1. Photonic crystal “band-edge” lasers

Photonic Crystal Band-Edge Lasers

Min-Hsiung Shih (施閔雄)
Research Center for Applied Sciences (RCAS), Academia Sinica, Taiwan
Mar 21, 2018

Photonic Crystal Band-Edge Resonant Modes

\[
\beta = \frac{\partial \omega}{\partial n} \quad \text{around “band-edge”, } V_g \sim 0
\]

i.e. high-Q resonant waves

Science 319, 445 (2008); Optics Express 16, 6033 (2008)
2. Photonic crystal “defect” lasers

- **D1 and larger cavities**
 - Membrane vs. Substrate
 - Ultra-high Q cavities
 - Ultra-small cavities
 - Others

D1 Photonic Crystal Defect Lasers

- First demonstration of the photonic crystal defect lasers
- InGaAsP Suspended membrane structure
- 2-D photonic crystals support in-plane confinement, while suspended membrane gives the vertical confinement
- Nano-fabrication technology improved a lot since 1999

D1 Photonic Crystal Defect Lasers

- Gain peak of MQWs is around 1550 nm communication wavelength
- Lasing wavelength is 1504 nm
- External threshold power is about 6.75 mW under optical pumping conditions (10ns pulse, 4% duty cycle) at 143K

D₃ Suspended Membrane Photonic Crystal Defect Lasers

- How to characterize and verify the operated lasing modes in the photonic crystal lasers?
- Fine-tuning of lattice constant of photonic crystal D₃ defect lasers
- The lattice constant varied from 490 nm to 550 nm with a 2 nm tuning step

The lasing wavelengths collected from the photonic crystal cavities with varied lattice constants

The lasing wavelength is linear dependent with the lattice constant (a)

The results indicate that the same cavity operated mode in those D₃ cavities

The normalized frequency (a/λ) of this mode is 0.337

Photonic Crystal Defect Lasers on a Substrate

- Membrane vs. Substrate

(a) Suspended membrane structure of photonic crystal lasers

(b) Semiconductor substrate structure of photonic crystal lasers

2. Photonic crystal “defect” lasers

- Membrane vs. Substrate
Suspended Membrane and Sapphire-Bonded Structure

- Air-dielectric-air structure has better confinement for the localized fields
- The structure only lase under pulsed conditions
- Air-dielectric-sapphire structure has less confinement for the localized fields
- This structure can lase under continuous wave (CW) conditions

Thermal conductivity
Air: 2.5×10^{-5} W/cm·K and Sapphire: 5×10^{-1} W/cm·K

Big Issues ..

1. High Q value
2. Small mode volume
3. Electrically injection

Quality Factor (Q) of Sapphire-Bonded Photonic Crystal Cavity

- Ultra-high Q cavities

2. Photonic crystal “defect” lasers
The lasing mode profiles from finite-difference time-domain (FDTD) simulation

The E-field amplitude of y-dipole mode

The defect mode has a large overlap with the gain region due to the antinode at the center of the defect.

The Ey-field profile obtained from FDTD simulation for the L3 cavities

The 2-D Fourier transform spectra of the calculated mode profiles

The leaky region surrounded by the light cone (white-circle) in k-space

The fabricated photonic crystal waveguide - cavity coupled structure

The measured spectra from the modified L3 cavities with varied air hole shifts

The highest Q is obtained from the cavity with 0.15a lattice shift

Photonic Crystal Heterostructure Cavity

- Waveguide type cavity
- Q > 600,000

Photonic Crystal W3 Heterostructure Cavity

Band diagram of W3 membrane waveguide

Q spectrum of W3 heterostructure cavity from 3-D FDTD

\[\Delta a = +2.5\% \]

Quality Factor (Q)

Normalized Frequency

In-Plane Propagation Constant (x \(\pi / a \))

Photonic Crystal Heterostructure Laser

- Waveguide type cavity
- Q > 600,000

W3

a=430 nm

a=430 nm

a=441 nm

Photonic Crystal Heterostructure Cavity

Calculated Quality Factor

Output Intensity (a.u.)

Output Power (a.u.)

Incident Pump Power (mW)
Photonic Crystal Nanobeam Cavity

- Single-line type cavity
- Q > 1,000,000

Photonic Crystal Nanobeam Laser

Ultra-small Mode Volume Photonic Crystal Laser
Why Ultrasmall Cavity??

- Cavity quantum electrodynamics (QED):

 ![Image of without Cavity and with Cavity](image)

- Purcell factor:

 \[F_p = \frac{3}{4\pi^2} \left(\frac{\lambda}{n} \right)^2 \left(\frac{Q}{V_m} \right) \]

 (E.M. Purcell, *Phys. Rev.* 69, 681 (1946))

 Spontaneous emission rate enhancement factor

Why Ultrasmall Cavity??

- Spontaneous emission coupling factor \(\beta \):

 Efficiency of coupling emitter into a single resonant mode, and \(\beta = 1 \) for “threshold-less” laser.

\[
\beta = \frac{F_p}{F_p + \gamma} \leq 1
\]

Zero-Cell Photonic Crystal Defect Cavity

-- from “Zero”...

from \(L_3 \) cavity from \(D_0 \) cavity

Ultrasmall Mode Volume

Photonic Crystal Laser

Ultrasmall Mode Volume Photonic Crystal Laser

Photonic Crystal Point-Shift Cavity

Optics Express 15, 7506 (2007)
3. Electrically-Pumped Photonic Crystal Lasers

- Vertical current injection structure
- In-plane current injection structure
Lasing wavelength ~ 1520 nm
The threshold current ~ 250 μA
The spontaneous emission coupling factor $\beta \approx 0.25$.

The electrical resistance $\approx 2000 \, \Omega$.
Electrically-Pumped Photonic Crystal Laser (II)

Directly Modulated PhC Nanolaser

Electrically-Pumped Photonic Crystal Laser (III)

Directly Modulated PhC Nanolaser