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Maxwell’s equations

In 1846, James Clerk Maxwell wrote down the equations to
describe all phenomena in electric & magnetic field from his
publication “ A dynamic theory of the electromagnetic field” (*
philosophical Transaction of the Royal Society of London, 155,
pp.459-512, 1865).

The equations were written down for the macroscopic
electric & magnetic fields. In semiconductor photonics, we use
Maxwell’s eqs. to describe light in a mixed dielectric medium,
which is a composition of homogeneous dielectric materials. To
solve the egs. in the system, we treat the wave eqs. derived from
Maxwell’s egs. as a linear Hermition eigenvalue problem. This
treatment is very similar to the Schrodinger's eg. in Q, M.

Maxwell’s wgs. In MKS unit are

- oB(T 1)
(1) VxE(F,t)=- p” (Faraday's induction law)

oD(r,t)

(2) VxH(F)=J(F,t)+ (generalized Ampere’s law)

(3) V-B(F,t)=0 (Gauss’ law for magnetic field)

(4) V-D(r,t) = p(T,1) (Gauss’ law for electric field)



Where

E(T,t) = electric field strength (Vo'tsm)

uell

(F,t) = magnetic flux density (weber%nz = tesla)

H (T, t) = magnetic field strength (Amperesm)

D (r,t) = electric displacement (€oUl 2)

J (r,t) = electric current density (Amloers mz)

)

p (r,t) = electric charge density (coul me
Taking the divergence of 2nd & introducing 4th eg. , we

have In MKS unit are
V-J‘(rt)+9 (r,t)=0
(5) , atp ,

This is the conservation law for electric charge and current
densities.

We also need to characterized material media by so-called
constitutive relations.

In most of problems, we assume that sources of

—_

electromagnetic fields are given. Thus J and £ are known

and satisfy the conservation eq. So far , in Maxwell’s eqs we



have 12 scalar unknowns for 4 field vector E, H, B and D.

We also understand, eqgs (3) & (4) are not independent egs, and
can be derived from eg (1), (2) & (5). The independent egs are
(1) & (2), which constitute 6 scalar egs. Thus we need 6 more
scalar egs. These are the constitutive relations.

For an isotropic medium, the constitutive relations can be

written as

nt

D=

I

B=u
where
& = permittivity & H = permeability.

In free space, H = Hy & € =&

ﬂo - 472' % 10—7 ( henr%)

g, =8.85x107* (Farad / m)
SI (MKSA) unit and Gaussian unit :
There are two separate sets of units used for
electromagnetic. In page 2, the system of units is SI or MKSA.

All units are defined in term of {kg, m, second, amprer}



2 2
Wb:kgm2 Coul = Amp-s Volt = kg-m3
Amp s Amp- s
kg - m? Amp® - s*
Henry:—g > Farad _ AP -5 28
Amp* -s kg-m

There is another system of units, called Gaussian system. It

defines all units in terms of 3 (not 4) quantities :

length mass time
cm, g, second |

In Gaussian units, Maxwells egs. are

vx A1) =2 PO AT 50
c ot C

V-B(r,t)=0

V-D(F,t) = 4o

In Gaussian units, the unit for charge is esu (electrostatic
cm’? g%

unit) = stat. coulomb = 5

The relation between SI & Gaussian systems for charge is



1

q(Sl) = q(Gaussiar)
\Are,

coul = 3x10°stat coul

1
or Jane,

or
1A-S _ 1A-S - 1
\/4”18'85”0_12 D _ \/1.112 x107" AZS: \/1.112 x107° 823
kg-m kg-m
3000

S
=3x10° stat coul . #



The wave equation

Consider a “source-free” medium (p =0, J =0), We can

have wave eg. from eq (1) in page 2,
_ 0 _
V x V x E(r,t)z—an B(r,t)

use the identity
VxVxV =V(V-V)-V¥V
we have

_ _ 0 _
V(V-E)-V’E=-—VxB
(V-E) p (6)

Here we just assume the simple constitutive relation

B=uH & D=¢E (7)
where u & E are scalar constants.

