to set $V_{4}=0$,
 and we know $I_{4}=-\left(I_{1}+I_{2}+I_{3}\right)$:

$$
\left(\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right)=\left(\begin{array}{ccc}
G_{12}+G_{13} & -G_{12} & -G_{13} \\
-G_{21} & G_{21}+G_{23} & -G_{23} \\
-G_{31} & -G_{32} & G_{31}+G_{32}
\end{array}\right)\left(\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right) \rightarrow \boldsymbol{R}^{-1}\left(\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right)
$$

- V / I in terms of matrix element of \boldsymbol{R} :

$$
\frac{V}{I}=\left.\frac{V_{3}-V_{2}}{-I_{1}}\right|_{I_{2}=I_{3}=0}=R_{21}-R_{31}
$$

Edge conduction in quantum Hall states

- 6-terminal device in a quantum Hall state with M edge modes

- since the bulk is gapped, only (gapless) edge modes can carry current:
$G_{i j}=\frac{2 e^{2}}{h} M$, for $(i \leftarrow j)=(1 \leftarrow 6),(2 \leftarrow 1),(3 \leftarrow 2),(4 \leftarrow 3),(5 \leftarrow 4),(6 \leftarrow 5)$
$G_{i j}=0$, otherwise
\Rightarrow simplifying the conductance matrix in $I_{i}=\sum_{j} G_{i j}\left(V_{i}-V_{j}\right)$

Edge conduction

$I_{i}=\sum_{j} G_{i j}\left(V_{i}-V_{j}\right)$

- we set $V_{4}=0$:

$$
\left(\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3} \\
I_{5} \\
I_{6}
\end{array}\right)=\left(\begin{array}{ccccc}
G_{c} & 0 & 0 & 0 & -G_{c} \\
-G_{c} & G_{c} & 0 & 0 & 0 \\
0 & -G_{c} & G_{c} & 0 & 0 \\
0 & 0 & 0 & G_{c} & 0 \\
0 & 0 & 0 & -G_{c} & G_{c}
\end{array}\right)\left(\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{5} \\
V_{6}
\end{array}\right), \quad \mathrm{G}_{\mathrm{c}}=\frac{2 e^{2}}{h} M
$$

- inverting the matrix could give solutions, but it is unnecessary
- we note that currents at the voltage terminals are zero: $I_{2}=I_{3}=I_{4}=I_{5}=0$
$\Rightarrow V_{2}=V_{3}=V_{1}, V_{5}=V_{6}=0, I_{1}=G_{c} V_{1}$
- longitudinal resistance: $R_{L}=\frac{V_{2}-V_{3}}{I_{1}}=\frac{V_{6}-V_{5}}{I_{1}}=0$, transport without dissipation!
- Hall resistance: $R_{H}=\frac{V_{2}-V_{6}}{I_{1}}=\frac{V_{3}-V_{5}}{I_{1}}=\frac{h}{2 e^{2} M}$, experimentally very precise!

Outline

- review of useful concepts from quantum mechanics
- quantum transport in mesoscopic systems
- Landauer-Büttiker formalism (single-particle description)
- conductance quantization in ballistic systems
- Landauer formula for an imperfect conductor
- Büttiker formula for multiterminal devices
- application
- interacting systems (beyond single-particle regime)
- interacting electrons in 1D: Tomonaga-Luttinger liquid
- impurities (weak and strong)
- effects of spin-orbit-coupling

Incorporating electron-electron (e-e) interaction in 1D

- only electrons near the Fermi level participates in transport:

$$
\psi \approx e^{i k_{F} x} R+e^{-i k_{F} x} L \quad \text { (spinless for simplicity) }
$$

- effective theory in a 1D channel:

$$
H_{\mathrm{kin}}+H_{\mathrm{int}}
$$

- kinetic energy (linearized spectrum):

$$
H_{\mathrm{kin}}+H_{\mathrm{int}}=-i \hbar v_{F} \int d x\left(R^{\dagger} \partial_{x} R-L^{\dagger} \partial_{x} L\right)
$$

- (screened) Coulomb interaction between electrons

$$
H_{\mathrm{int}}=\int d x V_{\mathrm{ee}}(x) \rho(x) \rho(x) \approx \int d x\left\{g_{2}\left(R^{\dagger} R L^{\dagger} L\right)+\frac{g_{4}}{2}\left[\left(R^{\dagger} R\right)^{2}+\left(L^{\dagger} L\right)^{2}\right]\right\}
$$

- going beyond the single-particle regime => cannot be diagonalized!

