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Comparison of Quantum Mechanics and Electridynamics 

Table 1 Extended comparison between quantum mechanics 

in a periodic potential and electromagnetism in a periodic 

dielectric. 

 QUANTUM 

MECHANICS IN A 

PERIODIC POTENTIAL 

(CRYSTAL)  

ELECTROMAGNETISM 

IN A PERIODIC 

DIELECTRIC 

(PHOTONIC CRYSTAL) 
What is the 

“main 

function” that 

contains all of 

the 

information? 

The scalar wave function 

( , ) r t . 

The magnetic vector field 

( , )H r t . 

How do we 

separate out 

the time 

dependence of 

the function 

(into normal 

modes)? 

/( , ) ( )   iEt h

E E

E

r t C r e  

Expand in a set of energy 

eigenstates ( )E r  

( , ) ( ) 




 i tH r t C H r e  

Expand in a set of harmonic 

modes ( )H r . 

What is the 

“master 

equation ”that 

determines the 

normal modes 

of the system? 

2

( ) ( ) ( )
2

 
    

 
E E

p
V r r E r

m
 

The Schrödinger equation. 

2

2

1
( ) ( )

( )
 




  H r H r

cr
 

The Maxwell equations. 

Are there any 

other 

conditions on 

the main 

function? 

Yes, it must be 

normalizable. 

Yes, the field must be both 

normalizable and transverse: 
0H   

Where does 

the periodicity 

The potential: The dielectric: ( ) ( )  r r R , 
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 QUANTUM 

MECHANICS IN A 

PERIODIC POTENTIAL 

(CRYSTAL)  

ELECTROMAGNETISM 

IN A PERIODIC 

DIELECTRIC 

(PHOTONIC CRYSTAL) 

of the system 

enter? 
( ) ( ) V r V r R , for all 

lattice vectors R. 

for all lattice vectors R. 

Is there any 

interaction 

between 

normal 

modes? 

Yes, there is an electron- 

electron repulsive 

interaction that* makes 

large-scale computation 

difficult. 

In the linear regime, light 

modes can pass right through 

one another undisturbed, and 

can be calculated 

independently. 

What 

important 

properties do 

the normal 

modes have in 

common? 

Eigenstates with different 

energies are orthogonal, 

they have real 

eigenvalues, and can be 

found with a variational 

principle. 

Modes with different 

frequencies are orthogonal, 

they have real positive 

eigenvalues, and can be found 

with a variational principle. 

On what fact 

about the 

master 

equation do 

the important 

properties 

rely? 

The Hamiltonian H is a 

linear, Hermitian 

operator. 

The Maxwell operator   is a 

linear, Hermitian operator. 

What is the 

variational 

theorem we 

use to 

determine the 

normal modes 

and 

frequencies? 

var

| |

|

H
E

 


 
 

varE is minimized when  

is an eigenstate of 

H(Hamiltonian). 

var

,

,




H H
E

H H
 

varE is minimized when 

𝐻(Field) is a normal mode of 

 . 

What is the 

heuristic that 

goes along 

with the 

The wave function 

concentrates in regions 

of low potential, while 

remaining orthogonal to 

The fields concentrate their 

electrical energy in high-  

regions, while remaining 

orthogonal to lower modes. 
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 QUANTUM 

MECHANICS IN A 

PERIODIC POTENTIAL 

(CRYSTAL)  

ELECTROMAGNETISM 

IN A PERIODIC 

DIELECTRIC 

(PHOTONIC CRYSTAL) 

variational 

theorem? 

lower states. 

What is the 

physical 

energy of the 

system? 

The eigenvalue E of the 

Hamiltonian. 

2 21 1

8 

   
    
   

E dr D H  

The electromagnetic energy. 

Is there a 

natural length 

scale to the 

system? 

Usually, because 

constants such as the 

Bohr radius set the length 

scale. 

No, solutions are scalable to 

any length scale. 

What is the 

mathematical 

statement that 

says: “A is a 

symmetry of 

the system”? 

A commutes with the 

Hamiltonian: 

 ,  0A H  . 

A commutes with the 

Maxwell operator: 

 ,  0A   .  

How do we 

classify the 

normal modes 

using a system’s 

symmetries? 

Distinguish them by how 

they transform under a 

symmetry operation A. 

