
Q1. This is a problem related to the crystal structure. (15%) 

Supposing the atoms to be rigid spheres, (a) in a conventional cubic lattice, how many primitive 

cells are included for the simple cubic (sc), face-centered cubic (fcc), body-centered cubic (bcc) 

structures, respectively? (b) Graphene is a 2D material with a honeycomb structure as shown below, 

please draw two different unit cells and their corresponding unit cells in the reciprocal space? 

 

 (b) Graphene is a 2D material with a honeycomb structure: two different unit cells and their 

corresponding unit cells in the reciprocal space 



 

(a) The honeycomb crystal structure of graphene. The unit cell, rhombus, defined by vectors ⃗ a1 

and ⃗ a2 containing two atoms belonging to sublattices A (blue) and B (cyan) are highlighted in 

light blue. (b) shows the graphene Brillouin zone in momentum space. The points K and K ′ denote 

the position of Dirac points while ⃗ b1 and and ⃗ b2 represent the reciprocal lattice vectors 

 

 

 

(a) Honeycomb lattice structure of graphene. The unit cell consists of carbon atoms represented 

by A and B, a1 and a2 are the lattice vectors and (b) corresponding Brillouin zone of graphene at 

origin (Γ) with two Dirac points K and K’ with the reciprocal lattice vectors  

  



 

Q2. This is a problem related to the lattice diffraction. (15%) 

The space lattice of diamond is face-centered cubic. The primitive basis of the diamond structure 

has two identical atoms at coordinates (000) and (1/4 1/4 1/4) associated with each point of the fcc 

lattice. The basis consists of eight atoms if the cell is taken as the conventional cube. (a) Find the 

structure factor S of this basis. (b) Find the zeros of S and show that the allowed reflections of the 

diamond structure satisfy v1 + v2 + v3 = 4n, where all indices are even and n is any integer, or else 

all indices are odd. (Notice that h, k, l may be written for v1, v2, v3 and this is often done.) 

 

There are two ways to derive the result. The first is the long proof that follows the suggestion to 

consider diamond as simple cubic with 8 atoms per cell. The second is the short proof that uses 

the fact that diamond is fcc with 2 atoms per cell. 

 



 

 



 

 

S = 0 are they are even and do not sum to a multiple of 4. 

The vectors which do not satisfy this condition are "allowed" reflections. Clearly this includes all 

cases where the v's are all odd and the case where v1 + v2 + v3 = 4n.  



Q3. This is a problem related to the free electron model. (20%) 

We consider the low-lying free electron bands of both sc and bcc lattices. For convenience, choose 

units such that ħ2/2m = 1. Show several low-lying bands in this empty lattice approximation with 

their energies E as a function of k in both the [100] and [110] directions in the first zone. 

 

 



 

  



Q4. This is a problem related to the Fermi surface. (15%) 

Brillouin zones of two-dimensional layer materials. A two-dimensional material in the form of a 

honeycomb (as shown below) has two conduction electrons per atom. In the almost free electron 

approximation, sketch carefully the electron and hole energy surfaces. For the electrons choose a 

zone scheme such that the Fermi surface is shown as closed. 

          

Honeycomb lattice structure of graphene consisting of two atoms (A and B) and Phonon spectra 

of graphene. The low energy band structure exhibits zero energy gap at the Dirac point. 

  



Q5. This is a problem related to the transport phenomena. (15%) 

a) Calculate the density of states D(E) for both the one- and two-dimensional conductor. Sketch 

the density of states as function of the electron energy E for a sequence of subbands. 

b) Taking a one-dimensional conducting wire, which scattering processes are possible in electron 

transport if only a single subband is occupied? What is different if a second subband is occupied 

so that the Fermi-level intersects two subbands? 

 

 



a) Density of States (DOS) Calculation and Sketch: 

For a one-dimentional band: 

 

 

Electronic density of states g(E) in isotropic semiconductors (red), clad by barriers (blue) in 2D 

quantum well and 1D quantum wire. The dashed curve represents the 3D case drawn for reference. 

b) Scattering Processes in Electron Transport: 



Single Subband Occupied: 

If only a single subband is occupied, the scattering processes are typically limited to intraband 

scattering. This means that electrons within the same subband can scatter due to various 

mechanisms, such as impurity scattering, phonon scattering, or electron-electron scattering. 

However, there is no scattering between electrons in different subbands because only one 

subband is occupied. 

Fermi-Level Intersects Two Subbands: 

When the Fermi level intersects two subbands, the scattering processes become more diverse. In 

addition to intraband scattering within each subband, there can be interband scattering between 

electrons in different subbands. This opens up new possibilities for scattering mechanisms. 

For example: 

• Electrons in one subband may scatter into the other subband due to impurities or defects. 
• Phonon scattering may involve transitions between different subbands. 

The presence of multiple subbands provides additional channels for electron scattering, 

impacting the overall transport properties of the system. The Fermi level now serves as a 

boundary between occupied and unoccupied subbands, and scattering processes can involve 

transitions across this boundary. 

In summary, the key difference is the availability of interband scattering processes when multiple 

subbands are occupied, expanding the range of possible scattering mechanisms in the electron 

transport. 

  



Q6. This is a problem related to the crystal vibration. (20%) 

Consider the normal modes of a linear chain in which the force constants between nearest-neighbor 

atoms are alternately C and 5C. Let the atomic mass m be equal and the nearest-neighbor separation 

be a. 

a) Find ω(K) at the zone center and boundary of the 1st Brillouin zone. 

b) Sketch the dispersion relation. 

c) If the Raman spectroscopy is applied to measure the system's phonon dispersion, what will the 

spectrum look like and briefly interpret the data. 

 

  

     

Each site has bond with force constant C on one side and 5C on the other side. 

The equations of motion assuming that each plane interacts only with its nearest-neighbor planes. 
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Substituting these into above equations gives: 
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Now, chose C1 = C and C2 = 5C. The solutions are 
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The zero-frequency mode at k = 0 is called the Goldstone mode. 
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Now, chose C1 = C and C2 = 5C. The solutions are 
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b) Sketch the dispersion relation: 

The dispersion relation can be sketched as a plot of ω(K) versus K.  

 

c) Raman Spectroscopy: 



In Raman spectroscopy, the scattered light intensity is measured as a function of frequency. The 

Raman spectrum will show peaks corresponding to the vibrational modes of the crystal. 

For the given problem, the spectrum is expected to have peaks at frequencies corresponding to 

the ω(K) values calculated earlier. Specifically, there will be a peak at ω(0)=0 (due to the zone 

center mode) and a peak at ω(π/a)=2Cmω(aπ)=2mC 

 (due to the boundary of the 1st Brillouin zone mode). 

Interpretation: 

• The peak at ω(0)=0 represents a mode with no displacement at the zone center, which 

could correspond to a long-wavelength acoustic mode. 

• The peak at ω(π/a) represents a mode with a displacement at the boundary of the 

Brillouin zone, likely a short-wavelength optical mode. 

The presence of these peaks in the Raman spectrum provides information about the vibrational 

properties of the crystal and the nature of the phonon modes. The intensity and width of the 

peaks will depend on factors like temperature and the interaction strength between the photons 

and the phonons. 
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