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Primary Protein Structure

Primary structure of a proteins is the sequence
of amino acids connected by peptide bonds.
Along the backbone of the proteins is a chain of
alternating peptide bonds and a-carbons and
the amino acid side chains are connected to

th ese Planar units along a protein chain
H R H



Secondary Protein Structure

 Secondary structure of a protein is the
arrangement of polypeptide backbone of
the protein in space. The secondary
structure includes two kinds of repeating
pattern known as the «a-helix and f-sheet.

o Hydrogen bonding between backbone
atoms are responsible for both of these
secondary structures.



Tertiary Protein Structure

*Tertiary Structure of a proteins The overall
three dimensional shape that results from the
folding of a protein chain. Tertiary structure
depends mainly on attractions of amino acid
side chains that are far apart along the same
backbone.  Non-covalent interactions and
disulfide covalent bonds govern tertiary
structure.

A protein with the shape in which it exist
naturally in living organisms is known as a
native protein.
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Quaternary Protein Structure

*Quaternary protein structure: The way in
which two or more polypeptide sub-units
associate to form a single three-dimensional
protein unit. Non-covalent forces are
responsible  for quaternary  structure
essential to the function of proteins.



How Enzyme Work

Two modes are invoked to represent the
iInteraction between substrate and enzymes.
These are:

Lock-and-key model. The substrate is described
as fitting into the active site as a key fit into a lock.
Induced-fit-model. The enzyme has a flexible
active site that changes shape to accommodate
the substrate and facilitate the reaction.



Active site Induced fit

Enzyme
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19.5 Effect of Concentration on
Enzyme Activity

*Variation in concentration of enzyme or
substrate alters the rate of enzyme
catalyzed reactions.

. Substrate concentration: At low
substrate concentration, the reaction rate is
directly proportional to the substrate
concentration.  With increasing substrate
concentration, the rate drops off as more of
the active sites are occupied.



Maximum and constant reaction rate

Rate approaches
maximum

Reaction rate ——>

Rate increases directly with
substrate concentration

Substrate concentration—>
(constant enzyme concentration)

Fig 19.5 Change of reaction rate with substrate
concentration when enzyme concentration 1s constant.



. Enzyme concentration. The reaction rate
varies directly with the enzyme concentration as
long as the substrate concentration does not
become a limitation, Fig 19.6 below.

Reaction rate

Enzyme concentration —>
(excess substrate)



19.6 Effect of Temperature and
pH on Enzyme Activity

‘Enzymes maximum catalytic activity s
highly dependent on temperature and pH.

o Increase in temperature increases the
rate of enzyme catalyzed reactions. The
rates reach a maximum and then begins to
decrease. The decrease In rate at higher
temperature is due to denaturation of
enzymes.



Maximum rate

N

Reaction rate ———»
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Temperature (°C)

Fig 19.7 (a) Effect of temperature on reaction rate



. Effect of pH on Enzyme activity: The
catalytic activity of enzymes depends on pH and
usually has a well defined optimum point for
maximum catalytic activity Fig 19.7 (b) below.

Pepsin Trypsin

Reaction rate ———»




19.7 Enzyme Regulation:
Feedback and Allosteric Control

Concentration of thousands of different
chemicals vary continuously In living
organisms which requires regulation of
enzyme activity.

Any process that starts or increase the
activity of an enzyme is activation.

*Any process that stops or slows the activity
of an enzyme is inhibition.



Two of the mechanism

 Feedback control. Regulation of an enzyme’s
activity by the product of a reaction later in a
pathway.

 Allosteric control. Activity of an enzyme is
controlled by the binding of an activator or inhibitor
at a location other than the active site. Allosteric
controls are further classified as positive or negative.

— A positive regulator changes the activity site so that
the enzyme becomes a better catalyst and rate
accelerates.

— A negative regulator changes the activity site so that
the enzyme becomes less effective catalyst and rate
slows down.
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19.8 Enzyme Regulation:
Inhibition

 The inhibition of an enzyme can be
reversible or irreversible.

 In reversible inhibition, the inhibitor can
leave, restoring the enzyme to its
uninhibited level of activity.

 |In Jrreversible Inhibition, the inhibitor
remains permanently bound to the

enzyme and the enzyme is permanently
inhibited.



 |nhibitions are further classified as:

« Competitive inhibition if the inhibitor binds
to the active site.

Competitive inhibition

Competitive
inhibitor

Substrate
can't enter




 Noncompetitive inhibition, if the inhibitor
binds elsewhere and not to the active site.