Since source-free (p =0)

V-D=0=V- (&)

=E-(Ve)+&V-E
\!
0 --¢is scalar
=V-E=0 (8)

Apply eq. (7) & (8) into eq. (6) , we get
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_ 0 _
~V?E =——Vx(uH
p (uH)
o oD
= ﬂa(a)
O%E
ot?

use eg. (2) in page 2 & source-free J=0

The wave eg. for electric field & is

_ 0°E
V?E — ue v =0 (9)
in free space.
1
C =
VHoéo
- 1 0°E
or VZE_F ot =0 (10)

In an isotropic, source-free medium, a solution of eg (9) is a
plane wave

= o 1\ _ E ai(k-F-wt)

E(r,t) = Eoe (11)

substituting eq (11) into (9), we have



k =k X+k,y+k,z
So we have the dispersion relation @(k)
2 2 2 5
(k" —k,” =k, +o"ue)=0
or
2 2 2 |2 2
K,”+k,” +k,” =k* = 0" ue
=’ = ik2
ue

for free space

1
o’ =c’k?, c¢?=
Ho&o

(12)

So we can replace V by ik in Maxwell’ egs.

we have
k x E = wuH (13-1)
k xH =—weE (13-2)
k-E=0 (13-23)
k-H=0 (13—-4)

from eq. (13-1), we can have magnetic field



—kxE=H
L@
alsowe have K-E=0&k-H =0

ie. E&H are L to Kk

NE
A

H
X X X
However, for most of cases, & & u are not scalars.
They are space & frequency dependent.
e=¢(r,w)
p=pu(r, o)
Now, we assume

(1) € isapure real-valued function, and the freq.

10



dependence can be ignored i.e. g(f)
D(F,t) = £(F)E(F,1)
(2) Consider nonmagnetic materials only, i.e. « (F)=1
= B (F,t) = u(F) H(F,t) = H(T, t)
then Maxwell’s eqs become,

0

VxE(F,t):—aH(f,t) (14-1)
VxH(F,t) = g(r)g E(T,1) (14-2)
V- [e(F)E(F,t)]=0 (14 -3)
V- [H(F,1)]=0 (14—4)

Apply plane wave solutions into eq (14-1) & (14-2)
E(r,t)=E(r)e'”
H(r,t) = H(r)e'"

we have
VxE(F)+ioH(F)=0
VxH(F)—iwe(r)E(r)=0

we can obtain the wave eg. for H ()

1

Vx[g(f)

11



& use 2nd eq. to obtain E(F)
- —1 -,
B =L pIV<HA® 6)
we can write a eigenvalue eg, from eg. (15)
OH(T)=w® H(r
where
1

o=V C®

V)

N

© s a linear differential operator, and H(F) are the

. . . 2 . . .
eigenvectors associated to eigenvalues @ . Since O s linear,

any linear combination of solutions for H(F) is one of

solutions of this eigenvalue eq.

12



Linear Vector Space and Linear Operators in Hilber Space

{H} Hilbert space

|a):a vector

Now, let’s consider the EM wave egs. as an eigenvalue
problem. The Maxwell curl egs. for time-harmonic field in a
source-free region are

VxE =—-iouH
VxH =iweE
Here assume A isascalar, but € is £(I,®) . From 2nd

eg. , we can have

1
&(r)

V x VxH-iwVxE=0

then use the first equation, we get
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1

V x VxH =ao*uH
&(r)

o Lux kAo
uooe(r)

this become an eigenvalue problem

OxH = o’H

Where @° is the eigenvalue and the differential operator ©
IS
1 1

O=—"Vx—Vx
nooer)

Also, the eigenvector, of course, is the H field. We also

can write an eigenvalue eq. For D,

1 1 - _
- V X V X D = a)z D
H &(r)
or éD = C()ZD
A 1 1
: : =—VxVx
where the differential operator — P 1 (r)

Note

These 2 operators are linear operators. Linear operators have the
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N

property that if A and B are eigenvectors of operator O with
the same eigenvalue O°
OA=0°A &
OB 6
then @A+aB isalso an eigenvector of 0.

A A

Before we examine ©® & O, for Hermitian operator,

we should know something about Hermitian operators.
Hermitian operators are important in Q.M., as well as in

EM wave. Let’s consider the inner product
(g] f) jg (x) f (x)dx
& (g|f) jg (x)- Fr(x)dx=(f|g)

For the system, we have an operator O & its adjoint operatoré+ ,

5] 1)=(s[or

A

The operator O is Hermitian if

I.e.

