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If a very large number of atoms are
involved, as in the case of a real
solid, then the energy levels will lie
on a quasi- continuous scale and one
therefore speaks of energy bands.
The broadening of the band depends
on the overlap of the wavefunctions
concerned. Thus for the deep lying
levels the broadening is small, and
these ""core levels' retain their
atomic shell-like character even in
the solid. For the highest occupied
levels, on the other hand, the
broadening is so large that the s-, p-
and where present, d-levels merge
into a single band.



Hydrogen Molecule

Consider two hydrogen atoms to form into a molecule, each with an electron
in the 1s ground state, their wavefunctions are ¥, and Y, respectively.

As the atoms are brought together, their wavetunctions overlap. We con-
sider the two combinations ¥, * 5. Each combination shares an electron
with the two protons, but an electron in the state ¢, + 3 will have a some-
what lower energy than in the state ¢, — ;.
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Figure 16 (a) Schematic drawing of wavefunctions of electrons on two hydrogen atoms at large
separation. (b) Ground state wavefunction at closer separation. (c¢) Excited state wavefunction.



As free atoms are brought together, the coulomb interaction between the
atom cores and the electron splits the energy levels, spreading them into
bands. Each state of given quantum number of the free atom is spread in the
crystal into a band of energies. The width of the band is proportional to the
strength of the overlap interaction between neighboring atoms.

There will also be bands formed from p, d, . . . states (I = 1, 2, . . .) of the
free atoms. States degenerate in the free atom will form different bands. Each
will not have the same energy as any other band over any substantial range of
the wavevector. Bands may coincide in energy at certain values of k in the
Brillouin zone.

The 1s band of a ring of 20
hydrogen atoms calculated
by the tight-binding method
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Tight Binding Method

The tight binding approximation is also called the linear combination of
atomic orbital (LCAO) approximation in which the one electron wavefunction
Yk(r) is built from the electron wavefunction of an isolated atom, ¢(r).

i lr) = Z Cyip(r — 1;)
j

where the sum is over all lattice points.

This function of the Bloch form if Cy; = N™"* ", for a crystal of N atoms:

i) = N7 3 exp(ik - )e(r — 1)
J

We find the first-order energy by calculating the diagonal matrix elements
of the hamiltonian of the crystal:

(k|H k) = N1 X explik - (r; — r,)] (o, H|p;) |

j m

where ¢,, = ¢(r — r,,). Writing p,, = r,, — 13,

(k|H[k) = > exp(—ik - p,)) [ dV ¢"(r — p,)He(x) .

n



We consider the integrals over the same atom and the nearest neighbor
atoms only, then

JdV e (r)He(r) = —a ;. [dV ¢*(r — p)He(r) = —7vy ;

and we have the first-order energy, provided (klk) = 1:
klHk) = —a -y, exp(—ik * p,) = ¢ .

For a simple cubic structure the nearest-neighbor atoms are at

p.=(xa0,0) ; (0,£40); (00, *a),

wehave ¢ = _, — 9a(cos k.a + cos k,a + cos k.a)

¢

Thus the energies are confined to a band of width 12y. The weaker the over-
lap, the narrower is the energy band.

If ka <1, ¢ = —a — 6y + vk’a® the effective mass m* = h2/2ya?

When the overlap integral vy is small, the band is narrow and the effec-
tive mass is high.



For the bcc structure with eight nearest neighbors,

= —q — 8v i]. 1]. N ;]
€, = —« Y COS 5 K, COS 5 K, COS 5K 0

For the fcc structure with twelve nearest neighbors,

1 1 1 1 1 1
€, = —a — 4y(cos s k,a cos 5 k.a + cos 3 k.a cos 3 k.a + cos zk.a cos 5 k,a)

A constant energy surface of an fcc
crystal structure in the nearest neighbor
tight-binding approximation. The surface
shown has € = - a + 2[yl.

