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Discovery of Superconductivity
An infinitely high electrical conduc1vity is unthinkable because (1) a crystal
without a certain degree of disorder is inconceivable according to the
second law of thermodynamics, and (2) even in the absence of phonon and
defect sca?ering, electron-electron sca?ering will s1ll cause resistance.
However, in the year 1911, Kamerlingh Onnes discovered that the electrical
resistance of mercury (Hg) approaches an unmeasurably small value when
it is cooled below 4.2 K. This phenomenon is called superconduc*vity.
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Vanishing resistance implies that the magnetic flux B･S through the closed
loop may not alter after cooling and after switching off the external field Bext.



Because of the Meissner-Ochsenfeld effect, the magne1c state of a super-
conductor can be described as ideal diamagne1sm. Persistent surface
currents maintain a magne1za1on M = −Hext in the interior, and this
magne1za1on is exactly opposite to the applied magne1c field Hext.

Meissner-Ochsenfeld Effect

If the magnetic field strength Hext is
further increased, then at a critical field
strength Hc it is energetically more
favorable for the material to convert to
the normally conducting phase, in
which the magnetic field penetrates
the material. The phase boundary
between superconducting and normally
conducting states corresponds to the
critical magnetic field Hc (T).

Destruction of Superconductivity by Magnetic Fields

A sufficiently strong magnetic field will destroy superconductivity. The
threshold or critical value of the applied magnetic field for the destruction of
superconductivity is denoted by Hc(T) and is a function of the temperature. At
the critical temperature the critical field is zero: Hc(Tc) ! 0. The variation of
the critical field with temperature for several superconducting elements is
shown in Fig. 3.

The threshold curves separate the superconducting state in the lower left
of the figure from the normal state in the upper right. Note: We should denote
the critical value of the applied magnetic field as Bac, but this is not common
practice among workers in superconductivity. In the CGS system we shall al-
ways understand that Hc ! Bac, and in the SI we have Hc ! Bac/!0. The symbol
Ba denotes the applied magnetic field.

Meissner Effect

Meissner and Ochsenfeld (1933) found that if a superconductor is cooled
in a magnetic field to below the transition temperature, then at the transition
the lines of induction B are pushed out (Fig. 2). The Meissner effect shows
that a bulk superconductor behaves as if B ! 0 inside the specimen.
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Table 2  Superconductivity of selected compounds

Compound Tc, in K Compound Tc, in K

Nb3Sn 18.05 V3Ga 16.5
Nb3Ge 23.2 V3Si 17.1
Nb3Al 17.5 YBa2Cu3O6.9 90.0
NbN 16.0 Rb2CsC60 31.3
C60 19.2 MgB2 39.0
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Figure 3 Experimental threshold
curves of the critical field Hc(T) 
versus temperature for several su-
perconductors. A specimen is super-
conducting below the curve and
normal above the curve.
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state
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Figure 4 (a) Magnetization versus applied magnetic field for a bulk superconductor exhibiting a
complete Meissner effect (perfect diamagnetism). A superconductor with this behavior is called a
type I superconductor. Above the critical field Hc the specimen is a normal conductor and the mag-
netization is too small to be seen on this scale. Note that minus 4!M is plotted on the vertical scale:
the negative value of M corresponds to diamagnetism. (b) Superconducting magnetization curve of
a type II superconductor. The flux starts to penetrate the specimen at a field Hc1 lower than the
thermodynamic critical field Hc. The specimen is in a vortex state between Hc1 and Hc2, and it has
superconducting electrical properties up to Hc2. Above Hc2 the specimen is a normal conductor in
every respect, except for possible surface effects. For given Hc the area under the magnetization
curve is the same for a type II superconductor as for a type I. (CGS units in all parts of this figure.)

the value of the critical field Hc calculated from the thermodynamics of the
transition. In the region between Hc1 and Hc2 the superconductor is threaded
by flux lines and is said to be in the vortex state. A field Hc2 of 410 kG (41 tes-
las) has been attained in an alloy of Nb, Al, and Ge at the boiling point of he-
lium, and 540 kG (54 teslas) has been reported for PbMo6S8.

Commercial solenoids wound with a hard superconductor produce high
steady fields over 100 kG. A “hard superconductor” is a type II superconduc-
tor with a large magnetic hysteresis, usually induced by mechanical treatment.
Such materials have an important medical application in magnetic resonance
imaging (MRI).

Heat Capacity

In all superconductors the entropy decreases markedly on cooling below
the critical temperature Tc. Measurements for aluminum are plotted in Fig. 6.
The decrease in entropy between the normal state and the superconducting
state tells us that the superconducting state is more ordered than the normal
state, for the entropy is a measure of the disorder of a system. Some or all of the
electrons thermally excited in the normal state are ordered in the supercon-
ducting state. The change in entropy is small, in aluminum of the order of 10!4

kB per atom. The small entropy change must mean that only a small fraction (of
the order of 10!4) of the conduction electrons participate in the transition to
the ordered superconducting state. The free energies of normal and supercon-
ducting states are compared in Fig. 7.
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Type II or hard superconductors, usually
alloys, have superconduc1ng electrical
proper1es up to a field denoted by Hc2.
Between the lower cri1cal field Hc1 and
the upper cri1cal field Hc2 the flux
density B ≠ 0 and the superconductor is
threaded by flux lines and is said to be
in the vortex state.

Pure specimens of many materials
exhibit this behavior; they are
called type I superconductors or,
formerly, soft superconductors.
The values of Hc are always too
low for type I superconductors to
have application in coils for
superconducting magnets.

Types of Superconductivity



The transi1on of a metal from its normal state to a superconduc1ng state
has nothing to do with a change of crystallographic structure. What actually
occurs in the transi1on is a thermodynamic change of state, or phase
transi1on, which is clearly manifest in other physical quan11es. The specific
heat as a func1on of temperature, for example, changes discon1nuously at
the transi1on temperature Tc . The specific heat cn of a normally conduc1ng
metal is composed of a laXce-dynamical part cnl and an electronic part cne as

Change on Specific Heat 

At the transition to the superconducting state
the lattice dynamical part cnl remains
constant and the electronic part ces must be
replaced by a component which decreases
exponentially, so for T < Tc

ces = 𝛾TS e-A/kT
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Figure 7 Experimental values of the free energy as a function of temperature for aluminum in
the superconducting state and in the normal state. Below the transition temperature Tc ! 1.180 K
the free energy is lower in the superconducting state. The two curves merge at the transition tem-
perature, so that the phase transition is second order (there is no latent heat of transition at Tc).
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The energy gap of superconductors is of entirely different origin and nature
than the energy gap of insulators. In an insulator the energy gap is caused
by the electron-lattice interaction. This interaction ties the electrons to the
lattice. In a superconductor the important interaction is the electron-
electron interaction which orders the electrons in k space with respect to
the Fermi gas of electrons. The energy gap decreases continuously to zero
as the temperature is increased to the transition temperature Tc, indicating
a second-order phase transition.

Superconducting Energy Gap  

second-order transition there is no latent heat, but there is a discontinuity in
the heat capacity, evident in Fig. 8a. Further, the energy gap decreases contin-
uously to zero as the temperature is increased to the transition temperature Tc,
as in Fig. 10. A first-order transition would be characterized by a latent heat
and by a discontinuity in the energy gap.

Microwave and Infrared Properties

The existence of an energy gap means that photons of energy less than the
gap energy are not absorbed. Nearly all the photons incident are reflected as
for any metal because of the impedance mismatch at the boundary between
vacuum and metal, but for a very thin (!20 Å) film more photons are transmit-
ted in the superconducting state than in the normal state.

268

Eg!F
!F

Filled Filled

Normal
(a)

Superconductor
(b)

Figure 9 (a) Conduction band in the normal state: (b) energy gap at the Fermi level in the super-
conducting state. Electrons in excited states above the gap behave as normal electrons in rf fields:
they cause resistance; at dc they are shorted out by the superconducting electrons. The gap Eg is
exaggerated in the figure: typically Eg ! 10!4 !F.

DI���RYE����������������1.��1BHF����

For photon energies less than the energy gap, the resistivity of a supercon-
ductor vanishes at absolute zero. At T ! Tc the resistance in the superconduct-
ing state has a sharp threshold at the gap energy. Photons of lower energy see a
resistanceless surface. Photons of higher energy than the energy gap see a re-
sistance that approaches that of the normal state because such photons cause
transitions to unoccupied normal energy levels above the gap.

As the temperature is increased not only does the gap decrease in energy,
but the resistivity for photons with energy below the gap energy no longer van-
ishes, except at zero frequency. At zero frequency the superconducting elec-
trons short-circuit any normal electrons that have been thermally excited
above the gap. At finite frequencies the inertia of the superconducting elec-
trons prevents them from completely screening the electric field, so that ther-
mally excited normal electrons now can absorb energy (Problem 3).

Isotope Effect

It has been observed that the critical temperature of superconductors
varies with isotopic mass. In mercury Tc varies from 4.185 K to 4.146 K as the
average atomic mass M varies from 199.5 to 203.4 atomic mass units. The tran-
sition temperature changes smoothly when we mix different isotopes of the
same element. The experimental results within each series of isotopes may be
fitted by a relation of the form

(2)

Observed values of ! are given in Table 4.

M!Tc " constant� .
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It has been observed that the cri1cal temperature of superconductors varies
with isotopic mass. In mercury Tc varies from 4.185 K to 4.146 K as the
average atomic mass M varies from 199.5 to 203.4 atomic mass units. The
transi1on temperature changes smoothly when we mix different isotopes of
the same element. The experimental results within each series of isotopes
may be fi?ed by a rela1on of the form MαTc = constant. From the dependence
of Tc on the isotopic mass we learn that laXce vibra1ons and hence electron-
laXce interac1ons are deeply involved in superconduc1vity. The original BCS
model gave the result Tc ∝ 𝜃Debye ∝ M-1/2, so that α = ½, but the inclusion of
coulomb interac1ons between the electrons changes the rela1on.

Isotope Effect

From the dependence of Tc on the isotopic mass we learn that lattice 
vibrations and hence electron-lattice interactions are deeply involved in super-
conductivity. This was a fundamental discovery: there is no other reason for
the superconducting transition temperature to depend on the number of neu-
trons in the nucleus.

The original BCS model gave the result Tc ! !Debye ! M!1/2, so that 
in (2), but the inclusion of coulomb interactions between the electrons
changes the relation. Nothing is sacred about The absence of an isotope
effect in Ru and Zr has been accounted for in terms of the electron band struc-
ture of these metals.

THEORETICAL SURVEY

A theoretical understanding of the phenomena associated with supercon-
ductivity has been reached in several ways. Certain results follow directly from
thermodynamics. Many important results can be described by phenomenolog-
ical equations: the London equations and the Landau-Ginzburg equations
(Appendix 1). A successful quantum theory of superconductivity was given by
Bardeen, Cooper, and Schrieffer, and has provided the basis for subsequent
work. Josephson and Anderson discovered the importance of the phase of the
superconducting wavefunction.

Thermodynamics of the Superconducting Transition

The transition between the normal and superconducting states is thermo-
dynamically reversible, just as the transition between liquid and vapor phases
of a substance is reversible. Thus we may apply thermodynamics to the transi-
tion, and we thereby obtain an expression for the entropy difference between
normal and superconducting states in terms of the critical field curve Hc ver-
sus T. This is analogous to the vapor pressure equation for the liquid-gas 
coexistence curve (TP, Chapter 10).

" " 

1
2.

" " 

1
2

270

Table 4  Isotope effect in superconductors

Experimental values of " in M"Tc " constant, where M is the isotopic mass.

Substance " Substance "

Zn 0.45 # 0.05 Ru 0.00 # 0.05
Cd 0.32 # 0.07 Os 0.15 # 0.05
Sn 0.47 # 0.02 Mo 0.33
Hg 0.50 # 0.03 Nb3Sn 0.08 # 0.02
Pb 0.49 # 0.02 Zr 0.00 # 0.05
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Figure 7 Experimental values of the free energy as a function of temperature for aluminum in
the superconducting state and in the normal state. Below the transition temperature Tc ! 1.180 K
the free energy is lower in the superconducting state. The two curves merge at the transition tem-
perature, so that the phase transition is second order (there is no latent heat of transition at Tc).
The curve FS is measured in zero magnetic field, and FN is measured in a magnetic field sufficient
to put the specimen in the normal state. (Courtesy of N. E. Phillips.)
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where !F is the stabilization free energy density of the superconducting state.
For aluminum, Bac at absolute zero is 105 gauss, so that at absolute zero 
!F " (105)2/8! " 439 erg cm#3, in excellent agreement with the result of
thermal measurements, 430 erg cm#3.

