QL. This is a problem related to the crystal structure. (15%)

Supposing the atoms to be rigid spheres, (a) in a conventional cubic lattice, how many primitive
cells are included for the simple cubic (sc), face-centered cubic (fcc), body-centered cubic (bcc)
structures, respectively? (b) Graphene is a 2D material with a honeycomb structure as shown below,
please draw two different unit cells and their corresponding unit cells in the reciprocal space?

(a) Primitive Cells in Cubic Lattice Structures:

1. Simple Cubic (sc) Structure:
* In a simple cubic lattice, each lattice point is only at the corners of the cube.
* Each corner is shared by eight neighboring unit cells.
* Therefore, each simple cubic unit cell contributes 1/’8 of its volume to the specific unit cell we
are considering.
* The total contribution is 1.
* Hence, there is 1 primitive cell per simple cubic structure.
2. Face-Centered Cubic (fcc) Structure:
* In a face-centered cubic lattice, there is an additional lattice point at the center of each face in
addition to the corner points.
* There are 6 faces, and each contributes 1 ;’ 2 of a lattice point to the specific unit cell we are
considering (since the face is shared by two adjacent cubes).
* The corners are still shared by eight neighboring unit cells, contributing lf8 each.
* The total contribution is ®5* + 8 x § = 4.
* Hence, there are 4 primitive cells per face-centered cubic structure.
3. Body-Centered Cubic (bcc) Structure:
* In a body-centered cubic lattice, there is an additional lattice point at the center of the cubein
addition to the corner points.
* The corners are shared by eight neighboring unit cells, contributing l/’B each.
* The center point is not shared with any other unit cell.
* The total contributionis 8 x & + 1 = 2.

* Hence, there are 2 primitive cells per body-centered cubic structure.

(b) Graphene is a 2D material with a honeycomb structure: two different unit cells and their
corresponding unit cells in the reciprocal space



(b) L

(a) The honeycomb crystal structure of graphene. The unit cell, rhombus, defined by vectors ~ al
and ~ a2 containing two atoms belonging to sublattices A (blue) and B (cyan) are highlighted in
light blue. (b) shows the graphene Brillouin zone in momentum space. The points K and K " denote
the position of Dirac points while ” b1 and and ~ b2 represent the reciprocal lattice vectors

If a is the distance between nearest neighbors, the primitive lattice vectors can be chosen

@ = % (3 \/E) s :% (3—«/3) .

the reciprocal-lattice vectors are spanned by

(a) Honeycomb lattice structure of graphene. The unit cell consists of carbon atoms represented
by A and B, a1 and az are the lattice vectors and (b) corresponding Brillouin zone of graphene at
origin (I') with two Dirac points K and K’ with the reciprocal lattice vectors

b= (F+9)andb. =3(5-9)



Q2. This is a problem related to the lattice diffraction. (15%)

The space lattice of diamond is face-centered cubic. The primitive basis of the diamond structure
has two identical atoms at coordinates (000) and (1/4 1/4 1/4) associated with each point of the fcc
lattice. The basis consists of eight atoms if the cell is taken as the conventional cube. (a) Find the
structure factor S of this basis. (b) Find the zeros of S and show that the allowed reflections of the
diamond structure satisfy vi1 + v2 + v3 = 4n, where all indices are even and n is any integer, or else
all indices are odd. (Notice that h, k, | may be written for vi, vz, v3 and this is often done.)

There are two ways to derive the result. The first is the long proof that follows the suggestion to
consider diamond as simple cubic with 8 atoms per cell. The second is the short proof that uses
the fact that diamond is fcc with 2 atoms per cell.

Diamond described as simple cubic with 8 atoms/cell:

The diamond structure can be described as a simple cubic lattice with the
eight point basis (0,0,0),5(2+9),5(W+2), 5z +2), (@ +y+2), (-2 -9+
£), 88— — £), 4=+ — 2). (a)
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Since e~ " = ¢ e = '™ for v = integer,

S = f(1+ e~ im(vi+v2) + e~ im(va+va) | e—i’fr(’t-‘a—Fvi)J(l + ei%(’t’l-l-vz-l-t’sl)



(b)

So the zeros are

(1) | | |

1+ e—z'rr(ti—l—vg) + e—zw(vg—l—vg,) + e—%?l’('v3+t1) —0
This means two of e=™(Vi+vi) are -1 and one is +1, i.e. two of v; + v; are odd
’ i j

and one 1s even. It is possible only when two of vy, v9,v3 are even and the
remaining one 1s odd or two of vy, va, v3 are odd and the remaining one 1s even.

