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Effects for Electrons in Nanostructures

• Quantum confinement effect

• Tunneling effects

• Charge discreteness and strong electron-
electron Coulomb interaction effects

• Strong electric field effects

• Ballistic transport effects



Fermi wavelength (λF): de Broglie wavelength of Fermi electrons
in d =  3: λF =  23/2(π/3n)1/3

in d =  2: λF = (2π/n)1/2

in d =  1: λF =  4/n

Important Length Scales

Elastic mean free path (le): average distance the electrons  
travel without being elastically scattered 

le =  vFτe.    vF denotes the Fermi velocity of the electrons

Phase coherent length (lΦ): average distance the electrons  
travel before their phase is randomized 

lΦ =  vFτΦ.   τΦ denotes the dephasing time of the electrons



Important Mesoscopic Regimes



Nanoscale Electronics 
Atomic point contacts

Molecular junctions

Fast DNA sequencing

Tans et al. (1997)

Scheer et al. (1998) from Nitzan et al. (2003)

Lagerqvist et al. (2006)

Nanotubes/wires

Z.Q. Li et al. (2006)

Organic electronics

Doped Si 

polymersource drain

insulator

Poly(3-hexylthiophene)

Doped Si 

polymersource drain

insulator

Poly(3-hexylthiophene)



Electron Microscopy and Microanalysis
• Microscopies: morphologies in small scales (micrometer
or nanometer)
Optical microscopy, Electron microscopy, Ion microscopy,
Scanning probe microscopy….., offer images only.

• Microanalyses: composition and/or structures in small
scales (micrometer or nanometer)
Energy Dispersive Spectroscopy, Wave-length Dispersive
Spectroscopy, Electron Energy Loss Spectroscopy, Auger
Electron Spectroscopy, Convergent Beam Electron
Diffraction, Select Area Diffraction….., offer spectra
and/or diffraction patterns



Why electrons?

• Wave Behaviours
– images and diffraction patterns
– wavelength can be tuned by energies

• Charged Particle Behaviours
– strong electron-specimen interactions
– chemical analysis is possible

e-
E (kev) λ(Å)
100 0.037
200 0.025
300 0.0196
400 0.0169

de Broglie’s
wavelength 



Interaction with an Atom

Interaction of Energetic Electrons with Materials
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1 Unscattered

2 Low angle elastically scattered

3 High angle elastically scattered

4 Back scattered

5 Outer shell inelastically scattered

6 Inner shell inelastically scattered
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Interaction of Energetic Electrons with Materials



Lens System of TEM
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transmitting and magnifying the 
first enlarged image or diffraction
pattern to projector lens

projecting the image or diffraction
pattern to the screen

stopping  the undesired e- beams
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Imaging by Cs-corrected TEM

Atomic Resolution

1.4Å



Atomic resolution of EELS of La0.7Sr0.3MnO3/SrTiO3 multilayer
- D. A. Muller, et al, SCIENCE 319 1073-1075 (2008)

Spectroscopy by STEM



e-
Auger Electrons (AES)

0.5 ~ 5.0 nm

Characteristic X-rays 
and Bremsstrahlung

Secondary Electrons (SEM)

Backscattered Electrons (SEM)

0.5 ~ 4 µm

Interaction with a thick specimen (SEM)

Interaction of Energetic Electrons with Materials



Lens System of SEM
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Scanning Tunneling Microscopy
A scanning tunneling microscope (STM) is an instrument for
imaging surfaces at the atomic level. Its development in 1981
earned its inventors, Gerd Binnig and Heinrich Rohrer (at IBM
Zürich), the Nobel Prize in Physics in 1986. For a STM, good
resolution is considered to be 0.1 nm lateral resolution and
0.01 nm (10 pm) depth resolution. With this resolution,
individual atoms within materials are routinely imaged and
manipulated. The STM can be used not only in ultra-high
vacuum but also in air, water, and various other liquid or gas
ambients, and at temperatures ranging from near zero kelvin to
over 1000°C.

References:

1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 
(1982); and ibid 50, 120 (1983).