At a finite temperature the normal and superconducting phases 
are in equilibrium when the magnetic field is such that their free energies 
F " U # TS are equal. The free energies of the two phases are sketched 
in Fig. 12 as a function of the magnetic field. Experimental curves of the 
free energies of the two phases for aluminum are shown in Fig. 7. Because 
the slopes dF/dT are equal at the transition temperature, there is no latent
heat at Tc.

London Equation

We saw that the Meissner effect implies a magnetic susceptibility " " #1/4!
in CGS in the superconducting state or, in SI, " " #1. Can we modify a consti-
tutive equation of electrodynamics (such as Ohm’s law) in some way to obtain
the Meissner effect? We do not want to modify the Maxwell equations them-
selves. Electrical conduction in the normal state of a metal is described by
Ohm’s law j " #E. We need to modify this drastically to describe conduction
and the Meissner effect in the superconducting state. Let us make a postulate
and see what happens.

We postulate that in the superconducting state the current density is di-
rectly proportional to the vector potential A of the local magnetic field, where
B " curl A. The gauge of A will be specified. In CGS units we write the 
constant of proportionality as for reasons that will become clear.#c/4!$L

2
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intensity of the applied magnetic field Ba. At a temper-
ature T $ Tc the metal is a superconductor in zero mag-
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FS(T, Ba) " FS(T, 0) % Ba
2/8!.

Ba
2/8!,
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Free Energies
The free energy density FN of a nonmagnetic
normal metal is approximately independent
of the intensity of the applied magnetic field
Ba. At a temperature T < Tc the metal is a
superconductor in zero magnetic field, so
that FS(T, 0) is lower than FN(T, 0) by

per unit volume of specimen. This work appears in the energy of the magnetic
field. The thermodynamic identity for the process is

(4)

as in TP, Chapter 8.
For a superconductor with M related to Ba by (1) we have

(CGS) (5)

(SI)

The increase in the free energy density of the superconductor is

(CGS) (6)

(SI)

on being brought from a position where the applied field is zero to a position
where the applied field is Ba.

Now consider a normal nonmagnetic metal. If we neglect the small 
susceptibility4 of a metal in the normal state, then M ! 0 and the energy of the
normal metal is independent of field. At the critical field we have

(7)

The results (6) and (7) are all we need to determine the stabilization 
energy of the superconducting state at absolute zero. At the critical value Bac

of the applied magnetic field the energies are equal in the normal and super-
conducting states:

(CGS) (8)

(SI)

In SI units Hc ! Bac/!0, whereas in CGS units Hc ! Bac.
The specimen is stable in either state when the applied field is equal to

the critical field. Now by (7) it follows that

(CGS) (9)"F ! FN(0) # FS(0) ! B2
ac /8"� ,

FN(Bac) ! FS(Bac) ! FS(0) $ B2
ac/2!0� ,

FN(Bac) ! FS(Bac) ! FS(0) $ B2
ac /8"� ,

FN(Bac) ! FN(0)� .

Fs(Ba) # Fs(0) # B2
a /2!0� ,

FS(Ba) # FS(0) ! Ba
2%8"� ;

 dFS ! 

1
!0

 Ba dBa� .

dFS ! 

1
4"

 Ba dBa� ;

dF ! #M ! dBa� ,

272

4This is an adequate assumption for type I superconductors. In type II superconductors in
high fields the change in spin paramagnetism of the conduction electrons lowers the energy of the
normal phase significantly. In some, but not all, type II superconductors the upper critical field is
limited by this effect. Clogston has suggested that Hc2(max) ! 18,400 Tc, where Hc2 is in gauss and
Tc in K.
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4This is an adequate assumption for type I superconductors. In type II superconductors in
high fields the change in spin paramagnetism of the conduction electrons lowers the energy of the
normal phase significantly. In some, but not all, type II superconductors the upper critical field is
limited by this effect. Clogston has suggested that Hc2(max) ! 18,400 Tc, where Hc2 is in gauss and
Tc in K.
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normal metal is independent of field. At the critical field we have

(7)

The results (6) and (7) are all we need to determine the stabilization 
energy of the superconducting state at absolute zero. At the critical value Bac

of the applied magnetic field the energies are equal in the normal and super-
conducting states:

(CGS) (8)

(SI)

In SI units Hc ! Bac/!0, whereas in CGS units Hc ! Bac.
The specimen is stable in either state when the applied field is equal to

the critical field. Now by (7) it follows that

(CGS) (9)"F ! FN(0) # FS(0) ! B2
ac /8"� ,

FN(Bac) ! FS(Bac) ! FS(0) $ B2
ac/2!0� ,

FN(Bac) ! FS(Bac) ! FS(0) $ B2
ac /8"� ,

FN(Bac) ! FN(0)� .

Fs(Ba) # Fs(0) # B2
a /2!0� ,

FS(Ba) # FS(0) ! Ba
2%8"� ;

 dFS ! 

1
!0

 Ba dBa� .

dFS ! 

1
4"

 Ba dBa� ;

dF ! #M ! dBa� ,

272

4This is an adequate assumption for type I superconductors. In type II superconductors in
high fields the change in spin paramagnetism of the conduction electrons lowers the energy of the
normal phase significantly. In some, but not all, type II superconductors the upper critical field is
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with
and

At a finite T, the normal and super-
conducting phases are in equilibrium when
the magnetic field is such that their free
energies F = U − TS are equal. Experimental
curves of the free energies of the two
phases for aluminum are shown in the left.



London Theory 

Newton’s law (iner1al response) for applied electric field

sss evnJ =Here supercurrent density is

We know B = 0 inside superconductors

÷÷
ø

ö
çç
è

æ
=

en
J

dt
dmeE

s

S( )svdt
dmF =

dt
dJ

m
Een Ss =
2

dt
Jd

m
Een Ss

!
!

!
!

´Ñ=´Ñ
2

dt
Jd

dt
Bd

m
en Ss

!
!

!

´Ñ=-
2

0
2

=ú
û

ù
ê
ë

é
+´Ñ B
m
enJ

dt
d s

S

!!!
B

m
enJ s

S

!!! 2

-=´Ñ

The London equations are a set of phenomenological equations in an
attempt to describe the Meissner effect.



occupy the space on the positive side of the x axis, as in Fig. 13. If B(0) is the
field at the plane boundary, then the field inside is

(14)

for this is a solution of (13). In this example the magnetic field is assumed to
be parallel to the boundary. Thus we see !L measures the depth of penetration
of the magnetic field; it is known as the London penetration depth. Actual
penetration depths are not described precisely by !L alone, for the London
equation is now known to be somewhat oversimplified. It is shown by compari-
son of (22) with (11) that

(14a)

for particles of charge q and mass m in concentration n. Values are given in
Table 5.

An applied magnetic field Ba will penetrate a thin film fairly uniformly if
the thickness is much less than !L; thus in a thin film the Meissner effect is not
complete. In a thin film the induced field is much less than Ba, and there is 
little effect of Ba on the energy density of the superconducting state, so that
(6) does not apply. It follows that the critical field Hc of thin films in parallel
magnetic fields will be very high.

(SI)� � !L ! ("0 mc2/nq2)1/2(CGS) � !L ! (mc2/4#nq2)1/2� ;

B(x) ! B(0) exp("x/!L)� ,
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Figure 13 Penetration of an applied magnetic
field into a semi-infinite superconductor. The
penetration depth ! is defined as the distance in
which the field decreases by the factor e"1. Typi-
cally, ! 500 Å in a pure superconductor.!

Table 5  Calculated intrinsic coherence length and 
London penetration depth, at absolute zero

Intrinsic Pippard London 
coherence penetration 
length $0, depth !L, 

Metal in 10"6 cm in 10"6 cm !L/$0

Sn 23. 3.4 0.16
Al 160. 1.6 0.010
Pb 8.3 3.7 0.45
Cd 76. 11.0 0.14
Nb 3.8 3.9 1.02

After R. Meservey and B. B. Schwartz.
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which the field decreases by the factor e"1. Typi-
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An applied magnetic field Ba will penetrate a thin film fairly uniformly if
the thickness is much less than λL; thus in a thin film the Meissner effect is
not complete. In a thin film the induced field is much less than Ba, and
there is little effect of Ba. It follows that the critical field Hc of thin films in
parallel magnetic fields will be very high.
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In the pure superconduc1ng state the only field allowed is exponen1ally
damped into the bulk from an external surface.



Coherence Length 
The coherence length 𝜉 is a measure of the distance within which the super-
conducting electron concentration cannot change drastically in a spatially
varying magnetic field. Any spatial variation in the state of an electronic
system requires extra kinetic energy. A modulation of an eigenfunction
increases the kinetic energy because the modulation will increase the
integral of d2𝜑/dx2 .

The increase of energy required to modulate is ℏ2kq/2m. If this increase
exceeds the energy gap Eg, superconductivity will be destroyed. The critical
value q0 of the modulation wavevector is given by

Coherence Length

The London penetration depth !L is a fundamental length that character-
izes a superconductor. An independent length is the coherence length ". The
coherence length is a measure of the distance within which the superconduct-
ing electron concentration cannot change drastically in a spatially-varying
magnetic field.

The London equation is a local equation: it relates the current density at a
point r to the vector potential at the same point. So long as j(r) is given as a
constant time A(r), the current is required to follow exactly any variation in 
the vector potential. But the coherence length " is a measure of the range over
which we should average A to obtain j. It is also a measure of the minimum spa-
tial extent of a transition layer between normal and superconductor. The coher-
ence length is best introduced into the theory through the Landau-Ginzburg
equations, Appendix I. Now we give a plausibility argument for the energy re-
quired to modulate the superconducting electron concentration.

Any spatial variation in the state of an electronic system requires extra 
kinetic energy. A modulation of an eigenfunction increases the kinetic energy
because the modulation will increase the integral of d2#/dx2. It is reasonable to
restrict the spatial variation of j(r) in such a way that the extra energy is less
than the stabilization energy of the superconducting state.

We compare the plane wave $(x) ! eikx with the strongly modulated 
wavefunction:

(15a)

The probability density associated with the plane wave is uniform in space:
$*$ ! e"ikx eikx ! 1, whereas #*# is modulated with the wavevector q:

(15b)

The kinetic energy of the wave $(x) is the kinetic energy of
the modulated density distribution is higher, for

where we neglect q2 for q # k.
The increase of energy required to modulate is If this increase

exceeds the energy gap Eg, superconductivity will be destroyed. The critical
value q0 of the modulation wavevector is given by
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We define an intrinsic coherence length !0 related to the critical modu-
lation by !0 ! 1/q0. We have

(16b)

where vF is the electron velocity at the Fermi surface. On the BCS theory a
similar result is found:

(17)

Calculated values of !0 from (17) are given in Table 5. The intrinsic coherence
length !0 is characteristic of a pure superconductor.

In impure materials and in alloys the coherence length ! is shorter than !0.
This may be understood qualitatively: in impure material the electron eigen-
functions already have wiggles in them: we can construct a given localized
variation of current density with less energy from wavefunctions with wiggles
than from smooth wavefunctions.

The coherence length first appeared in the Landau-Ginzburg equations;
these equations also follow from the BCS theory. They describe the structure
of the transition layer between normal and superconducting phases in contact.
The coherence length and the actual penetration depth " depend on the mean
free path ! of the electrons measured in the normal state; the relationships are
indicated in Fig. 14. When the superconductor is very impure, with a very
small !, then ! (!0!)1/2 and " "L (!0 /!)1/2, so that "/! "L/!. This is the
“dirty superconductor” limit. The ratio "/! is denoted by #.

BCS Theory of Superconductivity

The basis of a quantum theory of superconductivity was laid by the classic
1957 papers of Bardeen, Cooper, and Schrieffer. There is a “BCS theory of 
superconductivity” with a very wide range of applicability, from He3 atoms in
their condensed phase, to type I and type II metallic superconductors, and to
high-temperature superconductors based on planes of cuprate ions. Further,

!!!

!0 ! 2!vF/$Eg� .