The tight-binding (or LCAO) approximation is quite good for inner electrons
of atoms, but it is not often good description for the conduction electrons. It is
used to describe approximately the d bands of transition metals and the
valence bands of diamondlike and inert gas crystals.



Wigner Seitz Method

A Bloch function satisfies the wave equation
l 9 + U iler — iker
om P (r) | €™M up(r) = e ™ uylr)
With P = -iAV, we have
p e* T (r) = hik e u(r) + e** pu(r) ;

2% (r) = (k) ¥ uy(r) -+ e (27K - plg(r) + T pu(r)
P P P

So,
(5}; (p + fik)* + U<r>)u.k<r> = e(r) |

At k = 0 we have i, = u,(r), where u,(r) has the periodicity of the lattice, sees
the ion cores, and near them will look like the wavefunction of the free atom.



We then approximate the exact wavefunction , with u,(r),
fork # 0, . = explik -« ruy(r)

(% p*+ U(r)) unr) = €yuylr) , €. = €+ (7*k*/2m)

In a spherical approximation to the shape of the smallest Wigner-Seitz cell
we use the Wigner-Seitz boundary condition

(dy/dr), =0

where r is the radius of a sphere equal in volume to a primitive cell

@ x @ >(
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The stability of the simple metals

S T Metal, k = 0 with respect to free atoms is
7 T~ "™ Free atom .
y ~~o caused by the lowering of the
, \N-_ - o 3 - L]
0 e Metal, kat Brillouin - apyargy of the Bloch orbital with k
p zone boundary .
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Figure 19 Radial wavefunctions for the 3s orbital of free sodium atom and for the 3s conduction
band in sodium metal The wavefunctions, which are not normalized here, are found by integrat-
ing the Schrédinger equation for an electron in the potential well of an Na™ ion core. For the free
atom the wavefunction is integrated subject to the usual Schrédinger boundary condition (r) — 0
as r — ; the energy eigenvalue is —5.15 eV. The wavefunction for wavevector k = 0 in the metal
is subject to the Wigner-Seitz boundary condition that dy/dr = 0 when r is midway between
neighboring atoms; the energy of this orbital is —8.2 eV, considerably lower than for the free
atom. The orbitals at the zone boundary are not filled in sodium; their energy is +2.7 eV. (After
E Wigner and F. Seitz.)



Many-electron Hamiltonian

For a solid, the many-electron Hamiltonian whose Schrodinger wave
equation must be solved is

h2 2

) e
Vi B Za (nuclei)

i (electrons)
2 2
2 &a,b (nuclei) 4 7€, Rab 2 &i, j (electron) 4

Ty

H =- % Zi (electrons) m




The many-electron Hamiltonian:

h2 2

0 e
Vi B Za (nuclei)

i (electrons)
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2 &a,b (nuclei) 4 7€, Rab D &i, j (electron) 4
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H =3 -
m Zz (electrons) 4 TE YT,

1. The first term in the Hamiltonian is the operator representing the kinetic
energy of all the electrons. Each different i corresponds to a different
electron.

2. The second term is the potential energy of interaction of all of the electrons
with all of the nuclei, and r; is the distance from the ath nucleus of Z, to the
ith electron.

3. The third term is the Coulomb potential energy of interaction between the
nuclei. R, is the distance between nucleus a and nucleus b. The prime on
the sum as usual means omission of those terms for which a = b.

4. The fourth term is the Coulomb potential energy of interaction between the
electrons, and r;; is the distance between the ith and jth electrons.



h? 2 <
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This N-electron Hamiltonian is unnecessarily cumbersome. It is more
convenient to write it in the more abstract form

Hxx,) = 2N H@D+LY, V(@)

62

a (nuclei)
i (electrons) o’

H(i) = (-h?/2m)Vi =Y.
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Density Functional Theory

A N-electron state described by a wavefunction W(ry, ..., ry) satisfies the many-
electron time-independent Schrodinger equation

N
Z(-%V2>+ZV“ +ZU (r;,r;)| ¥ = BV,

=1 1<J

The ground-state properties of a many-electron system are uniquely
determined by an electron density that depends on only three spatial
coordinates. It set down the groundwork for reducing the many-body
problem of N electrons with 3N spatial coordinates to three spatial
coordinates, through the use of functionals of the electron density n(r), so

that the ground state wavefunction W is a unique functional of the ground
state density ngy(r).

