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Effects for Electrons in Nanostructures

e Quantum confinement effect
e Tunneling effects

e Charge discreteness and strong electron-
electron Coulomb interaction effects

e Strong electric field effects

e Ballistic transport effects



Important Length Scales

Elastic mean free path (l.): average distance the electrons
travel without being elastically scattered

l. = vgt.. Vvpdenotes the Fermi velocity of the electrons

Phase coherent length (l3): average distance the electrons
travel before their phase i1s randomized

lp = VgTe. T denotes the dephasing time of the electrons

Fermi wavelength (Az): de Broglie wavelength of Fermi electrons
ind= 3: Az= 232(n/3n)!
ind= 2: A= (2u/n)'?
mnd= 1: A= 4/n



Important Mesoscopic Regimes

conventional device:

— e N~ mesoscopic
NI device:
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L>>lg diffusive L, ballistic
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L>>A  no size quantization L< Ap size quantization
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Nanoscale Electronics

Nanotubes/wires Atomic point contacts

Molecular junctions

.7,

Tans et al. (1997)

Organic electronics

' (2
Scheer et al. (1998) from Nitzan et al. (2003)

Fast DNA sequencing

insulator

Lagerqvist et al. (2006)

7.Q. Li et al. (2006)



Electron Microscopy and Microanalysis

e Microscopies: morphologies in small scales (micrometer
or nanometer)
Optical microscopy, Electron microscopy, lon microscopy,
Scanning probe microscopy....., offer images only.

e Microanalyses: composition and/or structures in small
scales (micrometer or nanometer)
Energy Dispersive Spectroscopy, Wave-length Dispersive
Spectroscopy, Electron Energy Loss Spectroscopy, Auger
Electron Spectroscopy, Convergent Beam Electron
Diffraction, Select Area Diffraction....., offer spectra
and/or diffraction patterns



Why electrons?

e \Wave Behaviours
— images and diffraction patterns
— wavelength can be tuned by energies

e Charged Particle Behaviours
— strong electron-specimen interactions
— chemical analysis is possible

de Broglie’s E (kev) MA)
e @ wavelength 100 0.037
1.22 200 0.025

A~ =y 300 0.0196

400 0.0169



Interaction of Energetic Electrons with Materials

Interaction with an Atom

@

Unscattered

Low angle elastically scattered
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Back scattered

Outer shell inelastically scattered
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Interaction of Energetic Electrons with Materials

Incident Auger electron

electron o ® ionized electron

vacuum level
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Operational Modes of TEM

Diffraction mode Image mode
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Imaging by C.-corrected TEM

Atomic Resolution




Spectroscopy by STEM
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Atomic resolution of EELS of Lao.7St0.3MnO3/SrTiO3 multilayer
- D. A. Muller, et al, SCIENCE 319 1073-1075 (2008)



Interaction of Energetic Electrons with Materials

Interaction with a thick specimen (SEM)

Secondary Electrons (SEM)
Auger Electrons (AES)

0.5~5.0 nm
Backscattered Electrons (SEM)

Characteristic X-rays

H and Bremsstrahlung
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Scanning Tunneling Microscopy

A scanning tunneling microscope (STM) i1s an instrument for
imaging surfaces at the atomic level. Its development in 1981
earned 1ts mventors, Gerd Binnig and Heinrich Rohrer (at IBM
Zirich), the Nobel Prize in Physics in 1986. For a STM, good
resolution 1s considered to be 0.1 nm lateral resolution and
0.0 nm (10 pm) depth resolution. With this resolution,
individual atoms within materials are routinely imaged and
manipulated. The STM can be used not only in ultra-high
vacuum but also in air, water, and various other liquid or gas
ambients, and at temperatures ranging from near zero kelvin to

over 1000°C.

References:

1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57
(1982); and ibid 50, 120 (1983).