15



(69]1)=(o[o1)

An Hermitian (or self-adjoint) operator with appropriate
boundary conditions have three nice properties.
(1) The eigenvalues of an Hermitian operator are real.
(2) The eigenfunctions of an Hermitian operator are
orthogonal.
(3) The eigenfunctions of an Hermitian operator form a
complete set.
We’ll demonstrate first two properties.
(1) Consider a eigenvalue eq.
O f)=a’| f)
form the inner product with <f ‘
(f|0 ) =0’[f)
If O Is @ Hermitian operator,
€. <O 9‘f> (9lo|f)
then we have
(f[0]f) <Of\f> £10]f)

o (F1O|f) is real. And (f]f) is also real.

16



since (f|O|f) and{ f | T) are both real, we have a real

. 2 . .
eigenvalue @ . It means eigenvalues of an Hermitian

operator are real.

(2) Consider two eigenvectors of O with different

eigenvalues:

N

O f)=a’| f)
O f,)=w,| f,)

where @ # @,

we have
@ (f,] f,)= (1,0 f,)
:<C3f2‘ f1> -+ Q'is Hermitian
=, (f,| 1)

or (a)lz _w22)< f, ‘ f1> =0
o o) :><f2‘ f1>=0
I.e. ‘f1>and ‘f2> are orthogonal.

Now, we’ll start to prove

é)=Einvx

nooe(r)
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Is @ Hermitian operator for EM fields.

consider the field vectors A(r) and B(") . and we assume

g(r) isreal, i.e. lossless media.

~ 5 = 1 1 _
(AIG|B) = [d*rA (r)-;ng r)VxB(r)

/

:ijd%&*(r)-Vx L V x B(r) 1 is a scalar
H &(r)
Then we need the first Green's identity for this prove.
L(VXIS-VXQ—IS-VXVXQ)dV =.f(|5xVxQ)-ﬁda
S

or

.[IIS-VxVxQdV =LV>< IS-VxQdV—L(ISxVxQ)-ﬁda
Since the fields are zero on a surface at infinity, we can ignore
the surface integral. =>L(|5 xV xQ)-fAda =0

With the above identity, we can have

(AlO|B) = lId3rv x A*(r) -%Vx B(r) . - no differenti al op. on &(r)
&

/

——jd r—vXA (r) Vv x B(r)

oI

Next, use the Green’s first identity again by letting.

18



then we get

<A\a\g>=£jdwx VX A'(r)-B(r)

B)

le(r)is real,e(r)=¢"(r)]

*

e(r

- <éA

SO

~ 1 1
O = ; VX % e Is a hermitian operator.

Also, we can prove

éDzivax L

H &(r)

IS not hermitian.
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Photonic Crystal Latiice
Bandstructure
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Red region index=1.0

Background index=3.14
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Photonic Crystal Waveguide
Bandstructure
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Plane-Wave Expansion Method for Photonic Crystal Band

Structure
For photonic band structure, we need to solve the

eigenvalue problem

®HE(F):w2HR(r), @z;ng(r)Vx or
R R

where H.(F) is a Bloch state
A (r)=—— e g (r)
(2) "N \E K
(2 is the volume of the crystal included here for

normalization. The orthogonality relations for Bloch states
are

(3) J‘ H:R (F) () Hn,g (F)d°r = OnnO ik &

@ j Er (Ne(r)-E,  (Nd°r=5,,5,
where n is band label.

Let plug equation (2) into equation (1), we have
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1 1
ORI

Vxe™ U () = e ™ U (r)

In equation (5) ,

% g 7
Vxe Ty, (F) = 9 9 <
OX oy 0z
e—RruX e—Kruy e—RruZ
5, O —ik-F —ik-F ~, O —ik-F —ik-F
:x(ae u,——e uy)—y(a—e u,——e "u,)
0 _r A
+Z(a_e Ikruy e Ikrux)
X
N = - ou B . au, |
= %y—ik,e™"u, +e™" = —(-ik,)e™"u, —e ™" L
\§ az J
N i OU . e OUL
_'y<“|kxe Mth +e ik-r Z _'(_1ky) |krux__ ik-F X }
\ X oz |
L e - ou _ou,
+ 3 —kaeﬂk*uy—ke_m* y__(_sz)eAkrux__ —ik-r x
OX oy |

=" (K + V) x 0, (F)

Similarly, we can replace the next V by — IK+V so

23



we have the eigenvalue equation

ke 1, 1 .- P T " U
(6) © ;(—|k+V)><g(r (-k +V)xU (F)=we ™ 0_(T)
or

1, .- 1 — L 2

—(—1k + V) x (—ik +V)xU.(F) =00 (T)
(7 H &(r) j .

