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Metal, Semiconductor and Insulator

Completely filled bands and completely empty bands do not contribute to
electrical conductivity, and only a partly filled electronic band can
contribute to electric current.
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If the distance between the upper edge of the highest filled band (valence
band) and the lower edge of the lowest empty band (conduction band) is
not too large (e.g. ~1 eV), then a small fraction of the states in the vicinity
of the upper edge of the valence band is unoccupied and the
corresponding electrons are found in the conduction band.



Formation of Energy Bands

The origin of the band structure for the typical elemental semiconductors is
due to a mixing of the s- and p-wavefunctions, tetrahedral bonding orbitals
(sp3) are formed. The bonding orbitals constitute the valence band and the
antibonding orbitals the conduction band. The size of the band gap must be
temperature dependent. With increasing temperature the lattice parameter
increases due to thermal expansion. The splitting between the bonding and
antibonding states therefore decreases and the band gap becomes smaller.
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Compound Semiconductors

Based on the sp3 bonding, one can correctly identify another important
class, the IlI-V semiconductors, which are compound semiconductors

comprising elements from the third and fifth groups of the periodic table.

Typical examples are InSb, InAs, InP, GaP, GaAs, GaSb, and AISb. In these
compound crystals the bonding is mixed ionic and covalent .
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In contrast to the elemental
semiconductors, the most
important representatives of the
l1I-V semiconductors possess a
so-called direct band gap.
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Intrinsic Carrier Concentrations

For a semiconductor, we want to know the concentration of intrinsic
carries as function of temperature T, in terms of its band gap E,.

The energy of an electron in the conduction band is €, = E, + #*%k*/2m,

- _ 1 [ 2m, |2
The density of electron states at€is D,(e) = o2 ﬁ; (e — E,)"?
ar

Fermi-Dirac distribution for e-u >> kzT reduces to  f, = exp[(n—e)/kyT]

The concentration of electrons in the conduction band is
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The distribution function f, for holes is related to the electron distribution by

=1~ L - L
expl(e — w)/kgTl+ 1 expl(nw — e)/kgT] + 1

= expl(e — w)/kgT] , if (uw—€)>k,T.

The density of hole states at € is

le 3/2 -
Dh<e>=$( ﬁ;> (E, — e

The concentration p of holes in the valence band is

ke, T\32
f D, (€)f,(e)de = 2<n;h 2 ) expl( E, - w)/kgT]

We multiply together the expressions for n and p to obtain the equilibrium
relation

| kgT NP 3/2 E /K _
np =4 (mamy,)”= exp(— /BT), E.=E -E,

oarh?>

The product of np is constant at a given temperature.



For intrinsic carriers, n; and p,,

_ o keT 2 3/4
n;,=p; =2 P (m,my,)”" exp(— E/2kgT) .

To obtain the Fermi level u, we start from n; = p;, so

mekBT 372 _ mthT 5= —_
n; = 2( - > expl(u — E.)/kzT]= 2( o > expl(E.— w)/kgT] = p;

then,
exp(2u/ksT) = (my,/m,)>” exp(E/kgT) ;

w = ;Eg + 2 kT In (my/m,) .

If m, = m,, then u =1/2 E, and the Fermi level is in the middle of the
forbidden gap.



Electron energy E

Impurity Carrier Concentrations

For a doped semiconductor, we want to know the concentration of
conductive carries as function of temperature T and impurity energy levels
E,and E,,.
Neutrality condition demands n+ N, =p+ N{,, inwhich
ND:N]O)—i—NIJS : and ”D:N%:ND[I‘I‘GXP(ED_EF)/4T]_1 ;
Na = Ny + Ny . pa = Ny = Na[l +exp(Ep — EA) /2 T .
For the case of a pure n-type semiconductor,
with Nyt >>n,

n= Nj, = Np — N},

~ ND (1 — : > .
I +exp[(Ep — Eg)/# T]

Since Ec//AT Ep /AT
(n/NGpe™/" T = T

/ —E424T




Impurity Conductivity

Certain impurities and imperfections drastically affect the electrical
properties of a semiconductor. The addition of boron to silicon in the
proportion of 1 boron atom to 10° silicon atoms increases the
conductivity of pure at room temperature by a factor of 103. The
deliberate addition of impurities to a semiconductor is called doping.