!0 ! !2kF /2mEg ! !vF/2Eg� ,
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Figure 14 Penetration depth " and the coherence
length ! as functions of the mean free path ! of the
conduction electrons in the normal state. All
lengths are in units of !0, the intrinsic coherence
length. The curves are sketched for !0 ! 10"L. For
short mean free paths the coherence length be-
comes shorter and the penetration depth becomes
longer. The increase in the ratio #"/! favors type II
superconductivity.
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Define an intrinsic coherence length 𝜉0 = 1/q0, then

Assume a strongly modulated wavefunc1on 𝜑(x) = 2-1/2(ei(k+q)x + eikx), then 

Coherence Length

The London penetration depth !L is a fundamental length that character-
izes a superconductor. An independent length is the coherence length ". The
coherence length is a measure of the distance within which the superconduct-
ing electron concentration cannot change drastically in a spatially-varying
magnetic field.

The London equation is a local equation: it relates the current density at a
point r to the vector potential at the same point. So long as j(r) is given as a
constant time A(r), the current is required to follow exactly any variation in 
the vector potential. But the coherence length " is a measure of the range over
which we should average A to obtain j. It is also a measure of the minimum spa-
tial extent of a transition layer between normal and superconductor. The coher-
ence length is best introduced into the theory through the Landau-Ginzburg
equations, Appendix I. Now we give a plausibility argument for the energy re-
quired to modulate the superconducting electron concentration.

Any spatial variation in the state of an electronic system requires extra 
kinetic energy. A modulation of an eigenfunction increases the kinetic energy
because the modulation will increase the integral of d2#/dx2. It is reasonable to
restrict the spatial variation of j(r) in such a way that the extra energy is less
than the stabilization energy of the superconducting state.

We compare the plane wave $(x) ! eikx with the strongly modulated 
wavefunction:
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The probability density associated with the plane wave is uniform in space:
$*$ ! e"ikx eikx ! 1, whereas #*# is modulated with the wavevector q:

(15b)

The kinetic energy of the wave $(x) is the kinetic energy of
the modulated density distribution is higher, for

where we neglect q2 for q # k.
The increase of energy required to modulate is If this increase

exceeds the energy gap Eg, superconductivity will be destroyed. The critical
value q0 of the modulation wavevector is given by
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Coherence Length

The London penetration depth !L is a fundamental length that character-
izes a superconductor. An independent length is the coherence length ". The
coherence length is a measure of the distance within which the superconduct-
ing electron concentration cannot change drastically in a spatially-varying
magnetic field.
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point r to the vector potential at the same point. So long as j(r) is given as a
constant time A(r), the current is required to follow exactly any variation in 
the vector potential. But the coherence length " is a measure of the range over
which we should average A to obtain j. It is also a measure of the minimum spa-
tial extent of a transition layer between normal and superconductor. The coher-
ence length is best introduced into the theory through the Landau-Ginzburg
equations, Appendix I. Now we give a plausibility argument for the energy re-
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kinetic energy. A modulation of an eigenfunction increases the kinetic energy
because the modulation will increase the integral of d2#/dx2. It is reasonable to
restrict the spatial variation of j(r) in such a way that the extra energy is less
than the stabilization energy of the superconducting state.
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The probability density associated with the plane wave is uniform in space:
$*$ ! e"ikx eikx ! 1, whereas #*# is modulated with the wavevector q:
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The kinetic energy of the wave $(x) is the kinetic energy of
the modulated density distribution is higher, for
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. The kinetic energy is 

Coherence Length

The London penetration depth !L is a fundamental length that character-
izes a superconductor. An independent length is the coherence length ". The
coherence length is a measure of the distance within which the superconduct-
ing electron concentration cannot change drastically in a spatially-varying
magnetic field.

The London equation is a local equation: it relates the current density at a
point r to the vector potential at the same point. So long as j(r) is given as a
constant time A(r), the current is required to follow exactly any variation in 
the vector potential. But the coherence length " is a measure of the range over
which we should average A to obtain j. It is also a measure of the minimum spa-
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ence length is best introduced into the theory through the Landau-Ginzburg
equations, Appendix I. Now we give a plausibility argument for the energy re-
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because the modulation will increase the integral of d2#/dx2. It is reasonable to
restrict the spatial variation of j(r) in such a way that the extra energy is less
than the stabilization energy of the superconducting state.

We compare the plane wave $(x) ! eikx with the strongly modulated 
wavefunction:
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The probability density associated with the plane wave is uniform in space:
$*$ ! e"ikx eikx ! 1, whereas #*# is modulated with the wavevector q:
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The kinetic energy of the wave $(x) is the kinetic energy of
the modulated density distribution is higher, for

where we neglect q2 for q # k.
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In impure materials and in alloys the coherence length 𝜉 is shorter than 𝜉0.
They describe the structure of the transition layer between normal and
superconducting phases in contact. The coherence length and the actual
penetration depth λ depend on the mean free path ℓ of the electrons
measured in the normal state; the relationships are indicated in Fig. below.
When the superconductor is very impure, with a very small ℓ, then 𝜉≃
(𝜉0ℓ)1/2 and λ ≃ λL(𝜉0/ℓ)1/2, so that λ/𝜉 = λL/ℓ. This is the “dirty
superconductor” limit.

We define an intrinsic coherence length !0 related to the critical modu-
lation by !0 ! 1/q0. We have

(16b)

where vF is the electron velocity at the Fermi surface. On the BCS theory a
similar result is found:

(17)

Calculated values of !0 from (17) are given in Table 5. The intrinsic coherence
length !0 is characteristic of a pure superconductor.

In impure materials and in alloys the coherence length ! is shorter than !0.
This may be understood qualitatively: in impure material the electron eigen-
functions already have wiggles in them: we can construct a given localized
variation of current density with less energy from wavefunctions with wiggles
than from smooth wavefunctions.

The coherence length first appeared in the Landau-Ginzburg equations;
these equations also follow from the BCS theory. They describe the structure
of the transition layer between normal and superconducting phases in contact.
The coherence length and the actual penetration depth " depend on the mean
free path ! of the electrons measured in the normal state; the relationships are
indicated in Fig. 14. When the superconductor is very impure, with a very
small !, then ! (!0!)1/2 and " "L (!0 /!)1/2, so that "/! "L/!. This is the
“dirty superconductor” limit. The ratio "/! is denoted by #.

BCS Theory of Superconductivity

The basis of a quantum theory of superconductivity was laid by the classic
1957 papers of Bardeen, Cooper, and Schrieffer. There is a “BCS theory of 
superconductivity” with a very wide range of applicability, from He3 atoms in
their condensed phase, to type I and type II metallic superconductors, and to
high-temperature superconductors based on planes of cuprate ions. Further,
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Figure 14 Penetration depth " and the coherence
length ! as functions of the mean free path ! of the
conduction electrons in the normal state. All
lengths are in units of !0, the intrinsic coherence
length. The curves are sketched for !0 ! 10"L. For
short mean free paths the coherence length be-
comes shorter and the penetration depth becomes
longer. The increase in the ratio #"/! favors type II
superconductivity.
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occupy the space on the positive side of the x axis, as in Fig. 13. If B(0) is the
field at the plane boundary, then the field inside is

(14)

for this is a solution of (13). In this example the magnetic field is assumed to
be parallel to the boundary. Thus we see !L measures the depth of penetration
of the magnetic field; it is known as the London penetration depth. Actual
penetration depths are not described precisely by !L alone, for the London
equation is now known to be somewhat oversimplified. It is shown by compari-
son of (22) with (11) that

(14a)

for particles of charge q and mass m in concentration n. Values are given in
Table 5.

An applied magnetic field Ba will penetrate a thin film fairly uniformly if
the thickness is much less than !L; thus in a thin film the Meissner effect is not
complete. In a thin film the induced field is much less than Ba, and there is 
little effect of Ba on the energy density of the superconducting state, so that
(6) does not apply. It follows that the critical field Hc of thin films in parallel
magnetic fields will be very high.

(SI)� � !L ! ("0 mc2/nq2)1/2(CGS) � !L ! (mc2/4#nq2)1/2� ;

B(x) ! B(0) exp("x/!L)� ,
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Figure 13 Penetration of an applied magnetic
field into a semi-infinite superconductor. The
penetration depth ! is defined as the distance in
which the field decreases by the factor e"1. Typi-
cally, ! 500 Å in a pure superconductor.!

Table 5  Calculated intrinsic coherence length and 
London penetration depth, at absolute zero

Intrinsic Pippard London 
coherence penetration 
length $0, depth !L, 

Metal in 10"6 cm in 10"6 cm !L/$0

Sn 23. 3.4 0.16
Al 160. 1.6 0.010
Pb 8.3 3.7 0.45
Cd 76. 11.0 0.14
Nb 3.8 3.9 1.02

After R. Meservey and B. B. Schwartz.
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λ and 𝜉



Ginzburg-Landau EquaEon
We introduce the order parameter ψ(r) with the property that ψ*(r)ψ(r) =
nS(r), the local concentration of superconducting electrons. The free
energy density FS(r) in a superconductor, near the transition temperature,
as a function of the order parameter can be written as

coherence length and of the wavefunction used in the theory of the Josephson
effects in Chapter 12.

We introduce the order parameter !(r) with the property that

(1)

the local concentration of superconducting electrons. The mathematical for-
mulation of the definition of the function !(r) will come out of the BCS the-
ory. We first set up a form for the free energy density FS(r) in a superconduc-
tor as a function of the order parameter. We assume that in the general vicinity
of the transition temperature

(2)

with the phenomenological positive constants ", #, and m, of which more will
be said. Here:

1. FN is the free energy density of the normal state.
2. !"|!|2 " #|!|4 is a typical Landau form for the expansion of the free

energy in terms of an order parameter that vanishes at a second-order phase
transition. This term may be viewed as !"nS " #n2

S and by itself is a mini-
mum with respect to nS when nS(T) # "/#.

3. The term in |grad !|2 represents an increase in energy caused by a spa-
tial variation of the order parameter. It has the form of the kinetic energy in
quantum mechanics.1 The kinetic momentum !i is accompanied by the
field momentum !qA/c to ensure the gauge invariance of the free energy, as
in Appendix G. Here q # !2e for an electron pair.

4. The term ! M dBa, with the fictitious magnetization M # (B ! Ba)/4$,
represents the increase in the superconducting free energy caused by the ex-
pulsion of magnetic flux from the superconductor.

The separate terms in (2) will be illustrated by examples as we progress
further. First let us derive the GL equation (6). We minimize the total free en-
ergy dV FS(r) with respect to variations in the function !(r). We have

(3)

We integrate by parts to obtain

(4)

if %! vanishes on the boundaries. It follows that

(5)%!dV FS # !dV  %!*[!"! " # "! "2! " (1/2m)(!i!$ !qA /c)2!] " c.c.

*

!dV ($!)($%!*) # !!dV ($2!)%!*� ,

%FS(r) # [!"! " # "! "2! " (1/2m)(!i!$ ! qA /c)! ! (i!$ ! qA /c)%!*
 " c.c.]

!

!!

$!

1
2

1
2

FS(r) # FN ! " "! "2 " 

1
2

  # "! "4 " (1/2m)"(!i!$!qA/c)! "2 ! #Ba

0
 M ! dBa� ,

!*(r)!(r) # nS(r)� ,

668

1A contribution of the form | M|2, where M is the magnetization, was introduced by Landau
and Lifshitz to represent the exchange energy density in a ferromagnet; see QTS, p. 65.

$
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1. FN is the free energy density of the normal state.
2. is a typical Landau form for the expansion of the free

energy in terms of an order parameter that vanishes at a second-order
phase transition.

3. The term in represents an increase in energy caused by a
spatial variation of the order parameter. It has the form of the kinetic
energy in quantum mechanics. Here q = −2e for an electron pair.

4. The term with the fictitious magnetization
represents the increase in the superconducting free energy caused by
the expulsion of magnetic flux from the superconductor.

coherence length and of the wavefunction used in the theory of the Josephson
effects in Chapter 12.

We introduce the order parameter !(r) with the property that

(1)

the local concentration of superconducting electrons. The mathematical for-
mulation of the definition of the function !(r) will come out of the BCS the-
ory. We first set up a form for the free energy density FS(r) in a superconduc-
tor as a function of the order parameter. We assume that in the general vicinity
of the transition temperature

(2)

with the phenomenological positive constants ", #, and m, of which more will
be said. Here:

1. FN is the free energy density of the normal state.
2. !"|!|2 " #|!|4 is a typical Landau form for the expansion of the free

energy in terms of an order parameter that vanishes at a second-order phase
transition. This term may be viewed as !"nS " #n2
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This integral is zero if the term in brackets is zero: This integral is zero if the term in brackets is zero:

(6)

This is the Ginzburg-Landau equation; it resembles a Schrödinger equation
for !.

