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If a very large number of atoms are 
involved, as in the case of a real 
solid, then the energy levels will lie 
on a quasi- con:nuous scale and one 
therefore speaks of energy bands. 
The broadening of the band depends 
on the overlap of the wavefunc:ons 
concerned. Thus for the deep lying 
levels the broadening is small, and 
these ``core levels'' retain their 
atomic shell-like character even in 
the solid. For the highest occupied 
levels, on the other hand, the 
broadening is so large that the s-, p-
and where present, d-levels merge 
into a single band. 

From Bonds to Bands 



Hydrogen Molecule
Consider two hydrogen atoms to form into a molecule, each with an electron

in the 1s ground state, their wavefunctions are 𝜓A and 𝜓B, respectively.



The 1s band of a ring of 20
hydrogen atoms calculated
by the tight-binding method



The tight binding approximation is also called the linear combination of
atomic orbital (LCAO) approximation in which the one electron wavefunction
𝜓k(r) is built from the electron wavefunction of an isolated atom, 𝜑(r).

This	function	of	the	Bloch	form	 for		a	crystal	of	N atoms:

Tight Binding Method



We consider the integrals over the same atom and the nearest neighbor
atoms only, then

we	have

If ,		the	effective	mass	m*	﹦ℏ2/2𝛾a2



For	the	bcc	structure	with	eight	nearest	neighbors,

For	the	fcc	structure	with	twelve	nearest	neighbors,

The tight-binding (or LCAO) approximation is quite good for inner electrons
of atoms, but it is not often good description for the conduction electrons. It is
used to describe approximately the d bands of transition metals and the
valence bands of diamondlike and inert gas crystals.

A constant energy surface of an fcc
crystal structure in the nearest neighbor
tight-binding approximation. The surface
shown has ϵ = − α + 2∣γ∣.



Wigner Seitz Method

With	P =	−iℏ𝝯,	we	have

So,	



We	then	approximate	the	exact	wavefunction	𝜓kwith	u0(r)	,

ϵk =

for	k ≠	0,

bare ions

solid



The stability of the simple metals
with respect to free atoms is
caused by the lowering of the
energy of the Bloch orbital with k
= 0 in the crystal.



For	a	solid,	the	many-electron	Hamiltonian	whose	Schrödinger	wave	
equation	must	be	solved	is	
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This equals H0 of (2.10). 

The first term in the Hamiltonian is the operator representing the kinetic energy 

of all the electrons. Each different i corresponds to a different electron The second 

term is the potential energy of interaction of all of the electrons with all of the 

nuclei, and rai is the distance from the ath nucleus to the ith electron. This 

potential energy of interaction is due to the Coulomb forces. Za is the atomic 

number of the nucleus at a. The third term is the Coulomb potential energy of 

interaction between the nuclei. Rab is the distance between nucleus a and nucleus 

b. The prime on the sum as usual means omission of those terms for which a = b. 
The fourth term is the Coulomb potential energy of interaction between the 

electrons, and rij is the distance between the ith and jth electrons. For electronic 

calculations, the internuclear distances are treated as constant parameters, and so 

the third term can be omitted. This is in accord with the Born–Oppenheimer 

approximation as discussed at the beginning of Chap. 2. Magnetic interactions are 

relativistic corrections to the electrical interactions, and so are often small. They 

are omitted in (3.9). 

For the purpose of deriving the Hartree approximation, this N-electron 

Hamiltonian is unnecessarily cumbersome. It is more convenient to write it in the 
more abstract form 
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where 

 )()( jiVijV  . (3.10b) 

In (3.10a), H(i) is a one-particle operator (e.g. the kinetic energy), V(ij) is a two-

particle operator (e.g. the fourth term in (3.9)), and i refers to the electron with 

coordinate xi (or ri if you prefer). Spin does not need to be discussed for a while, 
but again we can regard xi in a wave function as including the spin of electron i if 
we so desire. 

Eigenfunctions of the many-electron Hamiltonian defined by (3.10a) will be 
sought by use of the variational principle. If there were no interaction between 

electrons and if the indistinguishability of electrons is forgotten, then the 

eigenfunction can be a product of N functions, each function being a function of 
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The	many-electron	Hamiltonian:
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In (3.10a), H(i) is a one-particle operator (e.g. the kinetic energy), V(ij) is a two-

particle operator (e.g. the fourth term in (3.9)), and i refers to the electron with 

coordinate xi (or ri if you prefer). Spin does not need to be discussed for a while, 
but again we can regard xi in a wave function as including the spin of electron i if 
we so desire. 

Eigenfunctions of the many-electron Hamiltonian defined by (3.10a) will be 
sought by use of the variational principle. If there were no interaction between 

electrons and if the indistinguishability of electrons is forgotten, then the 

eigenfunction can be a product of N functions, each function being a function of 

1. The Sirst term in the Hamiltonian is the operator representing the kinetic
energy of all the electrons. Each different i corresponds to a different
electron.

2. The second term is the potential energy of interaction of all of the electrons
with all of the nuclei, and rai is the distance from the ath nucleus of Za to the
ith electron.

3. The third term is the Coulomb potential energy of interaction between the
nuclei. Rab is the distance between nucleus a and nucleus b. The prime on
the sum as usual means omission of those terms for which a = b.

4. The fourth term is the Coulomb potential energy of interaction between the
electrons, and rij is the distance between the ith and jth electrons.