We consider the effect of impurities in silicon and germanium. These
elements crystallize in the diamond structure. Each atom forms four
covalent bonds, one with each of its nearest neighbors, corresponding to
the chemical valence four. If an impurity atom of valence five, such as
phosphorus, arsenic, or antimony, is substituted in the lattice in place of
a normal atom, there will be one valence electron from the impurity
atom left over after the four covalent bonds are established with the
nearest neighbors, that is, after the impurity atom has been
accommodated in the structure with as little disturbance as possible.
Impurity atoms that can give up an electron are called donors.



Donor States

The impurity atoms of valence five such as P, As, and Sb are called donors
because they donate electrons to the conduction band in order to complete
the covalent bonds with neighbor atoms, leaving electrons in the band.
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The extra electron moves in the coulomb potential e/er of the impurity ion,
where € in a covalent crystal is the static dielectric constant of the medium.



We estimate the ionization energy of the donor impurity. The Bohr theory
of the hydrogen atom may be modified to take into account the dielectric
constant of the medium and the effective mass of an electron in the
periodic potential of the crystal. The ionization energy of atomic hydrogen
is —e*m/(2h?).

In the semiconductor with dielectric constant € we replace e? by e?/e and
m by the effective mass m, to obtain

e'm 13.6 M eh’ 0.53€\ ¢
— — Ve . = —= A
Ed 262ﬁ2 < 62 m eV ’ and 4a meez me/m

E,is the ionization energy and a,; the Bohr radius of the donor.

To obtain a general impression of the impurity levels we use m, =~ 0.1 m
for electrons in germanium and m, =~ 0.2 m in silicon. The static dielectric
constant € is 15.8 for Ge and 11.7 for Si. Then, we obtain

E, =5meV and a, = 80 A for Ge;
E, =20 meV and a, = 30 A for Si.



Acceptor States
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Trivalent impurities such as B, Al, Ga, and In are called acceptors because
they accept electrons from the valence band in order to complete the
covalent bonds with neighbor atoms, leaving holes in the band.



Carrier Mobility

The mobility is the magnitude of the drift velocity of a charge carrier per
unit electric field: u = |v |/E .

The electrical conductivity is the sum of the electron and hole
contributions:

o = <nelu’e + peﬂh>

The drift velocity of a charge g was found to be v = gtE/m, whence

W, =et,/m, ; W, = eT,/my, , where Tis the collision time.

Table 3 Carrier mobilities at room temperature, in cm?/V-s

Crystal Electrons Holes Crystal Electrons Holes
Diamond 1800 1200 GaAs 8000 300
Si 1350 480 GaSb 5000 1000
Ge 3600 1800 PbS 550 600
InSb 800 450 PbSe 1020 930
InAs 30000 450 PbTe 2500 1000
InP 4500 100 AgCl 50 —

AlAs 280 — KBr (100 K) 100 —

AlSb 900 400 SiC 100 10-20



p-n Junction

The most important building blocks in semiconductor devices are the p-n
junction and the metal/semiconductor contact. In a p-n junction, we have a
semiconductor crystal which is p-type on one side, and n-type on the other.
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 Lemicductor semiconductor In the transition zone between the n and p
i regions, the Fermi level, i.e. the electrochemical
Ee ::—.;—.:.—:QES potential, must therefore be common across the
E;;::f::-_—_ ’ Ei junction at thermal equilibrium, which therefore
b ) / / causes the band bending, as shown in the left
B e ~ww o panel c. The potential V(x) changes near the
EA:_,::__::\__‘f‘:f;—.::;:ggg’ junction and, according to the Poisson equation,
K %, s the macro-potential V(x) corresponds to a space
Y B charge p(x) o2 V(x) o(x)
g —— msoncument_1HE diffusion voltage (V;) is the difference
;gg i W between the maximum and minimum of V(x):
TN eVp = —(Ey — ) =/ T ™5"