By minimizing (2) with respect to "A we obtain a gauge-invariant expres-
sion for the supercurrent flux:

(7)

At a free surface of the specimen we must choose the gauge to satisfy the
boundary condition that no current flows out of the superconductor into the
vacuum: n̂ jS ! 0, where n̂ is the surface normal.

Coherence Length. The intrinsic coherence length # may be defined from
(6). Let A ! 0 and suppose that $|!|2 may be neglected in comparison with %.
In one dimension the GL equation (6) reduces to

(8)

This has a wavelike solution of the form exp(ix/#), where # is defined by

(9)

A more interesting special solution is obtained if we retain the nonlinear
term $|!|2 in (6). Let us look for a solution with ! ! 0 at x ! 0 and with ! !0

as x ". This situation represents a boundary between normal and supercon-
ducting states. Such states can coexist if there is a magnetic field Hc in the nor-
mal region. For the moment we neglect the penetration of the field into the
superconducting region: we take the field penetration depth & # #, which de-
fines an extreme type I superconductor.

The solution of

(10)

subject to our boundary conditions, is

(11)

This may be verified by direct substitution. Deep inside the superconductor
we have !0 ! (%/$)1/2, as follows from the minimization of the terms $%|!|2 %
$|!|4 in the free energy. We see from (11) that # marks the extent of the co-

herence of the superconducting wavefunction into the normal region.
We have seen that deep inside the superconductor the free energy is a

minimum when |!0|2 ! %/$, so that

(12)FS ! FN $ %2/2$ ! FN $ H2
c/8'� ,

1
2

!(x) ! (%/$)1/2tanh(x/!2#)� .

$ !2

2m
 
d2!

dx2  $ %! % $ "! "2! ! 0� ,

l l
# " (!2/2m%)1/2� .

$ !2

2m
 
d2!

dx2  ! %!� .

!

jS(r) ! $(iq!/2m)(!*&! $!&!*) $ (q2/mc)!*!A� .

[(1/2m)($i!& $ qA /c)2
 $ % % $ "! "2]! ! 0� .
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,   ψ =  C    and                               . 
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Consider the situa1on represen1ng the boundary of a type I superconductor
and a normal metal. Retain the nonlinear term in the GL equa1on:
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This integral is zero if the term in brackets is zero:

(6)

This is the Ginzburg-Landau equation; it resembles a Schrödinger equation
for !.

By minimizing (2) with respect to "A we obtain a gauge-invariant expres-
sion for the supercurrent flux:

(7)

At a free surface of the specimen we must choose the gauge to satisfy the
boundary condition that no current flows out of the superconductor into the
vacuum: n̂ jS ! 0, where n̂ is the surface normal.

Coherence Length. The intrinsic coherence length # may be defined from
(6). Let A ! 0 and suppose that $|!|2 may be neglected in comparison with %.
In one dimension the GL equation (6) reduces to

(8)

This has a wavelike solution of the form exp(ix/#), where # is defined by

(9)

A more interesting special solution is obtained if we retain the nonlinear
term $|!|2 in (6). Let us look for a solution with ! ! 0 at x ! 0 and with ! !0

as x ". This situation represents a boundary between normal and supercon-
ducting states. Such states can coexist if there is a magnetic field Hc in the nor-
mal region. For the moment we neglect the penetration of the field into the
superconducting region: we take the field penetration depth & # #, which de-
fines an extreme type I superconductor.
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by definition of the thermodynamic critical field Hc as the stabilization free 
energy density of the superconducting state. It follows that the critical field is
related to ! and " by

(13)

Consider the penetration depth of a weak magnetic field (B ! Hc) into a
superconductor. We assume that |#|2 in the superconductor is equal to |#0|2,
the value in the absence of a field. Then the equation for the supercurrent flux
reduces to

(14)

which is just the London equation jS(r) " #(c/4$%2)A, with the penetration
depth

(15)

The dimensionless ratio & %/' of the two characteristic lengths is an 
important parameter in the theory of superconductivity. From (9) and (15) 
we find

(16)

We now show that the value & " 1/ divides type I superconductors 
(& ! 1/ ) from type II superconductors (& " 1/ ).

Calculation of the Upper Critical Field. Superconducting regions nucle-
ate spontaneously within a normal conductor when the applied magnetic field
is decreased below a value denoted by Hc2. At the onset of superconductivity
|#| is small and we linearize the GL equation (6) to obtain

(17)

The magnetic field in a superconducting region at the onset of superconduc-
tivity is just the applied field, so that A " B(0,x,0) and (17) becomes

(18)

This is of the same form as the Schrödinger equation of a free particle in a
magnetic field.

We look for a solution in the form exp[i(kyy $ kzz)]((x) and find

(19)(1/2m)[##2d2/dx2 $ #2kz
2 $ (#ky # qBx/c)2]( " !(� ,

# #
2m

 ! %2

%x2 $ 

%2

%z2"# $ 

1
2m!i# %

%y
 $ 

qB

c
 x"2

# " !#� .

1
2m (#i#& # qA /c)2# " !� .

#2#2
#2

& " 

mc
q#

 ! "

2$"
1/2

� .

$

% " ! mc2

4$q2 $#0 $2"
1/2

 " ! mc2"

4$q2!"
1/2

� .

jS(r) " #(q2/mc)$#0 $2A� ,

Hc " (4$!2/")1/2� .

670

"QQFOEJY�RYE����������������1.��1BHF����

FS is the stabiliza1on free energy density of the superconduc1ng state at the
thermodynamic cri1cal field Hc.
Consider the penetration depth of a weak magnetic field (B << Hc) into a
superconductor. We assume that |ψ| in the superconductor is equal to
|ψ0| , the value in the absence of a field. Then the equation for the
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which is just the London eq. 
with the penetra1on depth 
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The dimensionless ratio of the two characteristic lengths, the
penetration depth λ and coherence length 𝜉, is an important parameter in
the theory of superconductivity. Then

by definition of the thermodynamic critical field Hc as the stabilization free 
energy density of the superconducting state. It follows that the critical field is
related to ! and " by

(13)
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Penetration Depth 



Upper CriEcal Field 
At the onset of superconduc1vity |ψ| is small and the GL equa1on can be
wri?en as:

by definition of the thermodynamic critical field Hc as the stabilization free 
energy density of the superconducting state. It follows that the critical field is
related to ! and " by

(13)
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by definition of the thermodynamic critical field Hc as the stabilization free 
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this is the equation for an harmonic oscillator, if we set E ! ! " ( 2/2m)
(k2

y # k2
z) as the eigenvalue of

(20)

The term linear in x can be transformed away by a shift of the origin from
0 to x0 ! kyqB/2mc, so that (20) becomes, with X ! x " x0,

(21)

The largest value of the magnetic field B for which solutions of (21) exist is
given by the lowest eigenvalue, which is

(22)

where is the oscillator frequency qB/mc. With kz set equal to zero,

(23)

This result may be expressed by (13) and (16) in terms of the thermody-
namic critical field Hc and the GL parameter " ! #/$:

(24)

When #/$ $ 1/ , a superconductor has Hc2 $ Hc and is said to be of type II.
It is helpful to write Hc2 in terms of the flux quantum 0 ! 2% c/q and 

$2 ! 2/2m!:

(25)

This tells us that at the upper critical field the flux density Hc2 in the material
is equal to one flux quantum per area 2%$2, consistent with a fluxoid lattice
spacing of the order of $.

appendix J: electron-phonon collisions

Phonons distort the local crystal structure and hence distort the local band
structure. This distortion is sensed by the conduction electrons. The important
effects of the coupling of electrons with phonons are

• Electrons are scattered from one state k to another state k%, leading to elec-
trical resistivity.
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This is the equa1on for an harmonic oscillator. 
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where ω is the oscillator frequency qB/mc. 
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With kz set equal to zero, 
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This says at the upper critical field (Hc2) the flux density is equal to one flux
quantum per area 2𝜋𝜉2, consistent with a fluxoid lattice spacing of the order
of 𝜉.
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The basis of a quantum theory of superconduc1vity was laid by the classic
1957 papers of Bardeen, Cooper, and Schrieffer, which includes:

BCS Theory of Superconductivity 

1. An attractive interaction manifests between electrons.

excited state by taking an electron from the Fermi surface and raising it just
above the Fermi surface. The BCS theory shows that with an appropriate at-
tractive interaction between electrons the new ground state is superconduct-
ing and is separated by a finite energy Eg from its lowest excited state.

The formation of the BCS ground state is suggested by Fig. 15. The BCS
state in (b) contains admixtures of one-electron orbitals from above the Fermi
energy !F. At first sight the BCS state appears to have a higher energy than the
Fermi state: the comparison of (b) with (a) shows that the kinetic energy of the
BCS state is higher than that of the Fermi state. But the attractive potential
energy of the BCS state, although not represented in the figure, acts to lower
the total energy of the BCS state with respect to the Fermi state.

When the BCS ground state of a many-electron system is described in
terms of the occupancy of one-particle orbitals, those near !F are filled some-
what like a Fermi-Dirac distribution for some finite temperature.

The central feature of the BCS state is that the one-particle orbitals are
occupied in pairs: if an orbital with wavevector k and spin up is occupied, then
the orbital with wavevector !k and spin down is also occupied. If kl is vacant,
then !kn is also vacant. The pairs are called Cooper pairs, treated in 
Appendix H. They have spin zero and have many attributes of bosons.

Flux Quantization in a Superconducting Ring

We prove that the total magnetic flux that passes through a superconduct-
ing ring may assume only quantized values, integral multiples of the flux quan-
tum where by experiment q " 2e, the charge of an electron pair. Flux
quantization is a beautiful example of a long-range quantum effect in which
the coherence of the superconducting state extends over a ring or solenoid.

Let us first consider the electromagnetic field as an example of a similar
boson field. The electric field intensity E(r) acts qualitatively as a probability
field amplitude. When the total number of photons is large, the energy density
may be written as

E* (r)E(r)/4" ! n(r)!#� ,

2"!c#q,
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Figure 15 (a) Probability P that an or-
bital of kinetic energy ! is occupied in the
ground state of the noninteracting Fermi
gas; (b) the BCS ground state differs
from the Fermi state in a region of width
of the order of the energy gap Eg. Both
curves are for absolute zero.
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The central feature of the BCS state is that the one-par1cle orbitals are
occupied in pairs: if an orbital with wavevector k and spin up is occupied,
then the orbital with wavevector −k and spin down is also occupied. If k↑ is
vacant, then−k↓ is also vacant. The pairs are called Cooper pairs and have
spin zero as well as many a?ributes of bosons.



An electron moving through a conductor will
a?ract nearby posi1ve charges in the laXce. This
deforma1on of the laXce causes another
electron, with opposite spin, to move into the
region of higher posi1ve charge density. The two
electrons then become correlated. Because
there are a lot of such electron pairs in a
superconductor, these pairs overlap very
strongly and form a highly collec1ve condensate.

In this "condensed" state, the breaking of one pair will change the energy of
the en1re condensate, not just a single pair. The energy required to break any
single pair is related to the energy required to break all of the pairs. The
electrons stay paired together and flow as a whole will not experience
resistance. Thus, the collec1ve behavior of the condensate is a crucial
ingredient necessary for superconduc1vity.

Electron Lattice Interaction



2. The electron-laXce-electron interac1on leads to an energy gap of
the observed magnitude.

3. The penetra1on depth and the coherence length emerge as natural
consequences of the BCS theory.

4. The criterion for the transi1on temperature of an element or alloy
involves the electron density of orbitals D(ϵF) of one spin at the Fermi
level and the electron-laXce interac1on U, which can be es1mated
from the electrical resis1vity because the resis1vity at room
temperature is a measure of the electron-phonon interac1on. For
UD(ϵF) << 1 the BCS theory predicts

Tc = 1.14𝜃 exp[−1/UD(ϵF)]

where 𝜃 is the Debye temperature and U is an a?rac1ve interac1on.