V

Ot (r)

here K can be consider as a parameters, and Ug (r)

follow the condition

0. (r)=0.(F +R)

o

The Hermitian operator O with the periodic boundary
condition has a complete set of eigenvectors, Ui (F) . The

spectrum contains an infinite set of discrete eigenvalues for each

—_

K . We label this infinite set of modes by the band index, n. The

Bloch modes form a complete set for each K.

There are couple things we should note before we start to solve
this eigenvalue problem. Solving the problem for photonic crystal
band structure is quite similar to finding electronic band structure

for solid. However, there are couple differences.
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(1)EM wave in Maxwells’ equations are vectors while

electron waves in Schrodinger's equations are scalar.

(2)Pauli exclusion principle doesn’t apply to photonic band

structure since photons are spin-one particles. (Note:

electrons are spin-half particles)

(3)Solving Maxwells’ equations for a single EM wave can
lead to exact results since photon-photon interaction are
negligible. But solving single-electron Schrodinger
equations can’t be exact solution since electron-electron

interactions are significant.
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Now let’s consider a two-dimensional photonic crystal

lattice, for example, an array of dielectric rods with the infinite

height in Z -axis.

-7

/Mirror
/ A
/ (z=0)

For this system, we have EM fields components

{Ex’ Ey’ E,.H,, Hy’ H, } We can group them into 2 parities.

An “even” parity mode is a mode which hasan E field

—_

invariant under mirror reflection in x-y plane, namely E and

the vector plane-wave involved are polarized within x-y plane.

Its parity is even, because a vector in the x-y plane is invariant

by the mirror in the x-y plane. The H field is directed in the 4

—_

direction, perpendicularly to the E field. This is called

transverse electric (TE) mode.

— D

The “odd”-parity mode has E field in the £ -direction.

N

In this case the mirror reflection turns a £ -directed

26



polarization vector to a Z -directed vector. This is the transverse
magnetic (TM) mode. Very often the TE and TM modes are
called H mode and E mode, respectively.
In summary,
TE has {Ex’ Ey’ Hz}; TM has {Hx’ Hy’ Ez}.
For three-dimensional lattice, this separation is not possible,

and modes cannot be classified as either TE or TM.

N~

i A1 y
E .kll Ef
ki
TE mode [_—[
(H mode) ki
X
T™ mode ot
(E mode) ]‘-;q-l

So we can solve the scalar field H, for TE polarization
and the scalar E, field for TM polarization.

Let’s start with TE modes. The solution of the form

8 H(Xy,z,t)=H,(x, y)e™2

(9) E(x,y,z,t)=e"" {EX(X,y))?+Ey(X,y)f/}
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The Maxwell’s curl equations
(10) V X E = —Ia),uﬁ
11) VX H=iwcE

Plug-in equation (8) & (9) into equation (10) & (11), we have

OF, oF,

12 ax oy -
aHZ_ _

(13) E——ICOE ¥
5[‘[2__ P

(14) ——aX =1w&E v

Now use equation (13) & (14) to eliminate £, and £, from
equation (12), i.e.