Distance X



Assume the space-charge density is a step function:

pix) ¥ 0 for x < —d,
eNy |- \ (x) = —eNp for —d, <x <0
~dp + YT YeNp  for 0<x<d,
0 ‘\‘ 0 . ; 0 for x>d,.
-eN, -~ The Poisson equation, for the n region (0<x<d,)
|
|
Fix) 4 | d?V(x) eNp
~d ? dn . dx2 — eg
X
\/ The electric field in n region is
, e
e _ = _
Vi) 4 { “x(x) S Np(dy, — x)
e = I
| and the potential in n region is
0 > eNp
X V(x) = Vy(00) — —=(dy — x)* .
Vp("°°) -—Jl ( ) n( ) 28 8() ( n )
and the potential in p region is

V(x) = V,(-0) + (eNy/2¢8,)(x - d))*



Within the Schottky model, the lengths d, and d, give the spatial extent
of the space-charge zone in the n and p regions, respectively. From
charge neutrality it follows that

Nan — NAdp ’
and the continuity of V(x) at x = 0O
demands .
2 2\ _ _
2 e (Nan —|—NAdp) = Vn(OO> — Vp(—OO) =Vp.

If the impurity concentrations are known, one can thus calculate the
spatial extent of the space-charge layer

d . 2880VD NA/ND 12
" e  Na—+ Np ’

d — 288()VD ND/NA 1/2
B e NA-I-ND .



Biased p-n Junction

If an external electrical voltage U is applied to a p-n junction, thermal
equilibrium is destroyed, and the situation in the p-n junction can be
described as a stationary state in the vicinity of thermal equilibrium.
Because the space-charge zone between -d, and d, has a considerably
higher electrical resistance than the region outside the p-n junction, the
potential drop across the space-charge zone accounts for nearly all of the
externally applied voltage U. Thus the potential drop across the space-
charge zone, instead of being equal to the diffusion voltage V,, now has the
value

Vi(oo) — Vp(—oo) =Vp—-U.

One thus has
dy(U) = d,(U=0)(1—U/Vp)'*,
dy(U) = dp(U = 0)(1 = U/Vp)'/?.



Let us consider the balance in the electron currents: we are concerned on
the one hand with the drift currents of the minority carriers coming from
the p region (where electrons are the minority carriers), which are drawn
across into the n region. Because these minority carriers are continually
generated in the p region by thermal excitation, this current is called the
generation current, [ge" = N &ffe ~£q/2kT,

This current is largely independent of the value of the diffusion voltage and
therefore also of the external voltage.

The diffusion current of electrons from the n region, where the electrons
are majority carriers, into the p region (called the recombination current
Ie¢). With an externally applied voltage U:

—e(Vp—U)/AT U//AT
Irrlec x e e(Vp-U)/ _ Ingenee / ’
and therefore a total electron current /, is
U/#T
In _ I;ec L I’;gen _ I’;gen(ee / . 1) .



The total current /(U) under applied external U is
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Metal/Semiconductor Schottky Contact

When a metal is evaporated onto a clean n-type semiconductor surface
under good vacuum conditions, mostly an electronic band scheme as below.
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Electronic interface states are formed at
the metal and semiconductor interface.
Their spatial extension is limited to a few
atomic layers at the interface and their
energetic distribution is fixed with
respect to the conduction and valence
band edges of the semiconductor. These
interface states, called MIGS (metal-
induced gap states) originate from the
Bloch waves in the metal.

Conduction band states are negatively charged when occupied by electrons
and neutral in the unoccupied state (acceptor-like); valence band states,

however have a donor-like charging character, i.e. positive when empty and

neutral in the occupied state.



The band bending within the semiconductor is thus determined by a charge
balance between negative charge Q. in the interface states and the positive
space charge Qs in the depletion layer. An external bias produces a voltage
drop essentially across the space-charge zone.

°) e The mathematical description of the
‘ space-charge region below a metal-
semiconductor junction is analogous to a
p-n junction. The thickness of the Schottky
contact space charge region in thermal

equilibrium, e.g., is obtained as

Jd— (2860VD> 1/2
€ND

Similarly, the capacity of a metal-semiconductor junction as a function of
external bias can be obtained as 4 (28880ND> 1/2

C=—
'p—-U

2

where A is the area of the contact. Electron transport from the metal into
the semiconductor requires that the carriers overcome the Schottky barrier

eDsp.