5. Magne1c flux through a superconduc1ng ring is quan1zed and the
effec1ve unit of charge is 2e rather than e.



Let ψ(r) be the par1cle probability amplitude. We suppose that the pair
concentra1on n = ψ*ψ = constant. Then, we can write

where n(r) is the number density of photons of frequency !. Then we may
write the electric field in a semiclassical approximation as

where "(r) is the phase of the field. A similar probability amplitude describes
Cooper pairs.

The arguments that follow apply to a boson gas with a large number of
bosons in the same orbital. We then can treat the boson probability amplitude
as a classical quantity, just as the electromagnetic field is used for photons. Both
amplitude and phase are then meaningful and observable. The arguments do
not apply to a metal in the normal state because an electron in the normal state
acts as a single unpaired fermion that cannot be treated classically.

We first show that a charged boson gas obeys the London equation. 
Let #(r) be the particle probability amplitude. We suppose that the pair 
concentration n ! #*# ! constant. At absolute zero n is one-half of the con-
centration of electrons in the conduction band, for n refers to pairs. Then we
may write

(19)

The phase "(r) is important for what follows. In SI units, set c ! 1 in the equa-
tions that follow.

The velocity of a particle is, from the Hamilton equations of mechanics,

(CGS)

The particle flux is given by

(20)

so that the electric current density is

(21)

We may take the curl of both sides to obtain the London equation:

(22)

with use of the fact that the curl of the gradient of a scalar is identically zero.
The constant that multiplies B agrees with (14a). We recall that the Meissner
effect is a consequence of the London equation, which we have here 
derived.

Quantization of the magnetic flux through a ring is a dramatic conse-
quence of Eq. (21). Let us take a closed path C through the interior of the 
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From the Hamilton equations of mechanics, 

so that the electric current density is 
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the London equa1on.𝝯 ×

We recall that the Meissner effect is a consequence of the London equation,
which we have here derived.

EM Field Intensity ApproximaEon 



Flux QuanEzaEon in a SuperconducEng Ring 

superconducting material, well away from the surface (Fig. 16). The Meissner
effect tells us that B and j are zero in the interior. Now (21) is zero if
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Flux lines

C

Figure 16 Path of integration C through the interior of a
superconducting ring. The flux through the ring is the sum
of the flux !ext from external sources and the flux !sc from
the superconducting currents which flow in the surface of
the ring; ! # !ext ' !sc. The flux ! is quantized. There is
normally no quantization condition on the flux from exter-
nal sources, so that !sc must adjust itself appropriately in
order that ! assume a quantized value.
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The flux through the ring is the sum of the
flux Φext from external sources and the flux
Φsc from the superconducting currents
which flow in the surface of the ring;

Φ = Φext + Φsc .
The Meissner effect tells us that B and j are
zero in the interior. So, we will have
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By setting q = -2e,  the quantum of flux in a superconductor (fluxoid) 
is



Type II Superconductors (x < l)

H

Normal state cores
Superconducting region

There is no difference in the mechanism of superconduc1vity in type I and
type II superconductors. Both types have similar thermal proper1es at the
superconductor-normal transi1on in zero magne1c field. But the Meissner
effect is en1rely different.



The field will extend out from the normal core a distance ! into the super-
conducting environment. The flux thus associated with a single core is "!2 Hc1,
and this must be equal to the flux quantum !0 defined by (27). Thus

(30)

This is the field for nucleation of a single fluxoid.
At Hc2 the fluxoids are packed together as tightly as possible, consistent

with the preservation of the superconducting state. This means as densely as
the coherence length # will allow. The external field penetrates the specimen
almost uniformly, with small ripples on the scale of the fluxoid lattice. Each
core is responsible for carrying a flux of the order of "#2 Hc2, which also is
quantized to !0. Thus

(31)

gives the upper critical field. The larger the ratio !/#, the larger is the ratio of
Hc2 to Hc1.

Hc2 ! !0/"# 

2

Hc1 " !0/"!2� .
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Figure 18 Variation of the magnetic field and en-
ergy gap parameter $(x) at the interface of super-
conducting and normal regions, for type I and 
type II superconductors. The energy gap parameter
is a measure of the stabilization energy density of
the superconducting state.
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There is no chemical or crystallographic difference between the normal
and the superconduc1ng regions in the vortex state. The vortex state is
stable when the penetra1on of the applied field into the superconduc1ng
material causes the surface energy to become nega1ve. A type II
superconductor is characterized by a vortex state stable over a certain
range of magne1c field strength; namely, between Hc1 and Hc2.

Vortex State in Type II Superconductor 



Types of Superconductors
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penetra1on depth λ ; coherence length 𝜉 ; mean free path ℓ
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• elemental superconductors 
predicted  in 1950s by Abrikosov
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x (nm) l (nm) Tc (K) Hc2 (T)

Al 1600 50 1.2 .01

Pb 83 39 7.2 .08

Sn 230 51 3.7 .03

x (nm) l (nm) Tc (K) Hc2 (T)

Nb3Sn 11 200 18 25

YBCO 1.5 200 92 150

MgB2 5 185 37 14
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Single Particle Tunneling 

per unit length. But there is also a decrease in magnetic energy because of the
penetration of the applied field Ba into the superconducting material around
the core:

(CGS) (33)

For a single fluxoid we add these two contributions to obtain

(CGS) (34)

The core is stable if f ! 0. The threshold field for a stable fluxoid is at f " 0,
or, with Hc1 written for Ba,

(35)

The threshold field divides the region of positive surface energy from the re-
gion of negative surface energy.

We can combine (30) and (35) to obtain a relation for Hc:

(36)

We can combine (30), (31), and (35) to obtain

(37a)

and

(37b)

Single Particle Tunneling

Consider two metals separated by an insulator, as in Fig. 20. The insulator
normally acts as a barrier to the flow of conduction electrons from one metal
to the other. If the barrier is sufficiently thin (less than 10 or 20 Å) there is a
significant probability that an electron which impinges on the barrier will pass
from one metal to the other: this is called tunneling. In many experiments the
insulating layer is simply a thin oxide layer formed on one of two evaporated
metal films, as in Fig. 21.

When both metals are normal conductors, the current-voltage relation of
the sandwich or tunneling junction is ohmic at low voltages, with the current
directly proportional to the applied voltage. Giaever (1960) discovered that if
one of the metals becomes superconducting the current-voltage characteristic
changes from the straight line of Fig. 22a to the curve shown in Fig. 22b.

Hc2 ! (!/")Hc " #Hc� .

(Hc1Hc2)1/2 ! Hc� ,

$"!Hc ! #0� .

Hc1/Hc ! "/!� .

f " fcore $ fmag ! 

1
8 (H2

c" 

2 % B2
a !

2)� .

fmag ! % 

1
8$

 B2
a  & $!2� .

10  Superconductivity 287

A C BC
Figure 20 Two metals, A and B, separated by a thin layer of an
insulator C.
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(a) (b) (c) (d)

Figure 21 Preparation of an Al/Al2O3/Sn sandwich. (a) Glass slide with indium contacts. (b) An
aluminum strip 1 mm wide and 1000 to 3000 Å thick has been deposited across the contacts. 
(c) The aluminum strip has been oxidized to form an Al2O3 layer 10 to 20 Å in thickness. (d) A tin
film has been deposited across the aluminum film, forming an Al/Al2O3/Sn sandwich. The external
leads are connected to the indium contacts; two contacts are used for the current measurement
and two for the voltage measurement. (After Giaever and Megerle.)
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Figure 22 (a) Linear current-voltage
relation for junction of normal metals
separated by oxide layer; (b) current-
voltage relation with one metal normal
and the other metal superconducting.
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Figure 23 The density of orbitals and the current-voltage characteristic for a tunneling junction.
In (a) the energy is plotted on the vertical scale and the density of orbitals on the horizontal scale.
One metal is in the normal state and one in the superconducting state. (b) I versus V; the dashes
indicate the expected break at T " 0. (After Giaever and Megerle.)

Figure 23a contrasts the electron density of orbitals in the superconductor
with that in the normal metal. In the superconductor there is an energy gap
centered at the Fermi level. At absolute zero no current can flow until the 
applied voltage is V " Eg /2e " !/e.

The gap Eg corresponds to the break-up of a pair of electrons in the 
superconducting state, with the formation of two electrons, or an electron and
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Preparation of an Al/Al2O3/Sn sandwich 
Two metals, A and B, separated by 
a thin layer of an insulator C ~10 Å. 

If the insula1ng barrier is sufficiently thin (less than 10 or 20 Å) there is a
significant probability that an electron which impinges on the barrier will
pass from one metal to the other: this is called tunneling.
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(a) Linear current-voltage relation for
junction of normal metals separated
by oxide layer; (b) current-voltage
relation with one metal normal and
the other metal superconducting.



288

(a) (b) (c) (d)

Figure 21 Preparation of an Al/Al2O3/Sn sandwich. (a) Glass slide with indium contacts. (b) An
aluminum strip 1 mm wide and 1000 to 3000 Å thick has been deposited across the contacts. 
(c) The aluminum strip has been oxidized to form an Al2O3 layer 10 to 20 Å in thickness. (d) A tin
film has been deposited across the aluminum film, forming an Al/Al2O3/Sn sandwich. The external
leads are connected to the indium contacts; two contacts are used for the current measurement
and two for the voltage measurement. (After Giaever and Megerle.)

(a)
Voltage

C
ur

re
nt

(b)
Voltage

C
ur

re
nt

Vc

Figure 22 (a) Linear current-voltage
relation for junction of normal metals
separated by oxide layer; (b) current-
voltage relation with one metal normal
and the other metal superconducting.

(b)(a)

!1/e

2!1

Voltage

Current

Fermi
energy

S N

Figure 23 The density of orbitals and the current-voltage characteristic for a tunneling junction.
In (a) the energy is plotted on the vertical scale and the density of orbitals on the horizontal scale.
One metal is in the normal state and one in the superconducting state. (b) I versus V; the dashes
indicate the expected break at T " 0. (After Giaever and Megerle.)

Figure 23a contrasts the electron density of orbitals in the superconductor
with that in the normal metal. In the superconductor there is an energy gap
centered at the Fermi level. At absolute zero no current can flow until the 
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In the superconductor there is an energy gap centered at the Fermi level.
At absolute zero no current can flow un1l the applied voltage is V = Eg /2e
= ∆/e. The gap Eg corresponds to the break-up of a pair of electrons in the
superconduc1ng state, with the forma1on of two electrons, or an electron
and a hole, in the normal state. The current starts when eV = ∆ .

Supercurrent Tunneling 

The density of states and the current-voltage characteristic for a tunneling 
junction. 



Josephson Superconductor Tunneling 
The tunneling of superconducting electron pairs from a superconductor
into another superconductor has produced many remarkable effects:

Dc Josephson effect. A dc current flows across the junc1on in the absence
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with the dc voltage can then cause a dc current across the junc1on.

Macroscopic long-range quantum interference. A dc magne1c field applied
through a superconduc1ng circuit containing two junc1ons causes the
maximum supercurrent to show interference effects as a func1on of
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junc1on, and let ψ2 be the amplitude on the other side, and both
superconductors be iden1cal. Apply the 1me-dependent Schrödinger
equa1on to the two amplitudes gives

a hole, in the normal state. The current starts when eV ! ". At finite 
temperatures there is a small current flow even at low voltages, because 
of electrons in the superconductor that are thermally excited across the 
energy gap.

Josephson Superconductor Tunneling

Under suitable conditions we observe remarkable effects associated with
the tunneling of superconducting electron pairs from a superconductor
through a layer of an insulator into another superconductor. Such a junction is
called a weak link. The effects of pair tunneling include:

Dc Josephson effect. A dc current flows across the junction in the ab-
sence of any electric or magnetic field.

Ac Josephson effect. A dc voltage applied across the junction causes 
rf current oscillations across the junction. This effect has been utilized in a
precision determination of the value of Further, an rf voltage applied with
the dc voltage can then cause a dc current across the junction.

Macroscopic long-range quantum interference. A dc magnetic field
applied through a superconducting circuit containing two junctions causes the
maximum supercurrent to show interference effects as a function of magnetic
field intensity. This effect can be utilized in sensitive magnetometers.

Dc Josephson Effect. Our discussion of Josephson junction phenomena
follows the discussion of flux quantization. Let !1 be the probability amplitude
of electron pairs on one side of a junction, and let !2 be the amplitude on the
other side. For simplicity, let both superconductors be identical. For the pres-
ent we suppose that they are both at zero potential.