Distinguish them by how they 

transform under a symmetry 

operation A. 

What does the 

discrete 

translational 

symmetry of a 

crystal allow 

us to do? 

( ) ( )   ik r

k kr u r e  

Write the wave function 

in Bloch form. 

( ) ( )  ik r
k kH r u r e  

Write the harmonic modes in 

Bloch form. 

What are the 

allowable 

values for the 

wave v vector k? 

They lie in the Brillouin 

zone in reciprocal space. 

They lie in the Brillouin zone 

in reciprocal space. 

What do we 

mean by the 

term “band 

The functions ( )nE k , 

which tell us the energies 

The functions ( )n k , which 

tell us the frequencies of the 
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 QUANTUM 

MECHANICS IN A 

PERIODIC POTENTIAL 

(CRYSTAL)  

ELECTROMAGNETISM 

IN A PERIODIC 

DIELECTRIC 

(PHOTONIC CRYSTAL) 

structure”? of the allowed 

eigenstates. 

allowed harmonic modes. 

What is the 

physical 

origin of the 

band 

structure? 

The electron wave 

scatters coherently from 

the different potential 

regions. 

The electromagnetic fields 

scatter coherently at the 

interfaces between different 

dielectric regions. 

What happens 

inside a gap 

in the band 

structure? 

No propagating electrons 

in that energy range are 

allowed to exist, 

regardless of wave 

vector. 

No extended modes in that 

frequency range are allowed 

to exist, regardless of wave 

vector. 

What do we 

call the bands 

immediately 

above and 

below the 

gap? 

The band above the gap 

is the conduction band; 

the band below the gap is 

the valence band. 

The band above the gap is the 

air band; the band below the 

gap is the dielectric band. 

How do we 

introduce 

defects into 

the system? 

By adding foreign atoms 

to the crystal, which 

breaks the translational 

symmetry of the atomic 

potential. 

By changing the dielectric 

constant of certain regions, 

which breaks the translational 

symmetry of ( ) r . 

What is the 

result of 

introducing a 

defect? 

It might create an 

allowed state in a band 

gap, thereby permitting a 

localized electron state 

around the defect. 

It might create an allowed 

state in a band gap, thereby 

permitting a localized mode 

around the defect. 

How do we 

classify 

different types 

of defects? 

Donor atoms pull states 

from the conduction 

band into the gap; 

acceptor atoms pull 

states from the valence 

Dielectric defects pull states 

from the air band into the gap; 

air defects pull states from the 

dielectric band into the gap. 
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 QUANTUM 

MECHANICS IN A 

PERIODIC POTENTIAL 

(CRYSTAL)  

ELECTROMAGNETISM 

IN A PERIODIC 

DIELECTRIC 

(PHOTONIC CRYSTAL) 

band into the gap. 

 

In short, why 

is the study of 

the physics of 

the system 

important? 

We can tailor the 

electronic properties of 

materials to our needs.  

We can tailor the optical 

properties of materials to our 

needs. 
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We had discussed the band structure for 2-D photonic 

crystals. Two popular types of lattices, rectangular & triangular 

lattices, had been shown in the previous notes.  

For most of application with photonic crystals, the band 

gap in the band structure is one of the most important 

parameters. A lot of applications use the “optical” properties 

inside or around the photonic band gap, so photonic crystal is 

one type of photonic band gap materials (PBG) with the control 

of the band gap characteristics. We can engineer the optical 

properties of the optical/photonic devices. It’s quite similar to 

the band gap of semiconductor electric material. People can 

engineer “electronic” properties by controlling the band gap of 

Si, GaAs or others. 

2-D photonic crystals band gap can be decided by the 

lattice geometry and the parameters , ,n a r . Now we are going 

to discuss how those parameters take some effect for the band 

gap. 

1) “r/a” value of photonic crystal holes or rods 

Without changing the material or the lattice type, we can 
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just vary the hole (or rod) radius r to modify the band gap 

frequency (or wave length) and width. Let’s consider a 2-D 

triangular lattice with air holes embedded in the dielectric 

material again. 

n
a

1.0

2r

 

Now we use n=3.4 and vary r/a value of air holes. The 

band diagram of photonic lattices with the different “r/a” values 

are shown below. 