1 0H,
iwg Oy

X

&

OE, 1 0 ,10H,
(15) oy _ia)ﬁy g oy

)
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Similarly

E, = s
IWg OX

&

5& 10 1 oH, L)
(16)  ox IWOX & OX
equation (15) & (16) — equation (12), we get

1 0 10H, 1 0 10H
— - (=) =—louH,
IwOx ¢ Ox 10)8}/ g oy

0 ,10H, 0 ,10H,
or (17) (——H)+—(=—5)+ a)zluH , =0
OX & OX oy € oy

1
Now we expand — and H,

(19 s(x 5~ 2

_ 1 S\ -i(k+G)-p
(19) Hz_m;Ck(G)e

where € sample volume for normalization

P : in-plane position vector

G,G': reciprocal lattice vectors
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Now plug equation (18) & (19) into equation (17), we have
Ji 0 o o
—= —| k(GNe™ PC(G)(—)(k, +G e “r
oo |
7 0 o S
+— —| x(GNe “PC(G)Y(-I)(k +G )e TP
o X2yl e ]
+LZC(5)G)2#€—1(1€+G‘)-5 0

Jo s

= Z Z" (GYC(GY(D(G, +G. '+ k )(~1)(k, +G e '@ +07

Uy

Q
ZZK(é ')C(é) (—1) (Gy + Gy "+ ky )(=1) (](y + Gy )e—f(5+5’+1?)-ﬁ

G G

+

ﬁ\*ﬁ%

Q

Z ((7)(02;16"'(’“5)'/3 —0

_|_

The first two line can be added, we have

\/—ZZK(G @)k +G )G +G '+ k Y@+
\FZC(G)GJ Le ' FOP =

1 i(G"+k)-p

We multiply Ja € and integrate over the crystal

volume €2,
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(20)
L ZZK(é VCG)(k +G )G +G '+k )| dpe @O

\/_Zw ,uC(G)Idpe I(G+k-G"-k)-p

and we have the relation

(21) Q-[ P

Plug equation (21) into equation (20), we have
— Z Z x(G)C(G)(G+K)-(G+ G'+K)5G,G.._G
G G
+> W uC(G)S . =0
= f@%x(é')C(G"—G)(G"—G'+E) (G k) + w21 C(G™) =0

let G1=G"-G &G =G"-G;

Then we have an equations for the coefficients C(G").

(22) Y k(GG )C(G) (G, +k)-(C"+k)=aw’ uC(G")

This is the matrix form of the eigenvalue problem for TE modes.

Note the matrix is symmetric (a; =a;).
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The TM modes work similarly. The fields for TM are
23) E(X Y,2,t)=E, (X, y)e'"2
H(x,y,2,t) =& (H, (X, y)X+H, (X, y))

Plug equation (23) into curl equation of Maxwell’s equations,

we can have
1 0% 0°
+ E, +o’uE, =0
(24) (X, y) (8x2 8y2) i H=

and expanding E,

1 o
E, =—— B(G)e'*”
@ & "5 % -
Then we’ll have a matrix form of eigenvalue problem for TM

modes.
(26) 2K(G -Gk +G) B(G)=0"1B(G)

However, the matrix in equation (26) is not symmetric.
Now let C(G)=|k +G|B(G)
We get

C(G") — oy C(G)
K + G\ \k+G\

p—

ZK(G Gk + G“

32



(27) ZK‘(G —G') lZ-l—G'HlZ +G‘C(G') = a)ZyC(G)

This is an eigenvalue problem for a symmetric matrix.
There are several things we should note. OThis numerical
method, plane-wave expansion (PWE) method, which is based
on the Fourier expansion of the EM waves and the dielectric
functions. @In the real numerical calculation of photonic bands,
the > in equation (22) & (26) is calculated up to a sufficiently
large number N of G,(or G}), and an eigenvalue problem for
each k is solved, which is equivalent to the diagonalization of
the matrix defined by the left-hand side of equation (22) & (26).
(®The dimension of the matrix that should be 3N. However it
could be 2N since H(X,y,zt) is perpendicular to k+G
with polarization, and its degree of freedom is two. Hence, the
matrix in the equation has the dimension of 3N <3N, generally.
In fact, the converge of the plane-wave expansion method is not
good when the variation of dielectric constant is large, and

numerical error exceeds 5% in certain cases even N >3000.
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Now, we start to calculate the Fourier coefficients, x(G),

1
of cxy)

Case 1 Dielectric Sphere

R
Consider a dielectric sphere array with lattice vector R.