The time-dependent Schrödinger equation applied to the
two amplitudes gives

(38)

Here represents the effect of the electron-pair coupling or transfer interac-
tion across the insulator; T has the dimensions of a rate or frequency. It is a
measure of the leakage of !1 into the region 2, and of !2 into the region 1. If
the insulator is very thick, T is zero and there is no pair tunneling.
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Here ℏT represents the effect of the electron-pair coupling or transfer
interac1on across the insulator.
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rf current oscillations across the junction. This effect has been utilized in a
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maximum supercurrent to show interference effects as a function of magnetic
field intensity. This effect can be utilized in sensitive magnetometers.

Dc Josephson Effect. Our discussion of Josephson junction phenomena
follows the discussion of flux quantization. Let !1 be the probability amplitude
of electron pairs on one side of a junction, and let !2 be the amplitude on the
other side. For simplicity, let both superconductors be identical. For the pres-
ent we suppose that they are both at zero potential.

The time-dependent Schrödinger equation applied to the
two amplitudes gives
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of electrons in the superconductor that are thermally excited across the 
energy gap.
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called a weak link. The effects of pair tunneling include:
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sence of any electric or magnetic field.

Ac Josephson effect. A dc voltage applied across the junction causes 
rf current oscillations across the junction. This effect has been utilized in a
precision determination of the value of Further, an rf voltage applied with
the dc voltage can then cause a dc current across the junction.

Macroscopic long-range quantum interference. A dc magnetic field
applied through a superconducting circuit containing two junctions causes the
maximum supercurrent to show interference effects as a function of magnetic
field intensity. This effect can be utilized in sensitive magnetometers.

Dc Josephson Effect. Our discussion of Josephson junction phenomena
follows the discussion of flux quantization. Let !1 be the probability amplitude
of electron pairs on one side of a junction, and let !2 be the amplitude on the
other side. For simplicity, let both superconductors be identical. For the pres-
ent we suppose that they are both at zero potential.

The time-dependent Schrödinger equation applied to the
two amplitudes gives
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Here represents the effect of the electron-pair coupling or transfer interac-
tion across the insulator; T has the dimensions of a rate or frequency. It is a
measure of the leakage of !1 into the region 2, and of !2 into the region 1. If
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We thus obtain, with We multiply (39) by to obtain, with ! ! "2 ! "1,

(41)

We multiply (40) by to obtain

(42)

Now equate the real and imaginary parts of (41) and similarly of (42):

(43)

(44)

If n1 ! n2 as for identical superconductors 1 and 2, we have from (44) that

(45)

From (43) we see that

(46)

The current flow from (1) to (2) is proportional to "n2 /"t or, the same
thing, !"n1 /"t. We therefore conclude from (43) that the current J of super-
conductor pairs across the junction depends on the phase difference ! as

(47)

where J0 is proportional to the transfer interaction T. The current J0 is the
maximum zero-voltage current that can be passed by the junction. With no 
applied voltage a dc current will flow across the junction (Fig. 24), with a value
between J0 and !J0 according to the value of the phase difference "2 ! "1.
This is the dc Josephson effect.

Ac Josephson Effect. Let a dc voltage V be applied across the junction. We
can do this because the junction is an insulator. An electron pair experiences a
potential energy difference qV on passing across the junction, where q # !2e.
We can say that a pair on one side is at potential energy !eV and a pair on the
other side is at eV. The equations of motion that replace (38) are

(48)

We proceed as above to find in place of (41) the equation
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We multiply (40) by to obtain

(42)

Now equate the real and imaginary parts of (41) and similarly of (42):

(43)

(44)

If n1 ! n2 as for identical superconductors 1 and 2, we have from (44) that

(45)

From (43) we see that

(46)

The current flow from (1) to (2) is proportional to "n2 /"t or, the same
thing, !"n1 /"t. We therefore conclude from (43) that the current J of super-
conductor pairs across the junction depends on the phase difference ! as

(47)

where J0 is proportional to the transfer interaction T. The current J0 is the
maximum zero-voltage current that can be passed by the junction. With no 
applied voltage a dc current will flow across the junction (Fig. 24), with a value
between J0 and !J0 according to the value of the phase difference "2 ! "1.
This is the dc Josephson effect.

Ac Josephson Effect. Let a dc voltage V be applied across the junction. We
can do this because the junction is an insulator. An electron pair experiences a
potential energy difference qV on passing across the junction, where q # !2e.
We can say that a pair on one side is at potential energy !eV and a pair on the
other side is at eV. The equations of motion that replace (38) are

(48)

We proceed as above to find in place of (41) the equation
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The current J of superconductor pairs across the junction depends on the
phase difference 𝛿 as

Separate and equate the real and imaginary parts and we get 

This equation breaks up into the real part

(50)

exactly as without the voltage V, and the imaginary part

(51)

which differs from (44) by the term 
Further, by extension of (42),

(52)

whence

(53)

(54)

From (51) and (54) with n1 ! n2, we have

(55)

We see by integration of (55) that with a dc voltage across the junction the 
relative phase of the probability amplitudes varies as

(56)

The superconducting current is given by (47) with (56) for the phase:

(57)J ! J0 sin [!(0) " (2eVt/!)]� .

!(t) ! !(0) " (2eVt/!)� .

#("2 " "1)/#t ! #!/#t ! "2eV/!� .

#"2  

/#t ! "(eV/!) " T(n1/n2)1/2 cos !� .
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Figure 24 Current-voltage characteristic of a Josephson
junction. Dc currents flow under zero applied voltage up 
to a critical current ic: this is the dc Josephson effect. At
voltages above Vc the junction has a finite resistance, but 
the current has an oscillatory component of frequency
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With no applied voltage a dc current will flow
across the junction (shown in the right), with
a value between J and −J according to the
value of the phase difference .We multiply (39) by to obtain, with ! ! "2 ! "1,

(41)

We multiply (40) by to obtain

(42)

Now equate the real and imaginary parts of (41) and similarly of (42):

(43)

(44)

If n1 ! n2 as for identical superconductors 1 and 2, we have from (44) that

(45)

From (43) we see that

(46)

The current flow from (1) to (2) is proportional to "n2 /"t or, the same
thing, !"n1 /"t. We therefore conclude from (43) that the current J of super-
conductor pairs across the junction depends on the phase difference ! as

(47)

where J0 is proportional to the transfer interaction T. The current J0 is the
maximum zero-voltage current that can be passed by the junction. With no 
applied voltage a dc current will flow across the junction (Fig. 24), with a value
between J0 and !J0 according to the value of the phase difference "2 ! "1.
This is the dc Josephson effect.

Ac Josephson Effect. Let a dc voltage V be applied across the junction. We
can do this because the junction is an insulator. An electron pair experiences a
potential energy difference qV on passing across the junction, where q # !2e.
We can say that a pair on one side is at potential energy !eV and a pair on the
other side is at eV. The equations of motion that replace (38) are

(48)

We proceed as above to find in place of (41) the equation

(49)1
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This is the dc Josephson effect. 



Ac Josephson Effect 
Let a dc voltage V be applied across the junc1on. We can do this because the
junc1on is an insulator. An electron pair experiences a poten1al energy
difference qV on passing across the junc1on, where q = −2e. We can say that a
pair on one side is at poten1al energy −eV and a pair on the other side is at eV.
The equa1ons of mo1on:

We multiply (39) by to obtain, with ! ! "2 ! "1,

(41)

We multiply (40) by to obtain

(42)

Now equate the real and imaginary parts of (41) and similarly of (42):

(43)

(44)

If n1 ! n2 as for identical superconductors 1 and 2, we have from (44) that

(45)

From (43) we see that

(46)

The current flow from (1) to (2) is proportional to "n2 /"t or, the same
thing, !"n1 /"t. We therefore conclude from (43) that the current J of super-
conductor pairs across the junction depends on the phase difference ! as

(47)

where J0 is proportional to the transfer interaction T. The current J0 is the
maximum zero-voltage current that can be passed by the junction. With no 
applied voltage a dc current will flow across the junction (Fig. 24), with a value
between J0 and !J0 according to the value of the phase difference "2 ! "1.
This is the dc Josephson effect.

Ac Josephson Effect. Let a dc voltage V be applied across the junction. We
can do this because the junction is an insulator. An electron pair experiences a
potential energy difference qV on passing across the junction, where q # !2e.
We can say that a pair on one side is at potential energy !eV and a pair on the
other side is at eV. The equations of motion that replace (38) are

(48)

We proceed as above to find in place of (41) the equation
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a hole, in the normal state. The current starts when eV ! ". At finite 
temperatures there is a small current flow even at low voltages, because 
of electrons in the superconductor that are thermally excited across the 
energy gap.

Josephson Superconductor Tunneling

Under suitable conditions we observe remarkable effects associated with
the tunneling of superconducting electron pairs from a superconductor
through a layer of an insulator into another superconductor. Such a junction is
called a weak link. The effects of pair tunneling include:

Dc Josephson effect. A dc current flows across the junction in the ab-
sence of any electric or magnetic field.

Ac Josephson effect. A dc voltage applied across the junction causes 
rf current oscillations across the junction. This effect has been utilized in a
precision determination of the value of Further, an rf voltage applied with
the dc voltage can then cause a dc current across the junction.

Macroscopic long-range quantum interference. A dc magnetic field
applied through a superconducting circuit containing two junctions causes the
maximum supercurrent to show interference effects as a function of magnetic
field intensity. This effect can be utilized in sensitive magnetometers.

Dc Josephson Effect. Our discussion of Josephson junction phenomena
follows the discussion of flux quantization. Let !1 be the probability amplitude
of electron pairs on one side of a junction, and let !2 be the amplitude on the
other side. For simplicity, let both superconductors be identical. For the pres-
ent we suppose that they are both at zero potential.

The time-dependent Schrödinger equation applied to the
two amplitudes gives

(38)

Here represents the effect of the electron-pair coupling or transfer interac-
tion across the insulator; T has the dimensions of a rate or frequency. It is a
measure of the leakage of !1 into the region 2, and of !2 into the region 1. If
the insulator is very thick, T is zero and there is no pair tunneling.

Let and Then
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Separate and equate the real and imaginary parts and we get This equation breaks up into the real part

(50)

exactly as without the voltage V, and the imaginary part

(51)

which differs from (44) by the term 
Further, by extension of (42),

(52)

whence

(53)

(54)

From (51) and (54) with n1 ! n2, we have

(55)

We see by integration of (55) that with a dc voltage across the junction the 
relative phase of the probability amplitudes varies as

(56)

The superconducting current is given by (47) with (56) for the phase:

(57)J ! J0 sin [!(0) " (2eVt/!)]� .

!(t) ! !(0) " (2eVt/!)� .

#("2 " "1)/#t ! #!/#t ! "2eV/!� .

#"2  

/#t ! "(eV/!) " T(n1/n2)1/2 cos !� .

#n2 /#t ! "2T(n1 n2)1/2 sin !� ;

1
2 

#n2

#t  $ in2 
#"2

#t  ! "i eVn2 !
"1

 " iT(n1n2)1/2 e"i!� ,

eV/!.

#"1 /#t ! (eV/!) " T(n2  

/n1)1/2 cos !� ,

#n1 

/#t ! 2T(n1 n2)1/2 sin !� ,
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Figure 24 Current-voltage characteristic of a Josephson
junction. Dc currents flow under zero applied voltage up 
to a critical current ic: this is the dc Josephson effect. At
voltages above Vc the junction has a finite resistance, but 
the current has an oscillatory component of frequency

this is the ac Josephson effect.# ! 2eV/!:
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This equation breaks up into the real part

(50)

exactly as without the voltage V, and the imaginary part

(51)

which differs from (44) by the term 
Further, by extension of (42),

(52)

whence

(53)

(54)

From (51) and (54) with n1 ! n2, we have

(55)

We see by integration of (55) that with a dc voltage across the junction the 
relative phase of the probability amplitudes varies as

(56)

The superconducting current is given by (47) with (56) for the phase:

(57)J ! J0 sin [!(0) " (2eVt/!)]� .

!(t) ! !(0) " (2eVt/!)� .

#("2 " "1)/#t ! #!/#t ! "2eV/!� .

#"2  

/#t ! "(eV/!) " T(n1/n2)1/2 cos !� .