We have the band structure of TE and TM modes with the 

“r/a” values. Apparently, the bands shift to higher frequency as 

the r/a value increases. However, the shifts might be different 

because of the different polarizations. i.e.TE TM . The band 

gap, which is shaded in the band diagrams, is not always existed 

for all r/a values. In this example, the TE band gap start to show 

up when the r/a value is large than 0.18. The band gap is around 
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normalized frequency 0.2. We can plot the photonic band gap 

position versus the r/a value which is shown in the page 86. The 

higher curve is the frequency position of the top boundary of the 

band gap, while the lower curve is frequency of bottom 

boundary of the band gap. The region surrounded by the two 

curves is the band gap region with varied r/a values. This band 

gap region goes to higher frequency area when r/a value 

increase. The width of the photonic band gap, which is the 

difference between two curves in top-left figure is plotted in the 

bottom figure. The band gap width increases as r/a value 

increase, and it reaches the maximum 0.18 normalized 

frequency at r/a value 0.42. 

After the maximum point, the gap width start to decrease as 

r/a value increases. For this case, we had realized 

(1) The photonic band gap can be shifted by varying r/a 

value. It means that the device operated wave length can 

be controlled by the r/a value of photonic lattices. 
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(2) The width of photonic band gap can be modified with the 

different r/a value. Larger band gap gives us more degree 

of freedom to design the photonic crystal devices and 

more defect modes or bands from the photonic crystal 

defect cavities or waveguides. 
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2) Refractive index n of photonic crystal lattices 

In next example, we are going to examine the effect due to 

the variation of the refractive index of the photonic crystal 

lattices. We still take the triangular lattices with air holes as an 

example.  

Now we fix the r/a=0.3 and index of air holes, 1.0. The 

background index, n, is varied from 1.5 to 3.5. 

1n

a

2 1.0n 

2r

0.3

(hole) 1.0

r
a

n



  
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3) Complete band gap for both polarizations 

In the previous examples, some have the photonic band gap 

for TE modes, some have band gap only for TM mode, and some 

even have no band gap for the both polarizations. Is it possible 

to have the photonic band gap for both TE and TM polarizations 

simultaneously? 

The answer is Yes! Now let’s take a 

look to an example first, then we’ll 

analyze the reason for TE and TM band 

gaps. Consider a 2-D triangular photonic 

crystal lattices with the air holes again. This time we’ll let n=3.4 

n

a

2r

1.0
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and r/a value varied from 0.35 to 0.50. The band structures of 

TE and TM modes with these r/a values are shown below. 
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According to the band diagrams in the previous pages, we 

can plot the band gap position in normalized frequency versus 

r/a value like we did in the page 92. In the top figure of page 92, 
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the square-curves are the top & bottom boundaries for TE band 

gap while the circle-curves are the band gap boundaries versus 

r/a value for TM mode. We also plot the width of band gaps for 

TE & TM modes versus r/a value of lattices in the bottom figure.  
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What’s important for the photonic crystal band gap? 

We have done several examples for the different photonic 

crystals, and plotted their band diagrams and the photonic band 

gaps. To apply photonic crystals in the real devices and engineer 

their optical properties around the band gap region, we should 

discuss several key issues for the photonic band gap.  

1) Scaling properties of photonic crystals 

In EM , there is no fundamental length scale other than the 

assumption that the system is macroscopic. Therefore, in 

photonic crystals, there is no fundamental constant with the 

dimensions of length. The relationship between EM problems is 

the difference only by a contraction or expansion of all 

distances.  

Consider the eigenvalue equation for )(rH


 

)()](
)(

1
[ 2 rHrH

r


 


  

Now we make a compression or expansion for the structure

)(' r


 , then  

)()('
s

r
r




   
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where s is a scale factor. 

We can also make changes of the variables  

r sr   

s


'  

then the above equation becomes 

)
'

()]
'

('

)
'

(

1
[' 2

s

r
H

s

r
Hs

s

r
s


 




 

)
'

()()]
'

('
)'('

1
[' 2

s

r
H

ss

r
H

r







  

This is just the same eigenvalue equation with the mode

( )= ( )
r

H r H
s


  and frequency =

s


 . This means that we can 

obtain the new mode and new frequency just scale a factor, s, 

from the original solutions of the Maxwell’s equations.  

