HOME   |    TIGP  |    ACADEMIA SINICA       

 

Introduction to Nanotechnology (B)

Credits: 3

Instructors: Dr. Lin, Wen-Chin 林文欽教授

Class hour: Monday 13:30-16:30 

Classroom: Room R209, IAMS, AS

Introduction

We will go through the following topics: 1. Crystalline Structure, 2. Length Scales, Review of Linear Algebra, 3. Quantum Mechanics Review, 4. Model Quantum Mechanics Problem, 4. Density of states and Energy Bands, 6. Solid state physics: from insulator to semiconductor and super conductor, 7. Magnetism and magnetic materials, 8. Experimental Facility-Photoelectron emission: XPS, UPS and NSRRC, 9. Experimental Facility-Electron Microscopy: SEM, TEM and STM, 10. Introduction to nanomagnetism, 11. Introduction to 2-dimentional materials, 12. Other topics of nanoscience
We will adjust the pace of the course and materials covered according to the average level of the students. In general, we expect the students to put in significant effort to grasp the basics.

Syllabus

Outline

Chap. 2  Crystalline Structure p. 9~29 (20)- 2.1 Introduction  2.2 Basic properties  2.3 Examples of crystal structures  2.4 Miller indices  2.5 Surface-to volume ratio

Chap. 3 Length Scales p. 29~61 (32)-  3.1 Introduction  3.2 de Broglie wavelength 3.3 The Bohr radius  3.4 Excitons  3.5 Confinement regimes  3.6 Metals  3.7 The Fermi energy, Fermi velocity, and Kubo gap  3.8 The mean free path in metals  3.9Charging energy

Review of Linear Algebra

Chap. 6 A Quantum Mechanics Review p. 101~137  (36)-  6.1 Introduction  6.2Wavefunctions  6.3 Observables and the correspondence principle  6.4 Eigenvalues and eigenfunctions

6.5 Wave packets  6.6 Expectation values  6.7 Dirac bra-ket notation  6.8 Operator math  6.9 More on operators

6.10 Commutators  6.11 More commutator relationships  6.12 The uncertainty principle  6.13 The Schrodinger equation

6.14 The postulates of quantum mechanics  6.15 Time-independent, nondegenerate perturbation theory

Chap. 7 Model Quantum Mechanics Problem p.137~179 (42)-  7.1 Introduction  7.2Standard model problems  7.3 Model problems for wells, wires, and dots

Chap. 8 Additional Model Problems p.179~203 (24)-  8.1 Introduction  8.2 Particle in a finite one-dimensional box  8.3 Particle in an infinite circular box  8.4 Harmonic oscillator (This chapter can be omitted if there is not enough time. It is more important that the students do some calculation.)

Chap. 9 Density of states p.203~239 (36)  9.1 Introduction  9.2 Density of states for bulk materials, wells, wires, and dots  9.3 Population of the conduction and valence bands  9.4 Quasi-Fermi levels  9.5 Joint density of states

Chap. 10 Bands p. 239~275 (36)  (This chapter involves many concepts and need some supplemental material.)- 10.1 Introduction  10.2 The Kronig-Penney model  10.3Kronig-Penney model with delta-function barriers

10.4 Other band models  10.5 Metals, semiconductors, and insulators 
Magnetism and magnetic materials,

Experimental Facility-Photoelectron emission: XPS, UPS and NSRRC, 
Experimental Facility-Electron Microscopy: SEM, TEM and STM,
Lab. tour

Introduction to nano-magnetism, 2-dimentional materials and nano-catalyst

Other topics of nanoscience

Reference

  1. Introductory NanoScience, Physical and Chemical Concepts, Masaru Kuno
  2. Introduction to Solid State Physics, Kittel
  3. Modern Quantum Mechanics, J. J. Sakurai
  4. Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, R. Eisberg and R. Resnick