#n2 /#t ! "2T(n1 n2)1/2 sin !� ;
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to a critical current ic: this is the dc Josephson effect. At
voltages above Vc the junction has a finite resistance, but 
the current has an oscillatory component of frequency
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and

We multiply (39) by to obtain, with ! ! "2 ! "1,

(41)

We multiply (40) by to obtain

(42)

Now equate the real and imaginary parts of (41) and similarly of (42):

(43)

(44)

If n1 ! n2 as for identical superconductors 1 and 2, we have from (44) that

(45)

From (43) we see that

(46)

The current flow from (1) to (2) is proportional to "n2 /"t or, the same
thing, !"n1 /"t. We therefore conclude from (43) that the current J of super-
conductor pairs across the junction depends on the phase difference ! as

(47)

where J0 is proportional to the transfer interaction T. The current J0 is the
maximum zero-voltage current that can be passed by the junction. With no 
applied voltage a dc current will flow across the junction (Fig. 24), with a value
between J0 and !J0 according to the value of the phase difference "2 ! "1.
This is the dc Josephson effect.

Ac Josephson Effect. Let a dc voltage V be applied across the junction. We
can do this because the junction is an insulator. An electron pair experiences a
potential energy difference qV on passing across the junction, where q # !2e.
We can say that a pair on one side is at potential energy !eV and a pair on the
other side is at eV. The equations of motion that replace (38) are

(48)

We proceed as above to find in place of (41) the equation
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This equation breaks up into the real part

(50)

exactly as without the voltage V, and the imaginary part

(51)

which differs from (44) by the term 
Further, by extension of (42),

(52)

whence

(53)

(54)

From (51) and (54) with n1 ! n2, we have

(55)

We see by integration of (55) that with a dc voltage across the junction the 
relative phase of the probability amplitudes varies as

(56)

The superconducting current is given by (47) with (56) for the phase:

(57)J ! J0 sin [!(0) " (2eVt/!)]� .

!(t) ! !(0) " (2eVt/!)� .

#("2 " "1)/#t ! #!/#t ! "2eV/!� .

#"2  

/#t ! "(eV/!) " T(n1/n2)1/2 cos !� .

#n2 /#t ! "2T(n1 n2)1/2 sin !� ;
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junction. Dc currents flow under zero applied voltage up 
to a critical current ic: this is the dc Josephson effect. At
voltages above Vc the junction has a finite resistance, but 
the current has an oscillatory component of frequency

this is the ac Josephson effect.# ! 2eV/!:
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;

This equation breaks up into the real part

(50)

exactly as without the voltage V, and the imaginary part

(51)

which differs from (44) by the term 
Further, by extension of (42),

(52)

whence

(53)

(54)

From (51) and (54) with n1 ! n2, we have

(55)

We see by integration of (55) that with a dc voltage across the junction the 
relative phase of the probability amplitudes varies as

(56)

The superconducting current is given by (47) with (56) for the phase:

(57)J ! J0 sin [!(0) " (2eVt/!)]� .

!(t) ! !(0) " (2eVt/!)� .

#("2 " "1)/#t ! #!/#t ! "2eV/!� .
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This equation breaks up into the real part

(50)

exactly as without the voltage V, and the imaginary part

(51)

which differs from (44) by the term 
Further, by extension of (42),

(52)

whence

(53)

(54)

From (51) and (54) with n1 ! n2, we have

(55)

We see by integration of (55) that with a dc voltage across the junction the 
relative phase of the probability amplitudes varies as

(56)

The superconducting current is given by (47) with (56) for the phase:

(57)J ! J0 sin [!(0) " (2eVt/!)]� .

!(t) ! !(0) " (2eVt/!)� .
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and

This equation breaks up into the real part

(50)

exactly as without the voltage V, and the imaginary part

(51)

which differs from (44) by the term 
Further, by extension of (42),

(52)

whence

(53)

(54)

From (51) and (54) with n1 ! n2, we have

(55)

We see by integration of (55) that with a dc voltage across the junction the 
relative phase of the probability amplitudes varies as

(56)

The superconducting current is given by (47) with (56) for the phase:

(57)J ! J0 sin [!(0) " (2eVt/!)]� .
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With n1  ≃ n2, we have

The superconduc1ng current is given by 

This equation breaks up into the real part

(50)

exactly as without the voltage V, and the imaginary part

(51)

which differs from (44) by the term 
Further, by extension of (42),

(52)

whence

(53)

(54)

From (51) and (54) with n1 ! n2, we have

(55)

We see by integration of (55) that with a dc voltage across the junction the 
relative phase of the probability amplitudes varies as

(56)

The superconducting current is given by (47) with (56) for the phase:

(57)J ! J0 sin [!(0) " (2eVt/!)]� .

!(t) ! !(0) " (2eVt/!)� .

#("2 " "1)/#t ! #!/#t ! "2eV/!� .

#"2  

/#t ! "(eV/!) " T(n1/n2)1/2 cos !� .

#n2 /#t ! "2T(n1 n2)1/2 sin !� ;

1
2 

#n2

#t  $ in2 
#"2

#t  ! "i eVn2 !
"1

 " iT(n1n2)1/2 e"i!� ,

eV/!.

#"1 /#t ! (eV/!) " T(n2  

/n1)1/2 cos !� ,

#n1 

/#t ! 2T(n1 n2)1/2 sin !� ,
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Figure 24 Current-voltage characteristic of a Josephson
junction. Dc currents flow under zero applied voltage up 
to a critical current ic: this is the dc Josephson effect. At
voltages above Vc the junction has a finite resistance, but 
the current has an oscillatory component of frequency

this is the ac Josephson effect.# ! 2eV/!:
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The current oscillates with frequency A dc voltage of 1 μV produces
a frequency of 483.6 MHz.

The current oscillates with frequency

(58)

This is the ac Josephson effect. A dc voltage of 1 !V produces a frequency 
of 483.6 MHz. The relation (58) says that a photon of energy is 
emitted or absorbed when an electron pair crosses the barrier. By measuring
the voltage and the frequency it is possible to obtain a very precise value 
of 

Macroscopic Quantum Interference. We saw in (24) and (26) that the
phase difference "2 ! "1 around a closed circuit which encompasses a total
magnetic flux " is given by

(59)

The flux is the sum of that due to external fields and that due to currents in the
circuit itself.

We consider two Josephson junctions in parallel, as in Fig. 25. No voltage
is applied. Let the phase difference between points 1 and 2 taken on a path
through junction a be #a. When taken on a path through junction b, the phase
difference is #b. In the absence of a magnetic field these two phases must be
equal.

Now let the flux " pass through the interior of the circuit. We do this 
with a straight solenoid normal to the plane of the paper and lying inside the
circuit. By (59), or

(60)

The total current is the sum of Ja and Jb. The current through each junc-
tion is of the form (47), so that

JTotal # J0 !sin "#0 $ 

e
!c

 " # $ sin " #0 ! 

e
!c

 " #$ # 2( J0 sin #0) cos e"
!c

� .

#b # #0 $ e
!c

 "� ; � � #a # #0 ! e
!c

 "� .

#b ! #a # (2e/!c)",

"2 ! "1 # (2e/!c)"� .

e/!.

!$ # 2eV

$ # 2eV/!� .
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Figure 25 The arrangement for experiment on
macroscopic quantum interference. A magnetic
flux " passes through the interior of the loop.
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the voltage and the frequency it is possible to obtain a very precise value 
of 

Macroscopic Quantum Interference. We saw in (24) and (26) that the
phase difference "2 ! "1 around a closed circuit which encompasses a total
magnetic flux " is given by

(59)
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We consider two Josephson junctions in parallel:  

The current oscillates with frequency

(58)

This is the ac Josephson effect. A dc voltage of 1 !V produces a frequency 
of 483.6 MHz. The relation (58) says that a photon of energy is 
emitted or absorbed when an electron pair crosses the barrier. By measuring
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Let the phase difference between points
1 and 2 taken on a path through
junction a be 𝛿a. When taken on a path
through junction b, the phase difference
is 𝛿b. In the absence of a magnetic field
these two phases must be equal.
Now let the flux Φ pass through the interior of the circuit, then

The current oscillates with frequency

(58)

This is the ac Josephson effect. A dc voltage of 1 !V produces a frequency 
of 483.6 MHz. The relation (58) says that a photon of energy is 
emitted or absorbed when an electron pair crosses the barrier. By measuring
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magnetic flux " is given by
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The flux is the sum of that due to external fields and that due to currents in the
circuit itself.
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is applied. Let the phase difference between points 1 and 2 taken on a path
through junction a be #a. When taken on a path through junction b, the phase
difference is #b. In the absence of a magnetic field these two phases must be
equal.

Now let the flux " pass through the interior of the circuit. We do this 
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The current oscillates with frequency

(58)

This is the ac Josephson effect. A dc voltage of 1 !V produces a frequency 
of 483.6 MHz. The relation (58) says that a photon of energy is 
emitted or absorbed when an electron pair crosses the barrier. By measuring
the voltage and the frequency it is possible to obtain a very precise value 
of 

Macroscopic Quantum Interference. We saw in (24) and (26) that the
phase difference "2 ! "1 around a closed circuit which encompasses a total
magnetic flux " is given by

(59)

The flux is the sum of that due to external fields and that due to currents in the
circuit itself.

We consider two Josephson junctions in parallel, as in Fig. 25. No voltage
is applied. Let the phase difference between points 1 and 2 taken on a path
through junction a be #a. When taken on a path through junction b, the phase
difference is #b. In the absence of a magnetic field these two phases must be
equal.

Now let the flux " pass through the interior of the circuit. We do this 
with a straight solenoid normal to the plane of the paper and lying inside the
circuit. By (59), or

(60)

The total current is the sum of Ja and Jb. The current through each junc-
tion is of the form (47), so that
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The total current is the sum of Ja and Jb , which is

The current oscillates with frequency

(58)

This is the ac Josephson effect. A dc voltage of 1 !V produces a frequency 
of 483.6 MHz. The relation (58) says that a photon of energy is 
emitted or absorbed when an electron pair crosses the barrier. By measuring
the voltage and the frequency it is possible to obtain a very precise value 
of 

Macroscopic Quantum Interference. We saw in (24) and (26) that the
phase difference "2 ! "1 around a closed circuit which encompasses a total
magnetic flux " is given by

(59)

The flux is the sum of that due to external fields and that due to currents in the
circuit itself.

We consider two Josephson junctions in parallel, as in Fig. 25. No voltage
is applied. Let the phase difference between points 1 and 2 taken on a path
through junction a be #a. When taken on a path through junction b, the phase
difference is #b. In the absence of a magnetic field these two phases must be
equal.

Now let the flux " pass through the interior of the circuit. We do this 
with a straight solenoid normal to the plane of the paper and lying inside the
circuit. By (59), or
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The total current is the sum of Ja and Jb. The current through each junc-
tion is of the form (47), so that
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or 



The current varies with Φ and has maxima whenThe current varies with ! and has maxima when

(61)

The periodicity of the current is shown in Fig. 26. The short period varia-
tion is produced by interference from the two junctions, as predicted by (61).
The longer period variation is a diffraction effect and arises from the finite 
dimensions of each junction—this causes ! to depend on the particular path
of integration (Problem 6).

HIGH-TEMPERATURE SUPERCONDUCTORS

High Tc or HTS denotes superconductivity in materials, chiefly copper 
oxides, with high transition temperatures, accompanied by high critical cur-
rents and magnetic fields. By 1988 the long-standing 23 K ceiling of Tc in
intermetallic compounds had been elevated to 125 K in bulk superconducting
oxides; these passed the standard tests for superconductivity—the Meissner
effect, ac Josephson effect, persistent currents of long duration, and substan-
tially zero dc resistivity. Memorable steps in the advance include:

BaPb0.75Bi0.25O3 Tc " 12 K [BPBO]
La1.85Ba0.15CuO4 Tc " 36 K [LBCO]
YBa2Cu3O7 Tc " 90 K [YBCO]
Tl2Ba2Ca2Cu3O10 Tc " 120 K [TBCO]
Hg0.8Tl0.2Ba2Ca2Cu3O8.33 Tc " 138 K

e!/!c " s!� , � s " integer� .
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Figure 26 Experimental trace of Jmax versus magnetic field showing interference and diffraction
effects for two junctions A and B. The field periodicity is 39.5 and 16 mG for A and B, respec-
tively. Approximate maximum currents are 1 mA (A) and 0.5 mA (B). The junction separation is 
3 mm and junction width 0.5 mm for both cases. The zero offset of A is due to a background mag-
netic field. (After R. C. Jaklevic, J. Lambe, J. E. Mercereau, and A. H. Silver.)
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The periodicity of the current is shown below. The short period varia1on is
produced by interference from the two junc1ons. The longer period
varia1on is a diffrac1on effect and arises from the finite dimensions of
each junc1on—this causes Φ to depend on the par1cular path of
integra1on.