2. J. Chen, Introduction to Scanning Tunneling Microscopy, New York,
Oxford Univ. Press (1993).
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Scanning Tunneling Microscopy
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Tunneling Current

2me
I, :7Zf(Eﬂ11— f(E, +eV)IM, | 6(E, ~E, —eV)
MV
where AE) is Fermi function,
E,, 1s the energy of state, where u and v run \
over all the states of the tip and surface, g, oy _ _ _ _/ ——
o 7777713 &|Tr
M,, is tunneling matrix element. ~ F=--2 E,
B2 . Tip Sample
M, = —de(t//ﬂ Vi, -y,Vy,*)

where ¥ ,1s the wave function, and the integral is over any plane in the barrier
region.
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where Ps and Pr are the densities of states in the sample and the tip, respectively.



Electronic Structures at Surfaces
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Quantum Corral
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Fe on Cu(111) at 4.5K

M. Crommie et al, Science 262, 218 (1993)



Scanning Probe Microscopy (SPM)

Scanning Tunneling Microscopy (STM) Atomic Force Microscopy (AFM)
--- G. Binnig, H. Rohrer et al, (1982) --- G. Binnig, C. F. Quate, C. Gerber (1986)
Near-Field Scanning Optical Microscopy (NSOM) Scanning Thermal Microscopy (SThM)
--- D. W. Pohl (1982) --- C. C. Williams, H. Wickramasinghe (1986))
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Magnetic Force Microscopy (MFM) Electrostatic Force Microscopy (EFM)

— Y. Martin, H. K. Wickramasinghe (1987) —- Y. Martin, D. W. Abraham et al (1988)

Friction Force Microscopy (FFM or LFM) Scanning Capacitance Microscopy (SCM)

- C. M. Mate et al (1987) --- C. C. Williams, J. Slinkman et al (1989)
Force Modulation Microscopy (FMM)

--- P. Maivald et al (1991)



Atomic Force Microscopy (AFM)
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Interaction between Probe and Sample

Short-range:

1) Bonding
2) Repulsion

repulsive force
intermittent-
contact .
~50nm
' distance .
contact (tip-to-sample separation)
’h

altractive force

Long-range:

1) Van der Waal
2) Capillary

3) Magnetic

4) Electrostatic

Lennard-Jones potential ¢(r) = - A/r® + B/r?



Reaction of the probe to the force
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Deflection of Cantilever vs Piezo displacement
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AFM Images
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MFM Images
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2-D nanostructures:
graphene, metallic thin films, superlattices, ... .
1-D nanostructures:
carbon nanotubes, quantum wires, conducting polymers, ... .
0-D nanostructures:
semiconductor nanocrystals, metal nanoparticles,
lithographically patterned quantum dots, ... .

1 pm

GaAs Al Ga,_As

SEM 1
Gate electrode pattern of Image

a quantum dot on 2DEG



2D electron gas (2DEG)
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Electronic Structure of 0-D Systems

Quantum dots: Quantized energy levels.

e in spherical potential well: E, =&

n,l,m

For an infinite well with V=0 for r<R:

hzﬂnzl . IBnl r
&, = S R R, (r) = J 2 for r<R
8, = n" root of j (x). J; (ﬂn,l) =0
60’0 =TT (15), 60,1 =45 (1P), 60,2 =58 (lD)

61’0 =2 (ZS), 61,1 =7.7 (2P)

ni Yaim X2 ¢) =R, (’”) Y, (‘9» ¢)



Semiconductor Nanocrystals

CdSe nanocrystals

Bulk band gap
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For R =2 nm, £ —Ep o =076V

For e, €, increases as R decreases.
For h, € decreases as R decreases.
— FE, increases as R decreases.

Optical spectra of nanocrystals can be tuned
continuously in visible region.

Applications: fluorescent labeling, LED.



Potential energy, eV

A

Small spherical alkali metallic cluster

Metallic Dots

Radius (nm}
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Mass spectroscopy (abundance spectra):
Large abundance at cluster size of magic

numbers ( 8, 20, 40, 58, ...)
— enhanced stability for filled e-shells.

Average level spacing at & :

1 2e

Ae = =
‘ D(e.) 3N

For Au nanoparticles with R =2 nm,
Ae =2 meV.

whereas CdSe gives Ae = 0.76 eV.
— ¢ quantization more influential in

semiconductor.



Discrete Charge States

Thomas-Fermi approximation: My, = &€xyq —€QP = Ena T NU -« e Vg

U = interaction between 2 e’s on the dot = charging energy.
o = rate at which a nearby gate voltage V, shifts ¢ of the dot.