(i)

1 + ¢t (vitrvatus) _

= (Ul —+ Vo + -113) = odd = 1 + U9 —+ Ug = 2 x (Odd)

bo | =

The allowed reflections are anything but (i) and (ii).
(1) All of v1,v9,v3 are odd.
(2) All of vq,v2,v3 arc even. But if v1 + va + vs = 2 x (odd), S still vanishes.

Thus v; + vo + v3 needs to be 2 x (even). i.e. vy + v + v3 = 4n when all of
U1, U, U3 are even.



Diamond described as fcc with 2 atoms/cell:

The diamond structure can be described as a face centered cubic lattice with
the basis (0,0,0), (2 + v+ 2).

The reciprocal lattice is bcc with primitive vectors by = 2“( r+y+z),
by = 2“(—!—1? —y+2), by = (—I—r + y — z). The reciprocal lattice vectors are:
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This can be written as

= 21’7 N - -
G = F[(zflx + vy + v3Z),

where the integers (vq, v9, v3) are all odd or all even. The restriction to all odd
or all even integers can be seen by considering a bee lattice as a simple cubic
lattice (the even integers) with body centers (the odd integers).
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or
v1 +vg +vg =4n+ 2

where n 1s an integer. Since the v’s are all odd or all even, the only cases where
S =0 are they are even and do not sum to a multiple of 4.

The vectors which do not satisfy this condition are "allowed" reflections. Clearly this includes all
cases where the v's are all odd and the case where v1 + v2 + v3 = 4n.



Q3. This is a problem related to the free electron model. (20%)

We consider the low-lying free electron bands of both sc and bcc lattices. For convenience, choose
units such that #2/2m = 1. Show several low-lying bands in this empty lattice approximation with
their energies E as a function of k in both the [100] and [110] directions in the first zone.

Empty Lattice Approximation

Actual band structures are usually exhibited as plots of energy versus
wavevector in the first Brillouin zone. When wavevectors happen to be given
outside the first zone, they are carried back into the first zone by subtracting a

suitable reciprocal lattice vector.

When band energies are approximated fairly well by free electron energies
e = 7*k%*2m, it is advisable to start a calculation by carrying the free electron
energies back into the first zone.

We look for a G such that a k' in the first zone satisfies

k+G=k,

Reduced zone scheme
where k is unrestricted and is the true free electron wavevector in the empty
lattice.

If we drop the prime on k' as unnecessary baggage, the free electron
energy can always be written as

ek k, k:) = (B2m)k + G)?
= (h%2m) [(ke + Go* + (k, + G,)* + (k. + G ,

with k in the first zone and G allowed to run over the appropriate reciprocal
lattice points.



Free electron bands for a simple cubic lattice in [100]

We consider as an example the low-lying free electron bands of a simple
cubic lattice. Suppose we want to exhibit the energy as a function of k in the
[100] direction. For convenience, choose units such that £%/2m = 1. We show
several low-lying bands in this empty lattice approximation with their energies
€(000) at k = 0 and €(k,00) along the k, axis in the first zone:

Band Gal2m €(000) €(k,00)
11 000 0 k?
[ 2.3 100,100 ks (27/a)? (k, = 2ar/a)?
I 4,5,6,7 010,010,001,001k, ok, (277/a)® k2 + (2mla)?
7 8,9,10,11 110,101,110,101K,+(k, o, k,R(27/a)? (ky + 2m/a)* + (27/a)?
12,13.14,15 110,101,110,101-k +(k, o, k 2(27/a)® (k, — 2m/a)® + (27/a)*
16,17,18,19 011,011,011,011 k + k, 2(2m/a)? k2 + 2(2m/a)?