The current varies with ! and has maxima when

(61)

The periodicity of the current is shown in Fig. 26. The short period varia-
tion is produced by interference from the two junctions, as predicted by (61).
The longer period variation is a diffraction effect and arises from the finite 
dimensions of each junction—this causes ! to depend on the particular path
of integration (Problem 6).

HIGH-TEMPERATURE SUPERCONDUCTORS

High Tc or HTS denotes superconductivity in materials, chiefly copper 
oxides, with high transition temperatures, accompanied by high critical cur-
rents and magnetic fields. By 1988 the long-standing 23 K ceiling of Tc in
intermetallic compounds had been elevated to 125 K in bulk superconducting
oxides; these passed the standard tests for superconductivity—the Meissner
effect, ac Josephson effect, persistent currents of long duration, and substan-
tially zero dc resistivity. Memorable steps in the advance include:

BaPb0.75Bi0.25O3 Tc " 12 K [BPBO]
La1.85Ba0.15CuO4 Tc " 36 K [LBCO]
YBa2Cu3O7 Tc " 90 K [YBCO]
Tl2Ba2Ca2Cu3O10 Tc " 120 K [TBCO]
Hg0.8Tl0.2Ba2Ca2Cu3O8.33 Tc " 138 K
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Figure 26 Experimental trace of Jmax versus magnetic field showing interference and diffraction
effects for two junctions A and B. The field periodicity is 39.5 and 16 mG for A and B, respec-
tively. Approximate maximum currents are 1 mA (A) and 0.5 mA (B). The junction separation is 
3 mm and junction width 0.5 mm for both cases. The zero offset of A is due to a background mag-
netic field. (After R. C. Jaklevic, J. Lambe, J. E. Mercereau, and A. H. Silver.)
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The field periodicity is 39.5 and 16 mG for A and B, respec1vely.
Approximate maximum currents are 1 mA (A) and 0.5 mA (B). The junc1on
separa1on is 3 mm and junc1on width 0.5 mm for both cases. The zero
offset of A is due to a background magne1c field.



High-Temperature Superconductors 
High-temperature superconductors (abbreviated high-Tc or HTS) are
operatively defined as materials that behave as superconductors at the
boiling point of liquid nitrogen (77K), one of the simplest coolants
in cryogenics.

The first high-temperature superconductor was discovered in 1986, by IBM
researchers Bednorz and Müller, who were awarded the Nobel Prize in
Physics in 1987 "for their important break-through in the discovery of
superconductivity in ceramic materials".

The main class of high-temperature superconductors are in the class of
copper oxides. The second class of high-temperature superconductors in
the practical classification is the class of iron-based compounds.

Some extremely-high pressure super-hydride compounds are usually
categorized as high-temperature superconductors, which is not suitable for
practical applications. The current Tc record holder is carbonaceous sulfur
hydride (H2S + CH4 at 267 GPa) at 287K.



Cuprates are layered materials, consisting of
superconducting layers of copper oxide,
separated by spacer layers. Their super-
conducting properties are determined by
electrons moving within weakly coupled
copper-oxide (CuO2) layers. Neighboring layers
contain ions such as lanthanum, barium,
yttrium, or other atoms which act to stabilize
the structure and dope electrons or holes onto
the copper-oxide layers. The unit cell of
YBa2Cu3O7 (YBCO) consists of three perovskite
unit cells, which is pseudocubic, nearly ortho-
rombic. The structure has a stacking of
different layers: (CuO) (BaO) (CuO2) (Y) (CuO2)
(BaO) (CuO). One of the key feature of this unit
cell is the presence of two layers of CuO2.

Structure of YBCO Cuprate



The undoped "parent" or "mother" compounds are Mo? insulators with
long-range an1ferromagne1c order at sufficiently low temperatures.
Certain aspects common to all materials have been iden1fied.

Phase diagram of cuprate super-
conductors: Both standard cuprate
super-conductors, YBCO and
BSCCO, are notably hole-doped.

• The an1ferromagne1c low-temperature
state of undoped materials and the
superconduc1ng state that emerges
upon doping, primarily the dx

2
-y
2 orbital

state of the Cu2+ ions, suggest that
electron-electron interac1ons are more
significant than electron-phonon inter-
ac1ons in cuprates, making the super-
conduc1vity unconven1onal.

• Presence of a pseudogap phase appears
up to at least op1mal doping.

• The weak isotope effects observed for
most cuprates.

Phase Diagram of Cuprates



Problems 

1. Structure of a vortex. (a) Find a solution to the London equation that
has cylindrical symmetry and applies outside a line core. In cylindrical
polar coordinates, we want a solution of

that is singular at the origin and for which the total flux is the flux
quantum:

The equation is in fact valid only outside the normal core of radius 𝜉.
(b) Show that the solution has the limits

where Ba is the field outside the plate and parallel to it; here x ! 0 is at the center
of the plate. (b) The effective magnetization M(x) in the plate is defined by 
B(x) " Ba ! 4!M(x). Show that, in CGS, 4!M(x) ! "Ba(1/8"2)(#2 " 4x2), for # #

". In SI we replace the 4! by $0.

2. Critical field of thin films. (a) Using the result of Problem 1b, show that the free
energy density at T ! 0 K within a superconducting film of thickness # in an exter-
nal magnetic field Ba is given by, for # # ",

(CGS)

In SI the factor ! is replaced by We neglect a kinetic energy contribution to
the problem. (b) Show that the magnetic contribution to FS when averaged over
the thickness of the film is (c) Show that the critical field of the thin
film is proportional to ("/#)Hc, where Hc is the bulk critical field, if we consider
only the magnetic contribution to US.

3. Two-fluid model of a superconductor. On the two-fluid model of a supercon-
ductor we assume that at temperatures 0 $ T $ Tc the current density may be
written as the sum of the contributions of normal and superconducting electrons: 
j ! jN % jS, where jN ! %0E and jS is given by the London equation. Here %0 is an
ordinary normal conductivity, decreased by the reduction in the number of normal
electrons at temperature T as compared to the normal state. Neglect inertial ef-
fects on both jN and jS. (a) Show from the Maxwell equations that the dispersion re-
lation connecting wavevector k and frequency & for electromagnetic waves in the
superconductor is

(CGS)

(SI)

where is given by (14a) with n replaced by nS. Recall that curl curl B ! "&2B.
(b) If ' is the relaxation time of the normal electrons and nN is their concentration,
show by use of the expression %0 ! nNe2'/m that at frequencies & # 1/' the disper-
sion relation does not involve the normal electrons in an important way, so that the
motion of the electrons is described by the London equation alone. The super-
current short-circuits the normal electrons. The London equation itself only holds
true if is small in comparison with the energy gap. Note: The frequencies of 
interest are such that & # &p, where &p is the plasma frequency.

*4. Structure of a vortex. (a) Find a solution to the London equation that has cylin-
drical symmetry and applies outside a line core. In cylindrical polar coordinates, we
want a solution of

B " "2&2B ! 0

!&

"L
2

k2c2
 ! (%0 

/(0) &i " c2"L
"2

 % &2� ;

k2c2
 ! 4!%0&i " c2"L

"2
 % &2� ; � � or

Ba
2(#/")2/96!.

1
4 $0.

FS(x, Ba) ! US(0) % (#2
 " 4x2)Ba

2/64!"2� .
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*This problem is somewhat difficult.
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that is singular at the origin and for which the total flux is the flux quantum:

The equation is in fact valid only outside the normal core of radius !. (b) Show that
the solution has the limits

5. London penetration depth. (a) Take the time derivative of the London equation
(10) to show that (b) If mdv/dt ! qE, as for free carriers of
charge q and mass m, show that 

6. Diffraction effect of Josephson junction. Consider a junction of rectangular cross
section with a magnetic field B applied in the plane of the junction, normal to an
edge of width w. Let the thickness of the junction be T. Assume for convenience
that the phase difference of the two superconductors is "/2 when B ! 0. Show that
the dc current in the presence of the magnetic field is

7. Meissner effect in sphere. Consider a sphere of a type I superconductor with crit-
ical field Hc. (a) Show that in the Meissner regime the effective magnetization M
within the sphere is given by "8"M/3 ! Ba, the uniform applied magnetic field. 
(b) Show that the magnetic field at the surface of the sphere in the equatorial plane
is 3Ba/2. (It follows that the applied field at which the Meissner effect starts to break
down is 2Hc/3.) Reminder: The demagnetization field of a uniformly magnetized
sphere is "4"M/3.

Reference

An excellent superconductor review is the website superconductors.org.

J ! J0 
sin(wTBe/!c)

(wTBe/!c)
� .

#L
2

 ! mc2/4"nq2.
#j/#t ! (c2/4"#L

2)E.

B($) " ($0/2"#2)("#/2$)1/2 exp("$/#)� . � � ($ % #)

B($) " ($0/2"#2) ln(#&$)� , � � (! ' $ ' #)

2" #!

0
 d$ $B($) ! $0� .
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that is singular at the origin and for which the total flux is the flux quantum:

The equation is in fact valid only outside the normal core of radius !. (b) Show that
the solution has the limits

5. London penetration depth. (a) Take the time derivative of the London equation
(10) to show that (b) If mdv/dt ! qE, as for free carriers of
charge q and mass m, show that 

6. Diffraction effect of Josephson junction. Consider a junction of rectangular cross
section with a magnetic field B applied in the plane of the junction, normal to an
edge of width w. Let the thickness of the junction be T. Assume for convenience
that the phase difference of the two superconductors is "/2 when B ! 0. Show that
the dc current in the presence of the magnetic field is

7. Meissner effect in sphere. Consider a sphere of a type I superconductor with crit-
ical field Hc. (a) Show that in the Meissner regime the effective magnetization M
within the sphere is given by "8"M/3 ! Ba, the uniform applied magnetic field. 
(b) Show that the magnetic field at the surface of the sphere in the equatorial plane
is 3Ba/2. (It follows that the applied field at which the Meissner effect starts to break
down is 2Hc/3.) Reminder: The demagnetization field of a uniformly magnetized
sphere is "4"M/3.

Reference

An excellent superconductor review is the website superconductors.org.
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Problems 
2. Diffraction effect of Josephson junction. Consider a junction of

rectangular cross section with a magnetic field B applied in the plane
of the junction, normal to an edge of width w. Let the thickness of the
junction be T. Assume for convenience that the phase difference of the
two superconductors is 𝜋/2 when B = 0. Show that the dc current in
the presence of the magnetic field is

that is singular at the origin and for which the total flux is the flux quantum:

The equation is in fact valid only outside the normal core of radius !. (b) Show that
the solution has the limits

5. London penetration depth. (a) Take the time derivative of the London equation
(10) to show that (b) If mdv/dt ! qE, as for free carriers of
charge q and mass m, show that 

6. Diffraction effect of Josephson junction. Consider a junction of rectangular cross
section with a magnetic field B applied in the plane of the junction, normal to an
edge of width w. Let the thickness of the junction be T. Assume for convenience
that the phase difference of the two superconductors is "/2 when B ! 0. Show that
the dc current in the presence of the magnetic field is

7. Meissner effect in sphere. Consider a sphere of a type I superconductor with crit-
ical field Hc. (a) Show that in the Meissner regime the effective magnetization M
within the sphere is given by "8"M/3 ! Ba, the uniform applied magnetic field. 
(b) Show that the magnetic field at the surface of the sphere in the equatorial plane
is 3Ba/2. (It follows that the applied field at which the Meissner effect starts to break
down is 2Hc/3.) Reminder: The demagnetization field of a uniformly magnetized
sphere is "4"M/3.

Reference

An excellent superconductor review is the website superconductors.org.
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3. Meissner effect in sphere. Consider a sphere of a type I
superconductor with cri1cal field Hc. (a) Show that in the Meissner
regime the effec1ve magne1za1on M within the sphere is given by
−8𝜋M/3 = Ba, the uniform applied magne1c field. (b) Show that the
magne1c field at the surface of the sphere in the equatorial plane is
3Ba/2. (It follows that the applied field at which the Meissner effect
starts to break down is 2Hc/3.) Reminder: The demagne1za1on field of
a uniformly magne1zed sphere is −4𝜋M/3.