Neglecting its dependence on state,

—| w0+ 1)
| U= _G
C C

C = capacitance of dot.
C, = capacitance between gate & dot

M If dot is in weak contact with
reservolir, e’s will tunnel into it
until the p’s are equalized.

Change in V, required to add an e is

| e’
AVg :;( 8N+1—8N+Ej




U depends on size &shape of dot & its local environment.

For a spherical dot of radius R surrounded by a spherical metal shell of radius R + d,

_e d
ERR+d

For R=2mm, d=1nm& e=1, we have
U=0.24eV >> kzT=0.026eV at T=300K
— Thermal fluctuation strongly supressed.

For metallic dots of 2nm radius, Ae = 2meV — AV, due mostly to U.
For semiC dots, e.g., CdSe, Ae = 0.76 eV — AV, due bothtoAe & U.

Charging effect is destroyed if tunneling rate is too great.
Charge resides in dot for time o7~ RC. ( R = resistance )

58~£_~_ﬁ__ezhl
- ot Mj_EJR

Quantum fluctuation smears out charging effect when d6e ~ U, i.e., when R~/ / €% .



Conditions for a Coulomb Blockade

1) The Coulomb energy e?/C needs to exceed the
thermal energy kgT.

Otherwise an extra electron can get onto the dot with
thermal energy instead of being blocked by the
Coulomb energy. A dot needs to be either small (<10
nm at 300K) or cold (< 1K for a um sized dot).

2) The residence time At=RC of an electron on the dot
needs to be so long that the corresponding energy
uncertainty AE=h/At= h/IRC is less than the Coulomb
energy €?/C. That leads to a condition for the tunnel
resistance between the dot and source/drain: R > h/e?
~ 26 kQ

C,R

M 1

M



(R) _2L h
MmOV BBl =R
(R)-ziexp(zle C.f. Ohm’slaw R oc L

e

For a 1-D system with disorder, all states become localized to some length & .
Absence of extended states — R cexp(al /&), a=some constant.
For quasi-1-D systems, one finds & ~ N [/, , where N = number of occupied subbands.

For 7> 0, interactions with phonons or other e’s reduce phase coherence to length /[, =4 T 7.

h 21,
(R)~ —exp| —~ l for each coherent segment.

2¢e°

e

Overall (R) ~ incoherent addition of L/, such segments.

For sufficiently high 7, [, </, , coherence is effectively destroyed & ohmic law is recovered.

All states 1in disordered 2-D systems are also localized.
Only some states (near band edges) in disordered 3-D systems are localized.



Electrical Transport in 0-D

For T<(U+ A¢)/ky, U& Ae control e flow thru dot.

[~
[~

N + 1)

Transport thru dot 1s suppressed

. when u; & up of leads lie between
1 uy & uyy (Coulomb blockade)

E‘E
t, Em | | C

e Ma

e T

N (N+1)
r~ ~

Transport 1s possible
p— Y only when u ., lies

2T p”

-—o—o— between u; & up .

— Coulomb oscillations of G( V).



Gate Voltage versus Source-Drain Voltage

The situation gets a bit confusing, because there are two voltages that can be
varied, the gate voltage V, and the source-drain voltage V. 4.

Both affect the conductance. Therefore, one often plots the conductance G
against both voltages (see the next slide for data).

Schematically, one obtains “Coulomb diamonds” , which are regions with a

stable electron number N on the dot (and consequently zero conductance).
G
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Single Electron Transistor (SET)

e e
source L')(A drain |

C

9

(9

-

gate

source drain

v channel v

A single electron transistor is similar to a
normal transistor (below), except

1) the channel is replaced by a small dot.

2) the dot is separated from source and drain
by thin insulators.

An electron tunnels in two steps:
source — dot — drain

The gate voltage V, is used to control the
charge on the gate-dot capacitor C.

How can the charge be controlled with the
precision of a single electron?

Kouwenhoven et al., Few Electron Quantum
Dots, Rep. Prog. Phys. 64, 701 (2001).



Two Step Tunneling

source — dot — drain

N+1 filled

source § drain

(For a detailed explanation see the annotation in the .ppt version.)