2. J. Chen, Introduction to Scanning Tunneling Microscopy, New York, 
Oxford Univ. Press (1993).



G. Binnig and and H. Rohrer, Rev. of Mod. Phys. 71, S324-S330 (1999).

Concept: Eye and Finger



Scanning Tunneling Microscopy



Tunneling current

Tunneling current  It
It µ (V/d)exp(-Af1/2d)

A = 1.025 (eV)-1/2Å-1

f ~ 4 – 5 eV 
d decreases by 1 Å, 
It will be increased by ~10 times.

Theory of STM 

Tunneling



Tunneling Current 

where  f(E) is Fermi function,

Eμ,ν is the energy of state, where μ and ν run

over all the states of the tip and surface,

Mμν is tunneling matrix element.

where       is the wave function, and the integral is over any plane in the barrier 
region. 

µy

TSST III ®® -=

( ) ( ) ( ) ( ) ( )[ ]ò
¥

¥-

+-+= dEeVEfEfEMeVEEA ST
2' rr

where       and       are the densities of states in the sample and the tip, respectively.TrSr

( ) ( )[ ] ( )eVEEMeVEfEfeI ST --+-= å® nµµn
µn

nµ dp 2
12

!

Eν

Eμ

Tip
( )ò Ñ-Ñº **

2

2

µnnµµn yyyysd
m

M !

( ) ú
û

ù
ê
ë

é
-= SAEM 2

1

exp fTransmission probability ≡  



Electronic Structures at Surfaces

Empty-State Imaging

Filled-State Imaging

STM Images of Si(111)-(7´7)



STS of Si(111)-(7x7)

Topograph

+2 V

-0.35 V -0.8 V -1.8 V



Quantum Corral

M. Crommie et al, Science 262, 218 (1993)

Fe on Cu(111)  at 4.5K

Exp.-theory:



Scanning Tunneling Microscopy (STM)
--- G. Binnig, H. Rohrer et al, (1982)
Near-Field Scanning Optical Microscopy (NSOM)
--- D. W. Pohl (1982) 

Magnetic Force Microscopy (MFM)
--- Y. Martin, H. K. Wickramasinghe (1987) 
Friction Force Microscopy (FFM or LFM)
--- C. M. Mate et al (1987) 

Electrostatic Force Microscopy (EFM)
--- Y. Martin, D. W. Abraham et al (1988)
Scanning Capacitance Microscopy (SCM)
--- C. C. Williams, J. Slinkman et al (1989)
Force Modulation Microscopy (FMM)
--- P. Maivald et al (1991) 

Atomic Force Microscopy (AFM)
--- G. Binnig, C. F. Quate, C. Gerber (1986) 
Scanning Thermal Microscopy (SThM)
--- C. C. Williams, H. Wickramasinghe (1986))

Scanning Probe Microscopy (SPM)



Tip and 
cantilever

Laser
Detector

Piezoelectric 
Tube Scanner

Sample

Atomic Force Microscopy (AFM)



Interaction between Probe and Sample

Lennard-Jones potential f(r) = - A/r6 + B/r12

Short-range:
1) Bonding
2) Repulsion

Long-range:
1) Van der Waal
2) Capillary
3) Magnetic
4) Electrostatic

～50nm



Reaction of the probe to the force



Deflection of Cantilever vs Piezo displacement



CD pits Integrated circuit

Bacteria

Chromosomes

DNADVD pits

AFM Images



MFM Images

Fz = ¶(mxHx + myHy + mzHz )/¶z

Tip as a point dipole

Tip as a long rod

Fz = mzHz



2-D nanostructures:  
graphene, metallic thin films, superlattices, … .

1-D nanostructures:  
carbon nanotubes,  quantum wires,  conducting polymers, … .

0-D nanostructures:  
semiconductor nanocrystals,   metal nanoparticles,   
lithographically patterned quantum dots, … .