To understand the scaling properties of photonic crystals, 

let’s consider the followed example. 
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1n

a

2r

2 1.0n 

 

Now we fixed 1n  & 2n , and 0.3
r

a
 , but we vary the 

lattice constant, 𝑎 to study the changes in the band structure & 

band gaps. In page 97, we plot the band diagrams for a =1000 

nm and a =2000 nm. We realized that 2 band structures looks 

same in the normalize frequency unit (
a


). It means the 

frequency vary linearly with the scale of the lattice const. 

     i.e. a


1
 

2) The ratio of different dielectric constants.  

In the previous discussion for 2-D photonic crystal band 

structures, we had examined the bands and band gaps vary with 

the different dielectric constants. However, is the absolutely 

value of a dielectric constant the key parameter for the band 

gap?  
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Actually what is really important is the ratio of the 2 

different constants, not the actual values. Let’s consider this 

example. 

1n

a

2r

2n

 

Now we fixed a & r in the lattices. We also fixed the ration 

of two refractive indices,
1

2

n

n
, but varied the actual values from 

1

2

3
=

1

n

n  to 
1

2

6
=

2

n

n . 

The band diagrams are plotted in the page 98. 
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So as long as the ration fixed, we can just scale the 

dielectric constants to whatever we want, and the optical 

properties will be same. 
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Concept of the Light Cone/Line 

In 2-D photonic crystal, we assumed the periodic structure 

in x-y plane, and infinite thickness in z-axis. However, for most 

of the cases, we have the finite thickness in the photonic crystal 

slab structure. It is important to consider whether light coming 

from an outside homogeneous medium can couple to the inside 

modes through the entrance boundary plane. This kind of 

coupling mode called the leaky mode because it is not an 

eigenmode it is not an eigenmode of the structure and it’s energy 

leak to the outside space through the coupling. 

Non-leaky mode leaky mode  



30 
 

2n

1n 1k 

1

2

1 1( , )k

1//k

2 2( , )k 

interface

 

Now consider 2 mediums with index 1 2 &  n n . In medium 1, 

the signal has wave vector 1  k and frequency 1   . In medium 2, 

the signal has 2 2( , ) k  . In coupling process, the energy 

conservation and momentum conservation energy to interface 

must be valid so 

1 2=   

and  

    1 / / 2 / /=  k k  

In a homogeneous medium with index n, the light cone can 

be described by the relation 

  ck
n

c
//


 

When n=1 (i.e. in air), then the 

light line xck   yk

1n k

xk

ŷ

x̂
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Now let’s use the 2 layer structure to describe the concept 

of light line (cone). 

2n

1n

1

2

1( , )k

2( , )k
ŷ

x̂

2n

1 2n n

 

Consider the above structure, medium 1 is embedded by 

medium 2, and the refractive index of medium1, 1n  is larger 

than the refractive index of medium2, 2n . Assume a mode in 

medium 1 with the wave vector 1  k and a propagation angle 1 . 

After pass through the interface into the medium 2, the mode 

has the wave vector 2k and the propagation angle 2 . Note, we 

have the Snell’s law 

1 1 2 2 sin  sink k   

or 

1// 2//=  k k  

or 

1 1 2 2sin sinn n   
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For a mode confined in the medium 1, it means that we 

need have a mode total reflective from the interface. 

i.e. 1 c   

where 
2

1

sin c

n

n
   

    or 1 2sin sin( )
2

cn n


   

so once c  , there is no wave propagate into the 

medium 2 from the interface. However this doesn’t indicate the 

light field vanishes completely in the medium 2. See the leaky 

and non-leaky modes in the figure of page 99. 
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Photonic Crystal Slab Structure 

So far we had discussed the photonic crystals which the 

lattice is periodic in 2-D and infinitely extended in the ẑ axis. 

Now we are going to consider the photonic crystals with a finite 

thickness. 

(b)

(a)

x

y
z

 

 

Adding the finite thickness for the 2-D photonic crystal 

lattices means we have to deal with the propagation vector in the 

ẑ -axis. Even for propagation in-plane (x-y plane), the dielectric 

slab will have guided modes which there zk  is not zero. 

There are some effects from this finite thickness of the slab 
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structure. 

1) There is no longer a complete photonic band gap. It’s still 

possible to have the band gaps for the guided modes of 

the slab. 

2) Modes cannot be classified as “pure” TE or TM modes. 