Semiconductor Heterostructures

The structure consisting of layers of two different semiconductors grown
epitaxially on one another is called a semiconductor heterostructure. Using
modern epitaxial methods, such as molecular beam epitaxy (MBE) or metal
organic chemical vapor deposition (MOCVD), it is possible to deposit two
different semiconductors on one another in a crystalline form. It is also
significant that using such epitaxial methods, ternary and quaternary alloys
of the type Al,Ga, ,As or Ga,In,,As P, can be deposited, whose band gaps
lie between those of the corresponding binary compounds.
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from semiconductors whose lattice
constants match. It is expected that
the two components GaAs and AlAs
should lead to excellent crystalline
quality with a variation of the band gap
between 1.4 and 2.2 eV.
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In a heterostructure the band gap changes over distances of atomic
dimensions. Two important points need to be considered for the
electronic band structure of such a semiconductor heterostructure:

!

a) How are the valence band edges E, and

AEC _____ EF . NN
i conduction band edges E. to be lined
be——— 4 up"? This question addresses the so-
7 A called band discontinuity or band

Az offset AE,.

Ep e — N\ F .. ————E&¢  b) What band bending occurs in the two

semiconductors | and Il to the left and
right of the junction?

The most important material-related parameters of a semiconductor
heterostructure are therefore the valence and conduction band
discontinuities, AE,, and AE..



Band Offsets of Semiconductor Heterostructures

Band offsets can well be explained by models in which the electronic bands in
ideal, abrupt semiconductor heterostructures are lined up so that no atomic
dipoles are created, due to electronic interface states or charge transfer in the
chemical bonds at the interface. A detailed theoretical treatment of these
models requires a microscopic description of the electronic properties of the
few atomic layers at the semiconductor junction. A few experimentally
determined valence band discontinuities AE, are listed below:

Hetero- Valence band Hetero- Valence band Hetero- Valence band

structure discontinuity structure discontinuity structure discontinuity
AEV [CV] AEV [CV] AEV [CV]

Si-Ge 0.28 InAs-Ge 0.33 CdTe-a-Sn 1.1

AlAs-Ge 0.86 InAs-Si 0.15 /nSe-Ge 1.40

AlAs-GaAs 0.34 InP-Ge 0.64 ZnSe-S1 1.25

AlSb-GaSb 0.4 InP-S1 0.57 ZnSe-GaAs 1.03

GaAs-Ge 0.49 InSb-Ge 0.0 ZnTe-Ge 0.95

GaAs-Si1 0.05 InSb-Si 0.0 ZnTe-Si 0.85

GaAs-InAs 0.17 CdS-Ge 1.75 GaSe-Ge 0.83

GaP-Ge 0.80 CdS-Si1 1.55 GaSe-Si 0.74

GaP-Si1 0.80 CdSe-Ge 1.30 CuBr-GaAs 0.85

GaSb-Ge 0.20 CdSe-Si 1.20 CuBr-Ge 0.7

GaSb-Si 0.05 CdTe-Ge 0.85




Isotypic Heterojunctions

Of particular interest are heterojunctions between two different
semiconductors with the same doping, so-called isotypic heterojunctions.
In this case, because of the continuity conditions for the Fermi level, an
accumulation space-charge zone for electrons is created on the side of the
semiconductor with a smaller forbidden gap, which leads to an extremely
large increase in local electron concentration.

This is true even when this side of the
heterostructure is only very weakly doped.
The high concentration of free electrons in
this space-charge zone (semiconductor Il) is
compensated by a depletion space-charge
zone in semiconductor I. In this way the high
density of free electrons is spatially
a z separated from the ionized impurities from

which they originate.

Impurity scattering, which is an important source of electrical resistance at
low temperature, is therefore strongly reduced for this free electron gas.