Gate electrode pattern of 
a quantum dot on 2DEG

SEM image



2D electron gas (2DEG)



Electronic Structure of 0-D Systems

Quantum dots:    Quantized energy levels.

e in spherical potential well: , , ,n l m n le e= ( ) ( ) ( ), , , ,, , ,n l m n l l mr R r Yy q f q f=

For an infinite well with  V = 0  for  r < R :

2 2
,

, 22 *
n l

n l m R
b

e =
!

( ) ,
,

n l
n l l

r
R r j

R
bæ ö

= ç ÷
è ø

for  r < R

( ), 0l n lj b =

β0,0 = π (1S), β0,1 = 4.5  (1P), β0,2 = 5.8  (1D)

β1,0 = 2π (2S), β1,1 = 7.7  (2P)

βn, l = nth root of jl (x).



Semiconductor Nanocrystals

CdSe nanocrystals

For CdSe:
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For R = 2 nm, 0,1 0,0 0.76 eVe e- =

For e,  ε 0,0 increases as R decreases.
For h,  ε 0,0 decreases as R decreases.
→  Eg increases as R decreases.

Optical spectra of nanocrystals can be tuned 
continuously in visible region.

Applications:  fluorescent labeling,  LED.



Metallic Dots

Small spherical alkali  metallic cluster

Na 
mass spectroscopy

Mass spectroscopy (abundance spectra):
Large abundance at cluster size of magic 
numbers ( 8, 20, 40, 58, … )
→  enhanced stability for filled e-shells.

Average level spacing at εF :

( )
21
3

F

FD Ne
e e

D » =

For Au nanoparticles with  R = 2 nm,  
Δε » 2 meV.
whereas CdSe  gives  Δε » 0.76 eV.
→  ε quantization more influential in  
semiconductor.



Discrete Charge States
Thomas-Fermi approximation: 1 1N N eµ e j+ += -

1N gNU eVe a+= + -

U = interaction between 2 e’s on the dot  = charging energy.
α = rate at which a nearby gate voltage Vg shifts φ of the dot.

Neglecting its dependence on state,  
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a =

C = capacitance of dot.
Cg = capacitance between gate & dot

If dot is in weak contact with 
reservoir, e’s will tunnel into it 
until the μ’s are equalized.

Change in Vg required to add an e is



U depends on size &shape of dot & its local environment.

For a spherical dot of radius R surrounded by a spherical metal shell of radius R + d,  

2e dU
R R de

=
+

For  R = 2 nm,  d = 1 nm &   ε = 1,  we have
U = 0.24 eV    >>    kBT = 0.026eV     at  T = 300K

→   Thermal fluctuation  strongly supressed.

For metallic dots of 2nm radius,  Δε » 2meV  →   ΔVg due mostly to U.
For semiC dots, e.g., CdSe,  Δε » 0.76 eV  →   ΔVg due both to Δε &  U.  

Charging effect is destroyed if tunneling rate is too great.
Charge resides in dot for time  δt » RC.   ( R = resistance )

→
h
t

de
d

»
h
RC

»
2

2

1e h
C e R

=

Quantum fluctuation smears out charging effect when  δε » U, i.e., when R ~ h / e2 . 



Conditions for a Coulomb  Blockade

1) The Coulomb energy e2/C needs to exceed the 
thermal energy kBT.
Otherwise an extra electron can get onto the dot with 
thermal energy instead of being blocked by the 
Coulomb energy.  A dot needs to be either small (<10 
nm at 300K) or cold (< 1K for a µm sized dot).

2) The residence time Dt=RC of an electron on the dot 
needs to be so long that the corresponding energy 
uncertainty DE=h/Dt = h/RC is less than the Coulomb 
energy e2/C . That leads to a condition for the tunnel 
resistance between the dot and source/drain:   R > h/e2  

» 26 kW

M MI

C, R
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C.f.  Ohm’s law  R µ L

For a 1-D system with disorder,  all states become localized to some length ξ .
Absence of extended states →  R µ exp( a L / ξ ) ,  a = some constant.
For quasi-1-D systems, one finds  ξ ~ N le , where N = number of occupied subbands. 