Noncompetitive inhibition

Substrate can't
enter

Noncompetitive
inhibitor




*The rates of enzyme catalyzed reactions with
or without a competitive inhibitor are shown in
the Fig 19.9 below.
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Shape-Determining Interactions
In Proteins

*The essential structure-function relationship
for each protein depends on the polypeptide
chain being held in its necessary shape by
the interactions of atoms in the side chains.
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Antibody Binding Sites
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SARS-CoV-2

Envelope Protein - Spike Protein

Nucleocapsid
Protein / RNA

Hemagglutinin ——
Esterase Dimer
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COVID-19 Antibodies

Monoclonal & Polyclonal Antibodies to SARS-CoV-2

The antibodies available below have been validated to bind to proteins from SARS-CoV-2 (COVID-19),
but were developed originally to target proteins from SARS-CoV-1, the virus responsible for the 2003
outbreak. We are currently developing monoclonal mouse and polyclonal rabbit antibodies specific to
SARS-CoV-2 spike and nucleocapsid proteins. The polyclonal antibodies will be available in May. The
monoclonal antibodies will be available sometime between July - August.

o P2 Rabbit Anti-SARS-CoV-2 Nucleocapsid Protein
?ﬁ . Rabbit Anti-SARS-CoV-2 Coronavirus Nucleocapsid Protein
w | W— """ CODE: 128-10165-1

" -—— $1,450.00

ADD TO COMPARISON LIST

Mouse Anti-SARS-CoV-2 Nucleocapsid Protein
Mouse Anti-SARS-CoV-2 Coronavirus Mucleocapsid protein
CODE: 128-10166-1

$1,450.00

ADD TO COMPARISON LIST

- | Rabbit Anti-SARS-CoV-2 Spike Protein
- . I—— Rabbit Anti-SARS-Associated Coronavirus (COVID-19) Spike Protein
| | CODE: 128-10168-1

$1,450.00



Real-time RT PCR
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Fast Screening Kit
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hCG immunoassay
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Sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE)

Protein mixture




Protein Denature



SDS-PAGE

pR e =




2D PAGE

Protein
Sample pH 9.0

Separation in

1% dimension lsoelectric
by charge Focusing (IEF)

pH 4.0
Apply 1 gel to

top of second l
gel
a0 (I W W ewoo

&% (220kDa
» 9
& - e =ik
Separate in2"? L - - sDS
dimension by [E! @ & electrophoresis
size ot
@&
&
45
10kDa




2D

2D PAGE




=
7
/4
|
|
|
|
|
B
/4

Protein Protein Protein
Sample Separation Digestion

b

> AT

nig

Database Searching LC-MS/MS LC separation
and analysis Data set MS/MS analysis

| | S




Animals, plants,
viruses, bacteria
cell culture

Protein

Proteomic

rotem extract

CeeD

microarray
Ovse
e
v

000000
O0O000O0
000000

Protein/DNA microarray
O (>10 000 baits)

Visualize
binding

CHeococodo
00@00O0
©@00@0O0

Protein Proximity Affinity Thermal
crosslinking labeling purification profiling
MS cleavable Biotin Biotin
crosslinker AW\ +ATP.\VV/ ligase m m ’ @/
(] w i m ‘ g iy Control Ba|t i J
A Y or A +H202¥/ APEX Cell suspensions
is - & ¢ M
Sws | o %590 o Fgo B
@
e ‘ @'O ~ll—
¢ Soluble
e > Peptides l ﬁ. Pﬁteln extracts
P_rotegse l l ‘% Peptides
digestion Streptavidin affinity Immunoaffmlty %
Crosslinked peptide ¢ capture ¢ capture Multiplexed
enrichment e > Peptides ‘% Peptides isobaric labeling
v v Pooled #Peptides

| nLC-MS/MS (nanoliquid chromatography-tandem mass spectrometry)

o8
o8—0

Direct protein
interactions

Protein contacts
and interfaces

Locallzatlon- )
dependent interactions

Trends in Biochemical Sciences 2020 45454-455DOI: (10.1016/j.tibs.2020.01.003)
Terms and Conditions

iy

Indirect/direct

protein interactions

\e

Protein complex
dynamics

Trends in Biochemical Sciences


http://www.elsevier.com/termsandconditions

* Magnetic ranking cytometry (MagRC)

+ Cellular indexing of transcriptomes and epitopes by /| * Single-cell barcode chips (SCBCs)
sequencing (CITE-seq) .| * Flow cytometry

* RNA expression and protein sequencing assay (REAP-seq)

Cell-surface protein * Microengraving

* Droplet microfluidics

e ;,,f"?Secrered

protein

* Microscopy ' Cyto;?lasmic
* Single-cell Western blotting protein
* Proximity ligation assay (PLA)
= Proximity extension assay (PEA)
* Mass cytometry (CyTOF)
* Mass spectrometry

Fig. 1| Classification of single-cell protein analysis methods based on the location of target protein. Cell-surface-
protein analysis methods include magnetic ranking cytometry (MagRC), cellular indexing of transcriptomes and
epitopes by sequencing (CITE-seq), and RNA expression and protein sequencing assay (REAP-seq). Methods that can
be used for the analysis of cell-surface and cytoplasmic proteins include microscopy, single-cell Western blotting,
proximity ligation assay (PLA), proximity extension assay (PEA), mass cytometry (cytometry by time of flight; CyTOF) and
mass spectrometry. Methods utilized for secreted-protein analysis include droplet microfluidics and microengraving
techniques. Methods used for comprehensive analysis of the three proteins include flow cytometry and single-cell

barcode chips (SCBCs).

NATURE REVIEWS | CHEMISTRY VOLUME 4 | MARCH 2020 | 143
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