 

So let’s discuss the two issues one by one. 

1) First thing is the disappearance of a complete band gap. 

This is due to the non-zero zk . Even in two-dimensional 

photonic crystals that are infinite in the third dimensional 

(Here is the ẑ -axis), the photonic band gap disappears when 

we allow out-of-plane ( 0zk  ) propagation. 

Here we show the band diagrams from 2-D photonic crystals. 

They are periodic in x-y plane and infinitely in the ẑ -axis. 
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Fig2. Band diagrams for the photonic crystals from (a) Fig.1 (a) and 

(b) Fig.1 (b). The shaded region indicates the frequencies of states 

introduced when vertical propagation (i.e. perpendicular to the plane 

of periodicity) is permitted. 

 

If we restrict the photonic lattice to a finite thickness then 

we expect that there will be modes guided by the dielectric slab 

and radiation modes (or leaky modes). 
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The dispersion relation for a slab waveguide is followed 





Leaky 

modes

radiation 

modes
2

c

n
 

1

c

n
 

guided 

modes

1n

2n

2n

  The band structure for a slab photonic crystal lattice has the 

similar situation. 

 

Bands below the light line are guided by the dielectric slab. 

Bands above the light line are the leaky waves. Their energy is 
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not confined inside the dielectric slab. There is also a continuum 

of radiation modes above the light line. The light line is given as 

in the case of the slab waveguide by the free propagation (plane 

wave) dispersion relation of the cladding.  

The pressure of the radiation modes eliminates the 

complete band gap. It is still possible, however, to obtain gaps in 

the guided spectrum. Light in the frequency range 

corresponding to the gap in the guided modes can’t propagate in 

the plane of the slab. 

According to the above arguments, once we have a finite 

thickness for the 2-D photonic crystals, the band diagrams of 

2-D lattices in the page 110 will become the band diagrams 

shown in the next page. 
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Fig.4. Projected band diagrams corresponding to the two slabs in 

Fig.3. Whether states are even or odd with respect to the horizontal 

mirror plane of the slab is indicated by open or filled circles, 

respectively. 

The shaded regions above the light cone are radiation 

modes or leaky modes for the 2-D photonic crystal slabs. Only 

the bands below the light cones are considered as the guided (or 
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confined) modes in the slab. We are most likely to use those 

modes for the real devices. 

2) Now let’s talk about the polarization of slab photonic 

crystals. Since the symmetry under reflection through x-y plane 

is no longer valid for all z, the slab modes can not be classified 

as even or odd modes for all z. However, it is possible to 

separate the slab modes into even to odd at some points. 

Consider the two examples 

(I)

n

1.0

1.0

(II)

1.0

1n

2n

x̂
ŷ

ẑ

 

    Example (I) is a suspended membrane photonic crystal 

structure which has air cladding above and bottom of the slab. In 

this case, we’ll have reflection symmetry at x-y plane of z = 0 

(i.e. at center of the slab). We therefore have separated even and 

odd modes at z = 0. In the x-y plane of the center of the slab, the 

even modes are TE, and the odd modes are TM. However, at all 

other z, the even modes are only TE-like and the odd modes are 
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only TM-like. They are not rigorously TE or TM. 

   In example (II), we cannot have any z which has the 

reflection symmetry for the photonic crystal system. For this 

case, we only have TE-like (or even-like) modes and TM-like 

(or odd-like) modes. 
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Defects and defect modes from the photonic crystals 

After the discussion of non-defect photonic crystal lattices, 

we are going to study the photonic crystals with the defects or 

the defect lines. 

For a triangular photonic crystal with the defect, we have 

the band diagram for TE mode. 

N
o
rm

al
iz

ed
 f

re
q
u
en

cy
 

(
/

)
a

x


K

0.4

M

0.2

0.6

In-plane Wavevector

0.8





M k

Complete Band Gap

Defect bands

x

x

x

Defect modes

 

Now if we create a defect point by removing an air hole 

from the lattices to form a defect cavity. 

(* Confine photon intensity inside the defect) 
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Removed hole

 

Then we’ll simultaneously have some defect modes in the 

photonic band gap regions. The modes describe the photon / 

wave behavior associated with the defect we created.  

Removed line

 

If we remove a line from the lattice to form a waveguide, 

we’ll have the defect bands in the gap region to describe the 

character of the wave propagation inside or around the defect 

line area. 