N/d3 /d3rN W™ (25T TN )WL T 55005 s BN )
]

U, = ¥[ng



So, the ground-state energy E| is a functional of ny:
Ey = E[ng] = (¥[no]|T + V + U|¥[ny)),

More generally, the contribution of the external potential (¥|V|¥)
can be written explicitly in terms of the density n:

Vin| = /V(r)n(r) d’r.

The effective single-particle potential can be written as

Vi(r) =V (r) + / % d’r’ 4 Vxc[n(r)],

where V(r) is the external potential, the second term is the Hartree
term describing the electron-electron Coulomb repulsion, and the last
term Vi is the exchange-correlation potential. Here, V. includes all the
many-particle interactions.



Kohn-Sham equations of this auxiliary noninteracting system can be derived:

[_h_2v2 a1 Vs(r)] @i(r) = €ipi(r),

2m

which yields the orbitals ¢; that reproduce the density n(r) of the original
many-body system

n(r) = Z i (x)|".

Usually one starts with an initial guess for n(r), then calculates the
corresponding V, and solves the Kohn-Sham equations for the ¢,
From these one calculates a new density and starts again. This
procedure is then repeated until convergence is reached.



Fermi Surfaces and Zone Schemes

The Fermi surface is the surface of constant energy €; in k space. The
Fermi surface separates the unfilled orbitals from the filled orbitals, at
absolute zero. The electrical properties of the metal are determined by the
volume and shape of the Fermi surface, because the current is due to changes
in the occupancy of states near the Fermi surface.

For any K’ outside of the first Brillouin
zone, we can always find a reciprocal
lattice vector G so thatk=K + Gand k
lies in the first Brillouin zone.

l!fk'(l') — eii('.ruk,(r> — e"k”"(e“"c""‘ukr(r))
= ¢*Ty, (r) = Yo (r)

a




Reduced, Extended and Periodic Zone Schemes
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Figure 4 Three energy bands of a linear lattice plotted in (a) the extended (Brillouin).
(b) reduced, and (c) periodic zone schemes.



Brillouin Zones of Square Lattice

For a simple square lattice of atoms with interatomic distance a. Its reciprocal
lattice will also be square, with reciprocal lattice base vector of length 271t/a.
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Construction of Fermi Surfaces for Free Electrons

Brillouin zones of a square lattice in two
dimensions. The circle shown is a surface of constant
energy for free electrons; it will be the Fermi surface
for some particular value of the electron concentra-
tion. The total area of the filled region in k space de-
pends only on the electron concentration and is inde-
pendent of the interaction of the electrons with the
lattice. The shape of the Fermi surface depends
on the lattice interaction, and the shape will not be
o an exact circle in an actual lattice.

Fermi circle viewed
in the reduced zone
scheme

1st zone 2nd zone 3rd zone



Nearly Free Electrons Fermi Surfaces

From free electrons Fermi surfaces to nearly free electrons Fermi surfaces:

o The interaction of the electron with the periodic potential of the crystal
creates energy gaps at the zone boundaries.

o Almost always the Fermi surface will intersect zone boundaries perpendicu-
larly.

o The crystal potential will round out sharp corners in the Fermi surfaces.

o The total volume enclosed by the Fermi surface depends only on the
electron concentration and is independent of the details of the lattice

E 40

| { |
Free electron Fermi circle in the third zone
drawn in the periodic zone scheme



Three Types of Orbits in Magnetic Field

Lorentz force on the electron:

dk e dk e ]
e — == - X =hlv
ﬁ(l‘t oV X B di ﬁ‘?'c Vk&' B \"% k€

Electron orbit Open orbits

)
2 B out
| of paper

(a) (b) (c)
Motion in a magnetic field of the wavevector of an electron on the Fermi surface,

Orbits that enclose filled states are electron orbits. Orbits that en-
close empty states are hole orbits. Orbits that move from zone to zone
without closing are open orbits.