For T > 0,  interactions with phonons or other e’s reduce phase coherence to length lφ = A T −α .
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for each coherent segment.

For sufficiently high T,  lφ £ le , coherence is effectively destroyed & ohmic law is recovered.   

Overall  áRñ » incoherent addition of  L / lφ such segments.   

All states  in disordered 2-D systems are also localized.
Only some states (near band edges) in disordered 3-D systems are localized.



Electrical Transport in 0-D

For   T < ( U + Δε ) / kB ,  U & Δε control e flow thru dot.  

Transport thru dot is suppressed 
when µL & µR of leads lie between 
µN & µN+1 (Coulomb blockade)

Transport is possible 
only when µN+1 lies 
between µL & µR . 

→  Coulomb oscillations  of  G( Vg ).



Gate Voltage versus Source-Drain Voltage
The situation gets a bit confusing, because there are two voltages that can be
varied, the gate voltage Vg and the source-drain voltage Vs-d .

Both affect the conductance. Therefore, one often plots the conductance G
against both voltages (see the next slide for data).

Schematically, one obtains “Coulomb diamonds”, which are regions with a
stable electron number N on the dot (and consequently zero conductance).

G

Vs-d

Vg

Vg0 1 2 3 4

1/2 3/2 5/2 7/2





Single  Electron  Transistor  (SET)

Cg

dot

Vg

e- e-

gate

source drain

channel

A  single  electron transistor is similar to a 
normal transistor (below), except

1) the channel is replaced by a small dot.

2) the dot is separated from source and drain 
by thin insulators.

An electron tunnels in two steps: 

source ® dot ® drain

The gate voltage Vg is used to control the 
charge on the gate-dot capacitor Cg .

How can the charge be controlled with the 
precision of a single electron? 

Kouwenhoven et al., Few Electron Quantum 
Dots, Rep. Prog. Phys. 64, 701 (2001). 



Two Step Tunneling

drainsource

dot

empty

N (filled)

N+1 filled

empty

(For a detailed explanation see the annotation in the .ppt version.)

source ® dot ® drain



Charging a Dot, One Electron at a Time
Sweeping the gate voltage Vg
changes the charge Qg on the   
gate-dot capacitor Cg . To add        
one electron requires the vol-
tage DVg » e/Cg since Cg=Qg/Vg.

The source-drain conductance          
G is zero for most gate voltages, 
because putting even one extra 
electron onto the dot would cost 
too much Coulomb energy. This   
is called Coulomb blockade .

Electrons can hop onto the dot 
only at a gate voltage where the 
number of electrons on the dot  
flip-flops between N and N+1.         
Their time-averaged number is         
N+½ in that case.

The spacing between these half-
integer conductance peaks is an 
integer.  

dot

DVg » e/Cg

Electrons 
on the dot
N-½    N+½

Cg

e- e-

Vg

NN-1



SET as Extremely Sensitive Charge Detector
At low temperature, the conductance peaks in a SET become very sharp.
Consequently, a very small change in the gate voltage half-way up a peak
produces a large current change, i.e. a large amplification. That makes
the SET extremely sensitive to tiny charges.

The flip side of this sensitivity is that a SET detects every nearby
electron. When it hops from one trap to another, the SET produces a
noise peak.

Sit here:



Including the Energy Levels of a Quantum Dot

Contrary to the Coulomb blockade model, the data show Coulomb diamonds 
with uneven size. Some electron numbers have particularly large diamonds,  
indicating that the corresponding electron number is particularly stable. 

This is reminiscent of the closed electron shells in atoms. Small dots behave 
like artificial atoms when their size shrinks down to the electron wavelength. 
Continuous energy bands become quantized                                                          
(see Lecture 8). Adding one electron requires                                                            
the Coulomb energy U plus the difference DE 
between two quantum levels. If a second electron
is added to the same quantum level
(the same shell in an atom), DE vanishes

and only the Coulomb energy U is needed.

The quantum energy levels can be extracted from the spacing between                 
the conductance peaks by subtracting the Coulomb energy U = e2/C .