There are several notes we should mention for the defect 

modes / bands of the photonic crystals, 

(1) The defect modes, which are formed by removing some 
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lattice points, are only the “isolated” modes in the band 

gaps. It means that there is no allowed modes / states 

between those defect modes for the photonic crystal 

cavity. 

(2) The defect bands, which are created by removing a line 

of lattices, are composed by “many” defect modes in the 

gaps. Since the defects in the lattices open 

one-dimensional degree of freedom, any point (or state) 

on the defect bands is the allowed state for the photonic 

crystal waveguide. 

(3) The defect modes and bands are not only located inside 

the “completely” band gap regions, but also in the gap 

region outside the complete band gap. 
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(Cavity) The 4D  photonic crystal defect cavity on a SOI 

substrate. 

 

 

(Waveguide) The with photonic crystal waveguide in a 

GaAs suspended membrane. 
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Quality factor (Q) and photon lifetime 

    Quality factor (Q) is an important parameter for a cavity. It 

mainly describes the photo life time inside the cavity, or the 

energy stored in the cavity. There are several definitions (or 

descriptions) for the quality factor of a cavity.  

 

 

0 0

2  (energy stored in the system at resonance)
(1)  

(energy lost in a cycle of oscillation)

2
                  :  Stored energy

-

                  :  Resonance freq.
-

    or

         (

Q

W
W

dwT
dt

W

dw
dt

W t





 



 



0-

) (0)

t

QW e





 

(2) We can also have Q related to the photon lifetime τp 

   
0


Q

p   

   or 

   PQ 0  
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(3) In experiences, we can obtain the Q value from the 

spectrum 

   

0

1

2

Q




  

In photonic crystals, we use the photonic crystal defect 

structure serve as the resonant cavity for the designed defect 

modes. The quality factor Q will represent a measure of how 

many oscillations take place inside the cavity before the excited 

photon energy dissipate out of the cavity. It means that the 

photon energy for narrow frequency bands be trapped in the 

cavity for longer period of time if we have a high-Q cavity.  

Now the important question becomes how the defect cavity 

should be designed for introducing the high-Q modes into the 

structure. There are several examples of the high-Q photonic 

crystal cavities in the following pages.  
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1
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Photonic Crystal D4 Lasers in InGaAsP Membrane 
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Finite-difference time-domain (FDTD) simulation method 

The finite-difference time-domain (FDTD) method is 

widely used to directly solve time-dependent Maxwells’ 

equations now. FDTD was originally proposed for EM waves 

with long wavelengths, such as microwaves, because the spatial 

discrimination requirement is small (~
1 1

10 20
 ). In 1966, Yee 

described the basis of FDTD numerical technique for EM wave 

in the time domain on a space grid. (K.S. Yee, IEEE Transaction 

of Antennas and Propagation 14, 302-307 (1966)). Recently, 

FDTD method is popular in simulating photonic band gap 

structure and other photonic devices.  

For 3-D simulation of the Maxwell’s equations, it become 

more complicated.  

 

The time-dependent Maxwell’s equations are 

(20) E
t

H 






   

(21) H
t

E 






  

Their {x, y, z} component representations are 
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(22) z

E

y

E

t

H yzx














   

(23) 
x

E

z

E

t

H
zxy














   

(24) y

E

x

E

t

H xyz














   

(25) z

H

y

H

t

E yzx














  

(26) 
x

H

z

H

t

E
zxy














  

(27) y

H

x

H

t

E xyz














  

We assume that zyx  ,, are spatial discretization and 

that t is a time step, the function F(x, y, z, t) is 

discretized as 

(28) ),,(),,,(),,,( kjiFtnzkyjxiFtzyxF n  
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In the paper of 1966, Yee originated a set of 

finite-difference equations for the time-dependent Maxwell’s 

curl equations for the lossless materials case ( 0,0   ). 

The above figure shows Yee space lattice which illustrates 

the Yee algorithm. This algorithm centers its E


and H


 

components in 3-D space so that every E


component is 

surrounded by four circulating H


 components, and each H


component is surrounded four circulating E


component. 
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The Yee algorithm also centers its E


and H


components in 

time. All of the E


computation in the modeled space are 

completed and stored in memory for particular time point using 

previously stored H


data. Then all of the H


 computations in the 

space are completed and stored in memory using the E


data just 

computed. The cycle begins again with the recomputation of the 

E


components based on the new obtained H


. This process 

continues until time-step finished. 