This N-electron Hamiltonian is unnecessarily cumbersome. It is more
convenient to write it in the more abstract form
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(−ℏ2/2m)H(i) =
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The ground-state properties of a many-electron system are uniquely
determined by an electron density that depends on only three spatial
coordinates. It set down the groundwork for reducing the many-body
problem of N electrons with 3N spatial coordinates to three spatial
coordinates, through the use of functionals of the electron density n(r), so
that the ground state wavefunction Ψ0 is a unique functional of the ground
state density n0(r).

A N-electron	state described	by	a wavefunction Ψ(r1,	…, rN) satisSies	the	many-
electron	time-independent Schrödinger	equation

Density Functional Theory



So,	the	ground-state	energy	E0 is	a	functional	of n0:

More	generally,	the	contribution	of	the	external	potential	
can	be	written	explicitly	in	terms	of	the	density	n:

The	effective	single-particle	potential	can	be	written	as

where V(r) is the external potential, the second term is the Hartree
term describing the electron–electron Coulomb repulsion, and the last
term VXC is the exchange–correlation potential. Here, VXC includes all the
many-particle interactions.



which	yields	the orbitals φi that	reproduce	the	density n(r) of	the	original	
many-body	system

Kohn–Sham	equations of	this	auxiliary	noninteracting	system	can	be	derived:

Usually one starts with an initial guess for n(r), then calculates the
corresponding Vs and solves the Kohn–Sham equations for the φi.
From these one calculates a new density and starts again. This
procedure is then repeated until convergence is reached.



For	any	k’	outside	of	the	Sirst	Brillouin	
zone,	we	can	always	Sind	a	reciprocal	
lattice	vector	G	so	that	k =	k’	+	G and	k
lies	in	the	Sirst	Brillouin	zone.

Fermi Surfaces and Zone Schemes



Reduced, Extended and Periodic Zone Schemes



Brillouin Zones of Square Lattice
For	a	simple	square	lattice	of	atoms	with	interatomic	distance	a.		Its	reciprocal	
lattice	will	also	be	square,	with	reciprocal	lattice	base	vector	of	length	2p/a.
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Construction of Fermi Surfaces for Free Electrons

Fermi	circle	viewed	
in	the	reduced	zone	
scheme



From	free	electrons	Fermi	surfaces	to	nearly	free	electrons	Fermi	surfaces:	

Free	electron	Fermi	circle	in	the	third	zone	
drawn	in	the	periodic	zone	scheme

Nearly Free Electrons Fermi Surfaces



Three Types of Orbits in MagneJc Field
Lorentz	force	on	the	electron:

v =	ℏ-1𝝯kϵ



Schematic Shape of a 3-D Fermi Surface
In 3D crystals the periodic potential distorts the shape of a Fermi
sphere in the vicinity of the BZ boundary. A schematic example for a
simple cubic lattice and a crude model E(k) function is shown here:

Note: the Fermi circle does not completely Sill the 1st BZ but makes
contact with the 1st BZ boundary along the [100] directions.



Shape of 3-D Energy Bands in a Real Metal

In 3D the energy bands are plotted 
along the major symmetry 
directions in the 1st BZ.  Many of 
the high symmetry points on the 1st
BZ boundary are labeled by letters.

The gamma point ( G ) is always the 
zone center, where k = 0.

Free-electron 
bands in an fcc 
crystal

Electron 
bands in Al



B is	the	sum	of	two	parts:

B =	𝝯 × Aand

Thus,

+

+

+

Quantization of Orbits in Magnetic Field



∵

BAn
Thus,



De Haas-van Alphen Effect

Assume	the	magnetic	field	is	applied	along	the	z axis,	the	area	of	an	orbit	in	
kx,	ky plane	is	quantized	and	the	area	between	successive	orbits	is

The	number	of	free	electron	
orbits	collapsed	into	a	Landau	
level is



The	area	between	successive	circles	is

The	number	of	free	electron	orbits	collapsed	into	a	Landau	level is

Degeneracy of Orbits in Magnetic Field



Orbital Degeneracy Increases with B



The	oscillations	occur	at	equal	
interval	of	1/B so	that

where	S is	the	extremal	area	of	
the	Fermi	surface	normal	to	the	
direction	of	B .

dHvA Oscillation



Extremal Orbits in MagneJc Field



Fermi Surface of Copper
Even if the free-electron Fermi sphere does not intersect a BZ boundary, its shape
can still be affected at points close to the boundary where the energy bands begin
to deviate from the free-electron parabolic shape. This is the case with Cu.

Just a slightly perturbed free-electron sphere!



Fermi Surface of Gold



Photoemission Process

Here, i, j denote the initial
and .inal bands, k||, kz are
the components of the wave
vector in the initial and the
.inal state, and E(i), Evac are
the energies of the initial
state and the vacuum level.
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Photoemission spectra of Cu(111)
and Cu(110) surfaces serving to
establish the wave vector k111 for
bulk electronic states: the two
prominent peaks appearing in the
spectra along [111] on Cu(111) are
found at an angle of 𝜃 = 52.5° in the
[110] zone on Cu(110). The
magnitude of k111 is determined by
considering k|| conservation.
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Angle-resolved photoemission spectroscopy 
(ARPES)
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Concentric Hemispherical Analyzer (CHA)

ΔE/E0 = s/ R0

s: mean slit width; R0: mean radius



Problems

1.

2.



Problems

3.