12,13,14, 1

Reduced zone scheme

Figure 8 Low-lying free electron energy bands of
the empty sc lattice, as transformed to the first Bril-
ouin zone and plotted vs. (k,00). The free electron
energy is A%k + G)*/2m, where the G’s are given in
the second column of the table. The bold curves are
in the first Brillouin zone, with —w/a = k, = /a.
Energy bands drawn in this way are said to be in the
reduced zone scheme.




Q4. This is a problem related to the Fermi surface. (15%)

Brillouin zones of two-dimensional layer materials. A two-dimensional material in the form of a
honeycomb (as shown below) has two conduction electrons per atom. In the almost free electron

approximation, sketch carefully the electron and hole energy surfaces. For the electrons choose a
zone scheme such that the Fermi surface is shown as closed.

Encrgy/(units of )

Wave vector

Honeycomb lattice structure of graphene consisting of two atoms (A and B) and Phonon spectra
of graphene. The low energy band structure exhibits zero energy gap at the Dirac point.



Q5. This is a problem related to the transport phenomena. (15%)

a) Calculate the density of states D(E) for both the one- and two-dimensional conductor. Sketch
the density of states as function of the electron energy E for a sequence of subbands.

b) Taking a one-dimensional conducting wire, which scattering processes are possible in electron
transport if only a single subband is occupied? What is different if a second subband is occupied
so that the Fermi-level intersects two subbands?

Electronic Structure of 1-D Systems

Consider a quasi one-dimensional wire with a diameter of the order of the
Fermi-wavelength A; and a length L, << [,, /. Electron transport through the
wire is called ballistic in that case since an electron passes from one end to
the other without being scattered at all.
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For free electrons the energy in the subbands is

. k2 R ) ks
E; = ei(ky. ky) + ! v(xy.z)=y, (x.p)e

i, j = quantum numbers in
the cross section

Thus, the energy bands represent a sequence of parabolas, each of which
describes one transport channel shown in the above figure.

Electrical Transport in 1-D

The difference between the chemical potentials

left " Condeeter: -] naht is given by the voltage U between the contacts,
contact fasasar o contact
HR
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pp — pr = el

Only the electron states between p, and
contribute to the current flow from left to
right. The current in one subband i is then

V\\\ % : L =e 7 DV (E)u(E)dE

H

The universal conductanceis G, =

=7.74809 % 107> Q" = 1/(129064 Q).

If more than one channel fits into the conductor then each channel
contributes 2e?/h to the total conductance. The conductance quantum

reduces to half the value e%/h if the spin-degeneracy is lifted by a strong
magnetic field.



a) Density of States (DOS) Calculation and Sketch:

For a one-dimentional band:

re— dE
kx ,/E(k) — Ey, and dk ¢ ———,
v VEF) - E
yielding
1
gip (E) X ——————.
in (E) POEE (61)

T 7 i oo
The proportionality factor is 4/m* om2 K2 - hence, g 1p(E) is expressed in units of m™! x J~!
prop 4 y\ g p

orem™ ' x eV,

In a two-dimensional band, all states of equal energy between E and E + dF lie in a ring of

radius k, o< 1/ E (k) — Ey and thickness dk as illustrated in Fig. 36b; for their number dN « k

- dk applies. Since F(k) — F g « k , % we obtain a constant density of states
9on (E) oc 0 (E — Ey), (62)

B(F — E o) being the unit step function (i.e., 0 for £ < E g and 1 for E > E p). The factor is m*/(nt/#

2), yielding g 5p(E) in units of cm=2 x eV,
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Electronic density of states g(E) in isotropic semiconductors (red), clad by barriers (blue) in 2D
guantum well and 1D quantum wire. The dashed curve represents the 3D case drawn for reference.

b) Scattering Processes in Electron Transport:



Single Subband Occupied:

If only a single subband is occupied, the scattering processes are typically limited to intraband
scattering. This means that electrons within the same subband can scatter due to various
mechanisms, such as impurity scattering, phonon scattering, or electron-electron scattering.
However, there is no scattering between electrons in different subbands because only one
subband is occupied.

Fermi-Level Intersects Two Subbands:

When the Fermi level intersects two subbands, the scattering processes become more diverse. In
addition to intraband scattering within each subband, there can be interband scattering between
electrons in different subbands. This opens up new possibilities for scattering mechanisms.