Yee used centered finite-difference (or central-difference) 

expressions for the space and time derivatives. This way can 

obtain simpler programing and second-order accuracy. For 

example, the first spatial derivative of the function 

),,(),,,(),,,( kjiFtnzkyjxiFtzyxF n  will be 

 

])[(

),,
2

1
(),,

2

1
(

),,( 2xO
x

kjiFkjiF

x

kjiF
nn

n










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And the first time derivative of ),,( kjiF n
is

])[(
),,(),,(),,( 2

2

1

2

1

tO
t

kjiFkjiF

t

kjiF
nn

n












 

There are two notes we should understand that Yee chose 

the central-difference in space and time. 

1. With the central-difference in space (time), Yee’s goal 

is the second-order accurate central differencing 

])[( 2xO  ]})[({ 2tO  , but the difference is only 
2

x

instead of x . 

2. Yee chose he central-difference in space(time) because 

we can interleave E


and H


components in the space 

lattice at intervals of 
2

x
(

2

t
). 

With Yee algorithm, we can re-write 3-D Maxwell’s 

equations.  
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Equation 22 become 
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Equation 25 become 
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Equation 27 become 
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The following illustration shows how we apply FDTD to 

real structure. 

 

 

 

1.  First we construct the structure we want to simulate. 

The material properties are assigned to corresponded 

locations. For example, refractive index )(rn


[i.e. 

dielectric function [ )(rr


 ]. After setting-up the 

detectors in the designed structure to collect the signal, 

we can launch the initial sources, and let them 
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propagating following the FDTD algorithm. 

2.  The detectors will collect the signal varied with time 

during the FDTD calculation process. Figure 2 shows 

an example of the collected intensity versus time from a 

detector. The impulse initial excitation is usually 

applied in the simulation. And the collected signal goes 

stable (or say converge) after amount of simulation 

time(or simulation steps). 

3.  After the simulation finishing, the signal is collected, 

say I(t), by the detectors. The fourier transform will be 

applied to transfer time-domain spectrum into 

frequency-domain spectrum. Since “time, t” and 

“frequency, ” are the conjugates in the Fourier 

transformation. Figure 3 is a frequency-domain 

spectrum which shows the dominant frequencies during 

the FDTD propagation in the simulated structure. 

4.  Not only frequency-domain information will be 

obtained from the FDTD simulation, we also can have 

more details about this structure, like mode profiles 
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(see attachments), spectrum in wavelength and etc. for 

example, figure 4 is a band diagram )(   (or band 

structure) of the simulated structure from the 

frequency-domain spectrum and the initial propagation 

k


 of the sources. 
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FDTD for D4 cavity  

 

Slab index =3.167 

Hole index=1.0 

 

 

 

 

*From Y.C. Yang. 
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Quality factor (Q) and photon lifetime 

    Quality factor (Q) is an important parameter for a cavity. It 

mainly describes the photo life time inside the cavity, or the 

energy stored in the cavity. There are several definitions (or 

descriptions) for the quality factor of a cavity.  

 

 

0 0

2  (energy stored in the system at resonance)
(1)  

(energy lost in a cycle of oscillation)

2
                  :  Stored energy

-

                  :  Resonance freq.
-

    or

         (

Q

W
W

dwT
dt

W

dw
dt

W t





 



 



0-

) (0)

t

QW e





 

(2) We can also have Q related to the photon lifetime τp 

   
0


Q

p   

   or 

   PQ 0  
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(3) In experiences, we can obtain the Q value from the 

spectrum 

   

0

1

2

Q




  

In photonic crystals, we use the photonic crystal defect 

structure serve as the resonant cavity for the designed defect 

modes. The quality factor Q will represent a measure of how 

many oscillations take place inside the cavity before the excited 

photon energy dissipate out of the cavity. It means that the 

photon energy for narrow frequency bands be trapped in the 

cavity for longer period of time if we have a high-Q cavity.  

Now the important question becomes how the defect cavity 

should be designed for introducing the high-Q modes into the 

structure. There are several examples of the high-Q photonic 

crystal cavities in the following pages.  
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