Tomonaga-Luttinger liquid (TLL or LL)

- bosonization of the right- and left-moving electrons

$$
R=\frac{U_{R}}{\sqrt{2 \pi a}} e^{i[-\phi(x)+\theta(x)]}, L=\frac{U_{L}}{\sqrt{2 \pi a}} e^{i[\phi(x)+\theta(x)]}
$$

- ϕ, θ : bosonic fields fulfilling the commutation relation:

$$
\left[\phi(x), \theta\left(x^{\prime}\right)\right]=\frac{i \pi}{2} \operatorname{sign}\left(x^{\prime}-x\right)
$$

- effective theory (mapping interacting fermions to free bosons)

$$
H_{\mathrm{kin}}+H_{\mathrm{int}}=\frac{\hbar u}{2 \pi} \int d x\left[\frac{1}{K}\left(\partial_{x} \phi\right)^{2}+K\left(\partial_{x} \theta\right)^{2}\right], \quad K \equiv\left(\frac{2 \pi \hbar \nu_{F}+g_{4}-g_{2}}{2 \pi \hbar v_{F}+g_{4}+g_{2}}\right)^{\frac{1}{2}}
$$

- quadratic Hamiltonian \Rightarrow using TLL model to compute physical quantities (not here)
- interaction strength encoded in the parameter K
- $K=1$: free fermions (i.e., Fermi liquid = FL)
- $K<1(K>1)$: repulsive (attractive) interaction

Transport in clean 1D interacting systems

- clean wires connected to leads: ballistic conductance $G=\frac{2 e^{2}}{h} \times K^{L}$

Maslov and Stone, PRB 52, R5539 (1995); Ponomarenko, PRB 52, R8666 (1995);
Safi and Schulz, PRB 52, R17040 (1995)

- physical meaning of contact resistance (from the last section):
- from the process where electron wave packet from 3D reservoir gets back scattered when trying to enter the narrow conduction modes in a Q1D conductor
- no information about e-e interaction within the conductor!
- Q: can there still be transport features coming from e-e interaction in the conductor? Yes! we need some backscattering within the conductor

Effects of impurities in 1D

- different modeling according to their strength and positions
- strong impurities: acting as tunnel barriers, either at the boundary or inside the conductor

- barrier between LL wire and LL wire or between LL and FL lead
- weak impurities:
acting as a potential perturbation
(c)

Impurities as tunnel barriers

- current through tunneling: $H_{\text {tun }}=-t_{\text {tun }} \int d x \delta(x) \psi_{<}^{\dagger}(x) \psi_{>}(x)+$ h.c.

$$
\frac{d I_{\mathrm{tun}}}{d V} \propto\left\{\begin{array}{lr}
V^{\frac{1}{K}-1} & \text { (boundary barrier) } \\
V^{\frac{2}{K}-2} & \text { (interior barrier) }
\end{array}\right.
$$

- power-law (differential) conductance with an exponent depending on impurity position and interaction strength ($K=1$ gives linear response for FL) Kane and Fisher, PRB 46, 15233 (1992)
- universal scaling formula for temperature T and bias V :
- observed in carbon nanotubes Bockrath et al., Nature 397, 598 (1999)

$$
I=I_{0} T^{1+\alpha} \sinh \left(\frac{\gamma e V}{2 k_{\mathrm{B}} T}\right)\left|\Gamma\left(1+\frac{\alpha}{2}+\frac{i \gamma e V}{2 \pi k_{\mathrm{B}} T}\right)\right|^{2}
$$

Universal scaling behavior in transport

$$
I=I_{0} T^{1+\alpha} \sinh \left(\frac{\gamma e V}{2 k_{\mathrm{B}} T}\right)\left|\Gamma\left(1+\frac{\alpha}{2}+\frac{i \gamma e V}{2 \pi k_{\mathrm{B}} T}\right)\right|^{2}
$$

- I-Vcurves at different T collapse onto a single curve upon rescaling
- observation in InAs nanowires

Impurities as potential perturbation

- isolated impurity at $x=0$:
(c)

$$
H_{\mathrm{imp}}=V_{0} \int d x \delta(x) \rho(x)
$$

- backscattering caused by impurities: conductance correction

$$
G=\frac{e^{2}}{h}+\delta G \text { with } \delta G<0 \text { and }|\delta G| \propto V^{2-2 K} \text { or }|\delta G| \propto T^{2-2 K}
$$

- power-law correction with a scaling exponent
- uniform reduction of conductance in GaAs wires
Tarucha et al., Sol. State. Commun. 94, 413 (1995)

General transport features in interacting systems

- backscattering effect enhanced by e-e interaction
- deviation from ballistic conductance increases with interaction strength
- $K \rightarrow 1$: usual formula for noninteracting systems (Fermi liquid)
- transport features for Tomonaga-Luttinger liquid
- universal scaling formula
- power-law conductance (correction)
- interaction strength in nanodevices deduced from measurements
- Anderson localization by potential disorder:

$$
H_{\mathrm{dis}}=\int d x V_{\mathrm{dis}}(x) \rho(x)
$$

- e-e interaction enhances the tendency towards localization in 1D, with higher localization temperature and shorter localization length Giamarchi et al., PRB 37, 325 (1988)