Schematic Shape of a 3-D Fermi Surface

In 3D crystals the periodic potential distorts the shape of a Fermi
sphere in the vicinity of the BZ boundary. A schematic example for a
simple cubic lattice and a crude model E(k) function is shown here:

(a) (b)

Figure 15 Constant energy surface in the Brillouin zone of a simple cubic lattice, for the assumed
energy band €, = —a — 2y(cos k.a + cos k,a + cos k.a). (a) Constant energy surface € = —a. The
filled volume contains one electron per primitive cell. (b) The same surface exhibited in the peri-
odic zone scheme. The connectivity of the orbits is clearly shown. Can you find electron, hole, and
open orbits for motion in a magnetic field B2? (A. Sommerfeld and H. A. Bethe.)

Note: the Fermi circle does not completely fill the 15t BZ but makes
contact with the 15t BZ boundary along the [100] directions.



Shape of 3-D Energy Bands in a Real Metal

In 3D the energy bands are plotted e I l
along the major symmetry Freezelecteen |
direc‘.cions in the 15t BZ. Many of bandeeitmitce } -
the high symmetry points on the 15 crystal |
BZ boundary are labeled by letters. |
The gamma point ( I" ) is always the
zone center, where k = 0. r X W o U X
Electron /
bands in Al A R
® i iy X W | by U X

Figure 7.15 The first Brillouin zone for the bcce (a) and fcc (b) lattices.

(®)

Figure 7.20 A comparison of the empty-lattice energy bands (a) and detailed calculations for

Al (b). Again the nearly free electron character of Al is confirmed. (Harrison, W., Pseudopotentials in
the Theory of Metals, 1966, Addison-Wesley Publishing Co., Reading, Massachusetts. Figures 3.19
and 3.20. Reprinted with permission.)



Quantization of Orbits in Magnetic Field

The momentum p of a particle in a magnetic field B is the sum of two parts:
P = Prin T Prield = ik + f]A/C and B=VxA

the orbits in a magnetic field are quantized by the Bohr-Sommerfeld relation
§ pdr=(n+y)2wh , whenn is an integer and v is a phase correction

The equation of motion of a particle of charge ¢ in a magnetic field is

dk 9 dr g
ﬁ%-—EE{XB ) ﬁk““c“‘I‘XB

Thus,
%p'clr:lﬁﬁk%lr-%%(ﬁ;&'dr

:%% r X B-dr + gfcurlA'dU'

:"%B°#;r><dr+%JB-dg

2q
T Cc

d + %(I) = -g~<ﬂ)m(n+y)2wﬁ



It follows that the orbit of an electron is quantized in such a way that the
flux through it is

O, = (n + y)(2rfic/e) .

The flux unit 27fic/e = 4.14 X 1077 gauss em? or Tm?,

¢
v k= "‘07“ r X B ,aline element Ar in the plane normal to B is

Ar = (he/eB)Ak, so that the area S, in k space is related to the
area A, of the orbit in r space by

A, = (hc/eB)*S,

Thus,

(I)” e BAr::_,~ (ﬁc)‘ éSn — (n + ')/)2Wﬁc

4 e

= S, =n+ 'y)%B




De Haas-van Alphen Effect

The de Haas-van Alphen effect is the oscillation of the magnetic moment

of a metal as a function of the static magnetic field intensity. The effect can be
observed in pure specimens at low temperatures in strong magnetic fields:

Assume the magnetic field is applied along the z axis, the area of an orbit in

k,, k, plane is quantized and the area between successive orbits is

AS=S,— S, , = 2mweB/hc

€y

(a)

These regions are
only schematic

i
fw, = 22
¢ m¥e

(b)

By

B=0

€ I

(c)

By

The number of free electron
orbits collapsed into a Landau
level is



Degeneracy of Orbits in Magnetic Field

(a) (b)

Figure 24 (a) Allowed electron orbitals in two dimensions in absence of a magnetic field. (b) In a
magnetic field the points which represent the orbitals of free electrons may be viewed as re-
stricted to circles in the former k k, plane.
The area between successive circles is
D ; g . ) . ,
7 AK™) = 27k(Ak) = Qmm/h™) Ae = 2mmmw /h — 2meB/fic

The number of free electron orbits collapsed into a Landau level is

D = (2mweB/fic)(L/2m)* = pB where p = el /2arhe,



Orbital Degeneracy Increases with B

| N N

100/B =
(a) (b)

Figure 25 (a) The heavy line gives the number of particles in levels which are completely occu-
pied in a magnetic field B, for a two-dimensional system with N = 50 and p = 0.50. The shaded
area gives the number of particles in levels partially occupied The value of s denotes the quantum
number of the highest level which is completely filled. Thus at B = 40 we have s = 2; the levels
n = 1andn = 2 are filled and there are 10 particles in the level n = 3. At B = 50 the level n = 3 is
empty. (b) The periodicity in 1/B is evident when the same points are plotted against 1/B.



dHvA Oscillation

The magnetic moment w of a system at absolute zero is given by u =
—oU/dB. The moment here is an oscillatory function of 1/B, Fig. 27. This os-
cillatory magnetic moment of the Fermi gas at low temperatures is the de

Haas-van Alphen effect.

 Magnetemoment

.

The oscillations occur at equal
interval of 1/B so that

1) _ 2me
A(B) hcS

where S is the extremal area of
the Fermi surface normal to the
direction of B.



Extremal Orbits in Magnetic Field

For a Fermi surface of general shape the sections at different values of ky
will have different periods. Here kj is the component of k along the direction
of the magnetic field. The response will be the sum of contributions from all
sections or all orbits. But the dominant response of the system comes from or-
bits whose periods are stationary with respect to small changes in kg. Such
orbits are called extremal orbits. Thus, in Fig. 28 the section AA’ dominates
the observed cyclotron period.

Magnetic
Figure 28 The orbits in the section AA’ are ex- field

tremal orbits: the cyclotron period is roughly con-
stant over a reasonable section of the Fermi surface.
Other sections such as BB’ have orbits that vary in

period along the section.




Fermi Surface of Copper

Even if the free-electron Fermi sphere does not intersect a BZ boundary, its shape
can still be affected at points close to the boundary where the energy bands begin
to deviate from the free-electron parabolic shape. This is the case with Cu.

E
Cu
fcc

SENE =B

conduction band

Ve

r . e r K X N(E)
Figure 7.25  The complete band structure diagram for Cu along the major symmetry directions Figure 29 Fermi surface of copper, after Pippard. The
(compare with the Brillouin zone of Fig. 7.15b). The diagram to the right is a simple schematic Brillouin zone of the fec structure is the truncated octa-

' . ; : ; : . ; hedron derived in Chapter 2. The Fermi surface makes
representation of the integrated density of levels and is convenient as a basis for the discussion of :

many physical properties of the later ‘d’ metals. We shall soon find that the sp valence electrons faces of the zone, in the [111] directions in k space. Two
are responsible for the electrical conductivity of these metals; one therefore speaks of the “belly” extremal orbits are shown, denoted by B: the
‘conduction band'’. (After Sega]l 1962.) extremal “neck” orbit is denoted by N.

contact with the boundary at the center of the hexagonal

Just a slightly perturbed free-electron sphere!