Two-Dimensional Electron Gas (2DEG)

For n-doping concentrations in AlGaAs of about 108 cm3, typical thicknesses
of the electron enrichment layer are in the region 50-100 A in GaAs. The free
electrons are confined in a narrow triangular potential well in the z direction,
perpendicular to the heterojunction. The wave-function of such an electron
thus has Bloch-wave character only parallel to the heterostructure; one
speaks of a two-dimensional electron gas (2DEG). This so-called z
guantization can be described straightforwardly using the time-independent
Schrodinger equation with the potential V(z) and three effective mass
components m,*, m,*, m,*. The total energy eigenvalues for such electron
states quantized in the z direction

E4 h2kﬁ Rt
E]("H) 2m>|l’<+gj and ¢&; 2m>21< dg s J y <9
:|:F—',:"__,E These 2D subbands have a constant density of
F
states D(E) = dZ/dE= mﬁ / 7’ = const
2nk dk
iz =""SC " and dE= K kdk/m]

0 D(E) | (2n)°



Semiconductor Superlattices

A series of layers of semiconductors | and Il with different band gaps can
form a composition superlattice. If the distance between the potential
wells is so small (less than 50-100 A) that significant overlap between the
wavefunctions exists, then this leads to a broadening of the bands.
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The energetically lowest subband €, is noticeably broadened for d, less
than 50 A, and splits off as a band. For the higher subbands, the
broadening begins at even larger d, between the potential wells.



The broadening of the subbands and, in particular, the dependence of the
subband energies on the spatial width of the potential wells is clearly seen in
photoluminescence experiments. Photoluminescence spectroscopy is an
important optical method for characterizing semiconductor heterostructures
and superlattices. The semiconductor structure is illuminated with
monochromatic laser light of photon energy above the band edge, thus
creating electron-hole pairs. They occupy the subbands of the conduction or
valence bands of the semiconductor or the corresponding excitonic states.
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Doping Superlattice

The superlattice structure, consisting of one and the same semiconductor
with the material periodically and alternately n and p doped, is called doping
superlattice. In principle it is equivalent to a periodic sequence of p-n
junctions. Because quasi intrinsic (i regions) exist between each n and p
zone, these structures also have the name "nipi structures". This leads to a
periodic modulation of the band edges with position.

n-CaAs p-GaAs Excited free electrons are found in the
minima of the conduction band, while

excited holes are spatially separated and

a - gather in the maxima of the valence band.
W Ee N N E

> [ > :

g Groundstate _VE;ﬂ S Excited state

c EV c S

L i Ev
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z

z c Distance
This spatial separation of electrons and holes is responsible for the fact that
the collision rate between these two particles is drastically reduced.
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Another interesting property of doping superlattices concerns the band gap.
In nipi superlattices, the effective band gap is dependent on the density of

optically excited non-equilibrium carriers. Thus the effective band gap can
be optically altered. This may be demonstrated in a photoluminescence
experiment in which the emission due to recombination of optically excited

electrons and holes is observed as a function of laser excitation power.
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Because of the relationship
between band bending and space-
charge density, it is immediately
clear that a reduction of the space
charge results in a decrease of the
band bending and therefore a
flattening out of the band
modulation. The effective band
gap becomes larger.

Sufficiently energetic excitation of electrons and holes by irradiation with
light reduces the space charge and also the band modulation.



Problems

1. A semiconductor with a band gap energy E, of 1eV and equal hole and
electron effective masses m,” = m,” = m, (m, is free electron mass) is p-
doped with an acceptor concentration of p = 108 cm™3. The acceptor
energy level is located 0.2eV above the valence band edge of the
material.

a) Show that intrinsic conduction in this material is negligible at 300 K.

b) Calculate the conductivity o of the material at room temperature (300
K), given a hole mobility of p, = 100 cm?/Vs at 300 K.

c) Plot the logarithm of the hole concentration, Inp, versus reciprocal
temperature 1/T for the temperature range 100 to 1000 K.

2. A silicon p-n step junction diode is doped with N, = 10¥*cm=3 and N, = 4 x
10'® cm on the n side and p side, respectively. Calculate the build-in

potential, space charge width, and maximum field at zero bias at room
temperature.



3. Small-gap semiconductors such as InAs (E, = 0.35 eV), and InSb (E, = 0.18
eV) usually exhibit surface Fermi level pinning within the conduction
band (approximately 100 meV above the lower conduction band edge E.
for InSb). Plot qualitatively the band scheme (band energy versus spatial
coordinate) in the vicinity of a metal contact to such a semiconductor
that is highly n-doped. What is the electrical resistance behavior for both
bias directions?