Effects of spin-orbit coupling (SOC)

- Rashba SOC term in 1D semiconductors: $H_{\mathrm{R}, 1 \mathrm{D}}=\alpha_{R} \sigma^{y} k_{x}$:
- linear-in-momentum term can be gauged away in strict 1D

\Rightarrow no spin-orbit effects on charge transport
Braunecker et al., PRB 82, 045127 (2010)
- no interaction effect in 1D clean systems

Maslov and Stone, PRB 52, R5539 (1995); Ponomarenko, PRB 52, R8666 (1995);
Safi and Schulz, PRB 52, R17040 (1995)

- finite width of realistic wires: higher transverse subbands in Q1D
\Rightarrow unlike strict 1D, SOC cannot be completely removed
- disorder or charge impurities in realistic wires

Spin-orbit effects on energy spectrum in Q1D wires

- Q1D wires $\| x$ with transverse subband index n :

$$
H=\frac{\hbar^{2} k_{x}^{2}}{2 m}+\hbar \omega\left(n+\frac{1}{2}\right)+H_{\mathrm{R}}
$$

- Rashba SOC term:

$$
H_{\mathrm{R}}=\alpha_{R}\left(\sigma^{y} k_{x}-\sigma^{x} k_{y}\right)
$$

- $\sigma^{y} k_{x}$ term: shifting parabolic dispersion by $k_{\mathrm{so}}=m\left|\alpha_{R}\right| / \hbar^{2}$
- $\sigma^{x} k_{y}$ term: mixing opposite spin states of neighboring subbands $|n\rangle=|0\rangle,|1\rangle$

\Rightarrow band distortion $\delta v=v_{A}-v_{B}$ and mixing of up- and down-spins

Spectrum and spin orientation of a SOC wire

- SOC admixes the opposite spin states of neighboring subbands
- band distortion $\delta v=v_{A}-v_{B}$: distinct Fermi velocities of the two branches
- spin orientation of electrons depends on chemical potential μ

- Backscattering on charge impurities between right- and left- movers:
$P_{A B}=\left|\left\langle R_{A} \mid L_{B}\right\rangle\right|=\left|\left\langle R_{B} \mid L_{A}\right\rangle\right|$

Interacting 1D channel with spin

- low T : only electrons near Fermi level matter: $\psi_{\sigma} \approx e^{i k_{F} x} R_{\sigma}+e^{-i k_{F} x} L_{\sigma}$
- kinetic energy (linearized):

$$
H_{\mathrm{kin}}=-i \hbar v_{F} \sum_{\sigma} \int d x\left(R_{\sigma}^{\dagger} \partial_{x} R_{\sigma}-L_{\sigma}^{\dagger} \partial_{x} L_{\sigma}\right)
$$

- e-e interaction:

$$
H_{\mathrm{int}}=\int d x V_{\mathrm{ee}}(x) \rho(x) \rho(x) \approx \sum_{\sigma} V_{\mathrm{ee}, 0} \int d x\left\{R_{\sigma}^{\dagger} R_{\sigma} L_{\sigma}^{\dagger} L_{\sigma}+\frac{1}{2}\left[\left(R_{\sigma}^{\dagger} R_{\sigma}\right)^{2}+\left(L_{\sigma}^{\dagger} L_{\sigma}\right)^{2}\right]\right\}
$$

- bosonization:
- spinful (Tomonaga-)Luttinger liquid with two charge (c) and spin (s) sectors

$$
H_{\mathrm{kin}}+H_{\mathrm{int}}=\sum_{v=c, s} \int \frac{\hbar d x}{2 \pi}\left\{u_{v} K_{v}\left[\partial_{x} \theta_{v}\right]^{2}+\frac{u_{v}}{K_{v}}\left[\partial_{x} \phi_{v}\right]^{2}\right\}
$$

- charge-spin separation in usual 1D wires (negligible spin-orbit coupling)

Spin-orbit effects on Q1D wires

- Q1D + SOC: band distortion
\Rightarrow causing a charge-spin mixing term in the Hamiltonian

$$
H_{\mathrm{so}}=\delta v \int \frac{\hbar d x}{2 \pi}\left\{\left[\partial_{x} \phi_{c}(x)\right]\left[\partial_{x} \theta_{s}(x)\right]+\left[\partial_{x} \phi_{s}(x)\right]\left[\partial_{x} \theta_{c}(x)\right]\right\}
$$

- Q1D + SOC + impurities: new transport features
\Rightarrow power-law conductance and universal scaling formula with scaling exponents depending on e-e interaction and spin-orbit-induced band distortion Sato et al., PRB 99, 155304 (2019); Hsu et al., PRB 100, 195423 (2019)