Fermi Surface of Gold

3 14 Uit
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Figure 30 Dog’s bone orbit of an electron on
the Fermi surface of copper or gold in a mag-
netic field This orbit is classified as holelike be- 450 kG 45.5 kG 46.0 kG
cause the energy increases toward the interior of Figure 31 De Haas-van Alphen effect in gold with B Il [110] The oscillation is from the dog’s
the orbit bone orbit of Fig. 30 The signal is related to the second derivative of the magnetic moment with

respect to field. The results were obtained by a field modulation technique in a high-homogeneity
superconducting solenoid at about 1.2 K. (Courtesy of I. M. Templeton.)



(a)

Photoemission Process

1 . .
Iph(k|(|e),Ekin) XX Z kz ‘<],k||,kZ|X|l,k||,kZ>
i,j ;

% 6(Exin + Evae — EV (k)| k) — hw)8(ky — ki)

hv

(b)

2

Evin = —Evac + E(l) (k||akz> + hv

Here, i, j denote the initial

/ k(ext)

kl I(ext)= W

L gtiny

and final bands, k;, k, are
the components of the wave
vector in the initial and the
final state, and EO, E, . are
the energies of the initial
state and the vacuum level.




Photoemission Spectra of Cu(111) and Cu(110)

A ya Photoemission spectra of Cu(111)
% s\ and Cu(110) surfaces serving to
~ (110} establish the wave vector k;i; for

(110) surface bulk electronic states: the two

prominent peaks appearing in the
spectra along [111] on Cu(111) are
| 1y found at an angle of 6 = 52.5" in the
“ 1 [110] zone on Cu(110). The
\ y e 1) magnitude of k;;; is determined by

\ considering k|| conservation.

o e e o = oy

(111) surface
[111] direction

Photoemission intensity (arb. units)

(110) surface k|(‘mt) — k](|eXt> — k§11n1t) sin 35° = k(ext) sin 52.5°

-4 -3 -2 -1 0
Binding energy of electrons E — E¢ (eV)




Angle-resolved photoemission spectroscopy

sample

36

(ARPES)

analyzer
We need:
binding energy - E,

Geteetor initial momentum - k'

aorb

Eb cE-hv+W

ki =kf, =S 2mE/hz sind _
ki =kf -6=J 2mE /2 cose G \

-02 -014 0 01 02 -02 -01 0 01 02
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ky (1/A) ky (1/A)k ky (1/A) ky (1/A)
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Concentric Hemispherical Analyzer (CHA)

AE/E, = s/ R,

s: mean slit width; Ry: mean radius



Problems

1. Brillouin zones of two-dimensional divalent metal. A two-dimensional metal
in the form of a square lattice has two conduction electrons per atom. In the al-
most free electron approximation, sketch carefully the electron and hole energy

surfaces. For the electrons choose a zone scheme such that the Fermi surface is
shown as closed.

2. De Haas-van Alphen period of potassium. (a) Calculate the period A(1/B) ex-
pected for potassium on the free electron model. (b) What is the area in real
space of the extremal orbit, for B = 10 kG = 1 T? The same period applies to os-
cillations in the electrical resistivity, known as the Shubnikow-de Haas effect.



Problems

3. Landau levels. The vector potential of a uniform magnetic field BZ is A =
~By% in the Landau gauge. The hamiltonian of a free electron without spin is

H = —#&¥2m) (3% ay* + 9¥9z%) + (1/2m)[—itid/ox — eyBlc]* .
We will look for an eigenfunction of the wave equation Hi = ey in the form

= x(y) explitkx + k.z)] .
(a) Show that x(y) satisties the equation

(B2m)Px/dy® + [e — (B%k22m) — smoXy — yo)lx =0 ,

where w, = eB/mc and Yy = chk /eB. (b) Show that this is the wave equation of a
harmonic oscillator with frequency w,, where

€, = (n +3)how, + #kY2m .