For example:

e Electrons in one subband may scatter into the other subband due to impurities or defects.
e Phonon scattering may involve transitions between different subbands.

The presence of multiple subbands provides additional channels for electron scattering,
impacting the overall transport properties of the system. The Fermi level now serves as a
boundary between occupied and unoccupied subbands, and scattering processes can involve
transitions across this boundary.

In summary, the key difference is the availability of interband scattering processes when multiple
subbands are occupied, expanding the range of possible scattering mechanisms in the electron
transport.



Q6. This is a problem related to the crystal vibration. (20%)

Consider the normal modes of a linear chain in which the force constants between nearest-neighbor
atoms are alternately C and 5C. Let the atomic mass m be equal and the nearest-neighbor separation
be a.

a) Find o(K) at the zone center and boundary of the 1st Brillouin zone.
b) Sketch the dispersion relation.

c) If the Raman spectroscopy is applied to measure the system's phonon dispersion, what will the
spectrum look like and briefly interpret the data.

U, & V. s B U, (| € V, 1 5C u,, g Vs
”‘/\/ VIV WMMWVJ‘a\ C \f\ AVAVA \W» NI OAVAVAVA'®,
m m m
| a | K

Each site has bond with force constant C on one side and 5C on the other side.

The equations of motion assuming that each plane interacts only with its nearest-neighbor planes.

d?u, d?v,
M dtz :Cl(vs _us)+C2(Vs—l_us) M d T2 C (U -V )+C (us+1 s)
dzus 2
U = uei(sKa—wt) dt2 =—w US u _ iKa
We expect the solution in the form _ = . We also have " _
VS _ Vel(sKa—mt) d Vs ) stl :Vse_lKa
aw "

Substituting these into above equations gives: —@°Mu, = (C, +C,e™*)v, — (C, +C,)u,

~@*Mv, = (C, +C,e"*)u, - (C, +C,)v,

In a matrix form: . =
—(C,+C,e"*)  -@*M +(C,+C,) 0

~@’M +(C,+C,) —(C,+C,e™) }{u} ‘o}

=0 (")

~@’M +(C,+C,) —(C,+C,e ™)
—(C,+C,e")  —@*M +(C,+C,)

*K =0= (%) = [-a*M +(C,+C,) | ~(C,+C,)? =0



= (@®M) ~2(C,+C,)a’M =0

>’ = O;W which are the acoustical and optical branch, respectively.

Now, chose C1 = C and C2 = 5C. The solutions are

@, =0 and @, = J12C/M

The zero-frequency mode at k = 0 is called the Goldstone mode.

*K =§:> *) < (a°M )2 ~2(C,+C,)@*M +(C, +C,)*—(C,-C,)* =0

(@M ~2(C, +C,)a’M +4CC, =0 & (@M —2C, ) (@°M —2C,) = 0= & =%;%

Now, chose C1 = C and C2 = 5C. The solutions are

2C 10C
ZD'l = V and ZUZ = V

b) Sketch the dispersion relation:

The dispersion relation can be sketched as a plot of o(K) versus K.

W
@, =12C/M

/\ 10C
@, =, —
- M
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¢) Raman Spectroscopy:



In Raman spectroscopy, the scattered light intensity is measured as a function of frequency. The
Raman spectrum will show peaks corresponding to the vibrational modes of the crystal.

For the given problem, the spectrum is expected to have peaks at frequencies corresponding to
the o(K) values calculated earlier. Specifically, there will be a peak at ®w(0)=0 (due to the zone
center mode) and a peak at o(n/a)=2Cmao(ar)=2mC

(due to the boundary of the 1st Brillouin zone mode).
Interpretation:

e The peak at ®(0)=0 represents a mode with no displacement at the zone center, which
could correspond to a long-wavelength acoustic mode.

o The peak at o(n/a) represents a mode with a displacement at the boundary of the
Brillouin zone, likely a short-wavelength optical mode.

The presence of these peaks in the Raman spectrum provides information about the vibrational
properties of the crystal and the nature of the phonon modes. The intensity and width of the
peaks will depend on factors like temperature and the interaction strength between the photons
and the phonons.
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