CONDUCTANCE G (e2/h)

Charging a Dot, One Electron at a Time
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GATE VOLTAGE

(V)

Sweeping the gate voltage V,
changes the charge Qg on the
gate-dot capacitor C,. To add
one electron requires the vol-
tage AV ~e/Cq since Cg=Qg/V,.

The source-drain conductance
G is zero for most gate voltages,
because putting even one extra
electron onto the dot would cost
too much Coulomb energy. This
is called Coulomb blockade.

Electrons can hop onto the dot
only at a gate voltage where the
number of electrons on the dot
flip-flops between N and N+1.
Their time-averaged number is
N+ in that case.

The spacing between these half-
integer conductance peaks is an
integer.



SET as Extremely Sensitive Charge Detector

At low temperature, the conductance peaks in a SET become very sharp.

Consequently, a very small change in the gate voltage half-way up a peak
produces a large current change, i.e. a large amplification. That makes
the SET extremely sensitive to tiny charges.

The flip side of this sensitivity is that a SET detects every nearby
electron. When it hops from one trap to another, the SET produces a

noise peak.
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Including the Energy Levels of a Quantum Dot

Contrary to the Coulomb blockade model, the data show Coulomb diamonds
with uneven size. Some electron numbers have particularly large diamonds,
indicating that the corresponding electron number is particularly stable.

This is reminiscent of the closed electron shells in atoms. Small dots behave
like artificial atoms when their size shrinks down to the electron wavelength.
Continuous energy bands become quantized

(see Lecture 8). Adding one electron requires E
the Coulomb energy U plus the difference AE \
between two quantum levels. If a second electron
is added to the same quantum level

(the same shell in an atom), AE vanishes

and only the Coulomb energy U is needed. -—/‘7= :

The quantum energy levels can be extracted from the spacing between
the conductance peaks by subtracting the Coulomb energy U=e?/C.



Precision Standards from “Single” Electronics

Count individual electrons, pairs, flux quanta

Current I

Coulomb
Blockade

Voltage V
Josephson
Effect

[=ef V =h/2e -

V/I=R = h/e?

Resistance R
Quantum Hall
Effect

(f = frequency)



Problems

1. Energies of a spherical quantum dot. Consider a spherical dot of radius R

surrounded by a spherical metal shell of radius R + d.
2

(a) Derive the formula U= jﬁﬁ for the charging energy. (b) Show that, for d <<
R, the result is the same as that obtained using the parallel plate capacitor result,
C = €gy A/d. (c) For the case of an isolated dot, d - oo, find the ratio of the
charging energy to lowest quantized energy level. Express your answer in terms of
the radius R of the dot and the effective Bohr radius a;".

2. Pair tunneling. Superconductivity adds a new and exciting twist to single electron
tunneling. Work out the basic modifications due to superconductivity.

3. Carbon nanotube band structure. Figure at the right shows the graphene lattice
with the primitive lattice translation vectors of length a = 0.246 nm, along with the
first Brillouin zone. (a) Find the set of reciprocal lattice vectors G associated with
the lattice. (b) Find the length of the vectors K and K’ shown in the figure in terms
of a.



For energies near the Fermi energy and wavevectors near

the K point, the 2D band structure can be approximated
3s e = *hop|Ak| Ak=k - K,

where vp = 8 x 10> m/s. A similar approximation holds
near the K’ point. Consider a tube rolled up along the x-
axis with a circumference na. By applying periodic
boundary conditions along the rolled up direction, the
dispersions of the 1D sub- bands near the K point can be
found. (c) Show that, if n is divisible by 3, there exists a
“massless” subband whose energy is linear in Ak, . Sketch
this subband. These nanotubes are 1D metals. (d) For the
case of n = 10, find the magnitude of the semiconducting
bandgap £;; in eV and show that &,, /e;; = 2. (e) Again for
the n = 10 case, show that the dispersion relation of the
lowest electron subband is of the form of a relativistic
particle, €2 = (m*c2)2 + (pc)?, where v plays the role of the
speed of light, and find the ratio of effective mass m* to
the free electron mass m.

Conical
dispersion

D

Fermi
points