Precision Standards from “Single” Electronics

Count individual electrons, pairs, flux quanta  

(f = frequency)

Current I  
Coulomb 
Blockade

Voltage V  
Josephson  

Effect

Resistance R   
Quantum Hall  

Effect

I = e f V = h/2e · 
f

V/I = R = h/e2



Problems
1. Energies of a spherical quantum dot. Consider a spherical dot of radius R

surrounded by a spherical metal shell of radius R + d.

(a) Derive the formula for the charging energy. (b) Show that, for d <<
R, the result is the same as that obtained using the parallel plate capacitor result,
C = εε0 A/d. (c) For the case of an isolated dot, d → ∞, find the ratio of the
charging energy to lowest quantized energy level. Express your answer in terms of
the radius R of the dot and the effective Bohr radius aB

*.

This sets the equilibrium occupancy N of the dot. The charge state can be
changed using the gate voltage Vg. The additional gate voltage !Vg required to
add one more electron from a reservoir of fixed ! is, from (60),

(62)

Adding an extra electron to the dot requires enough energy to fill up the next
single-particle state and also enough energy to overcome the charging energy.

The charging energy U depends on both the size of the dot and the local
electrostatic environment. Nearby metals or dielectrics will screen the coulomb
interaction and reduce the charging energy. In general, U must be calculated for
the specific geometry. As a simple model, consider a spherical dot of radius R
surrounded by a spherical metal shell of radius R " d. This shell screens the
coulomb interaction between electrons on the dot. An elementary application of
Gauss’s law (Problem 5) gives the capacitance and therefore the charging energy:

(CGS) (63)

For R # 2 nm, d # 1 nm, and " # 1, the charging energy is e2/C # 0.24 eV.
This far exceeds kBT 0.026 eV at room temperature, indicating that thermal!

(SI) � U # 

e2

4#"0"R d
R " d

� .U # 

e2

"R
  d
R " d

� ;

!Vg # (1/$e)("N"1 $ "N " e2/C)� .

550

e2

–eV

Vg

RL, CL RR, CR

Cg C!L !R

!(N + 1)

!L !R

(N + 1)

!L !R

N

N,%V

=

(a) (b)

(c)

Figure 21 (a) Schematic illustration of a quantum dot in tunnel contact with two metallic reser-
voirs and capacitatively coupled to a gate. Main: Energy level diagrams illustrating the coulomb
blockade. In (b) the gate voltage is such that the dot is stable with N electrons, so no current flows.
In (c) the blockade is lifted when the electrochemical potential is lowered into the window be-
tween the potentials in the leads, allowing successive charging and discharging of the dot and a net
current flow.
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2. Pair tunneling. Superconductivity adds a new and exciting twist to single electron
tunneling. Work out the basic modifications due to superconductivity.

3. Carbon nanotube band structure. Figure at the right shows the graphene lattice
with the primitive lattice translation vectors of length a = 0.246 nm, along with the
first Brillouin zone. (a) Find the set of reciprocal lattice vectors G associated with
the lattice. (b) Find the length of the vectors K and K’ shown in the figure in terms
of a.



For energies near the Fermi energy and wavevectors near
the K point, the 2D band structure can be approximated
as

where vF = 8 × 105 m/s. A similar approximation holds
near the K’ point. Consider a tube rolled up along the x-
axis with a circumference na. By applying periodic
boundary conditions along the rolled up direction, the
dispersions of the 1D sub- bands near the K point can be
found. (c) Show that, if n is divisible by 3, there exists a
“massless” subband whose energy is linear in ∆ky . Sketch
this subband. These nanotubes are 1D metals. (d) For the
case of n = 10, find the magnitude of the semiconducting
bandgap ε11 in eV and show that ε22 /ε11 = 2. (e) Again for
the n = 10 case, show that the dispersion relation of the
lowest electron subband is of the form of a relativistic
particle, ε2 = (m*c2)2 + (pc)2, where vF plays the role of the
speed of light, and find the ratio of effective mass m* to
the free electron mass m.

Note that in the case of perfectly transmitted phonons through the chan-
nel, the thermal conductance (78) is determined only by fundamental con-
stants and the absolute temperature. This result is analogous to the quantized
electronic conductance (21) of a 1D channel, which was independent of the
electron velocity in the channel. Both the ballistic thermal conductance (78)
and the 1D form of the heat capacity (77) have been observed in experiments
on narrow wires at very low temperatures.

SUMMARY

• Real space probes can give atomic-scale images of nanostructures.

• The density of states of a 1D subband, D(E) ! 4L/hv, diverges at the 
subband thresholds. These are called van Hove singularities.

• The electrical conductance of a 1D system is given by the Landauer formula,
G ! (2e2/h)�, where � is the transmission coefficient through the sample.

• The conductance of a quasi-1D system can be strongly influenced by quan-
tum interference among the electron paths traversing the sample, leading to
resonant tunneling, localization, and the Aharonov-Bohm effect.

• The optical properties of a quantum dot can be tuned by changing its size
and hence its quantized energy levels.

• Adding an extra charge e to a quantum dot requires an additional electro-
chemical potential given by U " #!, where U is the charging energy and #!
is the level spacing.

• The vibrational modes of a nanometer-scale object are quantized.

Problems

1. Carbon nanotube band structure. Figure 29 shows the graphene lattice with the
primitive lattice translation vectors of length a ! 0.246 nm, along with the first 
Brillouin zone. (a) Find the set of reciprocal lattice vectors G associated with the
lattice. (b) Find the length of the vectors K and K$ shown in Fig. 29 in terms of a.

For energies near the Fermi energy and wavevectors near the K point, the 2D
band structure can be approximated as

where vF ! 8 % 105 m/s. A similar approximation holds near the K$ point. Consider
a tube rolled up along the x-axis with a circumference na. By applying periodic
boundary conditions along the rolled up direction, the dispersions of the 1D sub-
bands near the K point can be found. (c) Show that, if n is divisible by 3, there exists
a “massless” subband whose energy is linear in #ky. Sketch this subband. These 
nanotubes are 1D metals. (d) If n is not divisible by 3, the subband structure is that

! ! !"vF !#k ! � � #k ! k & K� ,
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as shown in Fig. 10. For the case of n ! 10, find the magnitude of the semiconduct-
ing bandgap !11 in eV and show that !22/!11 ! 2. (e) Again for the n ! 10 case, show
that the dispersion relation of the lowest electron subband is of the form of a rela-
tivistic particle, !2 ! (m*c2)2 " (pc)2, where vF plays the role of the speed of light,
and find the ratio of effective mass m* to the free electron mass m.

2. Filling subbands. For electrons in a square GaAs wire of width 20 nm, find the 
linear electron density at which the nx ! 2, ny ! 2 subband is first populated in
equilibrium at T ! 0. Assume an infinite confining potential at the wire boundary.

3. Breit-Wigner form of a transmission resonance. The purpose of this problem is
to derive (33) from (29). (a) By expanding the cosine for small phase differences away
from resonance, "# ! #* # 2$n, find a simplified form of (29) involving only |t1|2, |t2|2,
and "#. (b) Show that, for states in a 1D box, the following relation holds between
small changes in the phases and small changes in the energy: "!/$! ! "#/2$, where
$! is the level spacing. (c) Combine (a) and (b) to obtain (33).

4. Barriers in series and Ohm’s Law. (a) Derive (36) from (35). (b) Show that the
1D Drude conductivity %1D ! n1De2&/m can be written as %1D ! (2e2/h)!B. (Note:
The momentum relaxation rate and the backscattering rates are related as 1/& ! 2/&B

because the former corresponds to the relaxation from p to 0 while the latter corre-
sponds to relaxation from p to #p.)

18  Nanostructures 563

Conical
dispersion

Fermi
points

a2

a

ky

kx

E(k)

a1

K
Ka

(a)

(b)

Figure 29 (a) The graphene lattice and
(b) the first Brillouin zone of the
graphene lattice showing the conical dis-
persion of the energies near the K and K%
points.
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