The radius of sphere is I3, and the dielectric constants inside

and outside the sphere are €a & €b , respectively.
We can write down the dielectric function
1 1 1 1
= (——)S(F
(28) “f) =z (8a 8b) ()

where S(T) is defined such that

1, |r|<r

(20) (1= {0, 7[>,

Then the Fourier coefficients are
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i 1
(30) K(G)__jd 7 £(p) Ve:volume of unit cell

Equation (28) & (29) — equation (30), we have

1 1,1 1f e iGh
(31) K(G)—g_b5é,o +\Z(__€_b)\‘[dp8(p)e

a

In order to calculate equation (31), we use spherical

coordinates (', @, @) . and assume the direction of Gis 6=0.

For G =0, the integral in equation (31) is

Jdps(pe e’
\
_ zﬂIdrIdHFZ sin He—iGrcosa
=g[sin(Gra)—GraCOS(Gra)] 'GZ‘G‘
) Q[ =\ a-iGp
For G=0 , the integral became .[ dpS(p)e
\

a

:J'dr S(r) :A'—ﬂra3 =V
Y 3

So we have the Fourier coefficients for the dielectric

spheres.
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-£+G£—ZOZ- forG=0
e € &V
5 _ .
(32) x(G) 3(i_i z{sm(&é)_cos((hj)
€, & Vc (Gl‘a) (GI;)

} forG#0
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Case 2 |Dielectric Rods (or Holes)

Consider a 2-D dielectric rods (or holes) array in x-y plane,
and they are infinite along z axis. The dielectric function can be

described as

1 1 1 1 -

) sy 5 e g )2.5(=R)
1 ,peA
Where S(P) :{0 '; & A}

The Fourier coefficients are

k(&)=L [dper L
a,-, e(p)
1 1 1. 1¢ ., 6n o
==5,,+(—-—)=[dpe"’s(p)
gb ga gb aca
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For G=0

€ €, &
1 1 1. A doS(p) = A
— - + (5a - & a A: the crosssection of

the rodsorholes

For G =0, we need to evaluate the integral

) a jd‘ 'Gp——j rdrjd(pe'erc"w

,where ¢ isthe angle between G and r.

Using the integral representation for J o(X)
1 27 ixcosé
(36) Jo(x)_gj0 e"**’d o

Compare equation (35) and (36), we get the integral

@) & j rdrd ,(Gr)

Then we can use the relation of Bessel functions
i[X“J () |=x"3,4(x)
(38) dx n o n-1

we have

(39) jdxx”J 1 (X) =X"J ()
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dx
Let X=Gr, dx=Gdr or dr=a,

Equation (37) became

27z Gr, xdx
a 0

C

Gr,

()— ><J(X)

Y Kt;\rJ(Gr)

_2A J,(Gr,)
a. Gr,

C

2
where A=7r;

So we obtain the Fourier coefficients

-£+c£—qu- for G=0
gb ga c
) = 2] (G _
<(&) <(i—i)ﬁ—lz( %) Jfor G #0
e, &, a Gra

N

, Where I, is the radius of the rods or holes,

and J; is a Bessel function.

—_

Now given a particular lattice, the G vector can be

determined and the eigenvalues can be calculated.
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The Irreducible Brillouin Zone

Photonic crystals usually have translation invariance and
symmetries in the structures simultaneously. It means a photonic

crystal might be invariant under periodic translation, mirror

reflection or rotation with specific angles.

Now we consider a rotation symmetry for the photonic

crystals. Let R(A,a) be an operator which rotates the vector by

an angle & about the fi axis. The vector field operator O, is

defined as

OLH (F) = R(A, @) H (R™(A, )F)
(-~ To rotate a vector field, we rotate the vector by R and

the argument by R™)

~

If a rotation by R leaves the crystal invariant, then

[©,0,]=0
where
&=Lvx 1_ V x
u o &(r)
SO

41



O(OxH ) =0, (6H )
= w’0, Hmz

It means Og ng is an eigenstate of ® with the same

eigenvalue as Flmz. It can also be shown that éR Hng IS just the
Bloch state with wave vector RK . Then we have
o, (RK) = o, (K)

The dispersion relation @, (K) has the full symmetry of
the crystal. Therefore, we don’t need to consider the entire
Brillouin zone, because different portions are related with others
through symmetry. The smallest region of the Brillouin zone for

,(K) is called irreducible BZ. This BZ is not related by

symmetry.

M

X
Brillouin zone for a Brillouin zone for a
square lattice triangular lattice
with the irreducible with the irreducible
zone shaded. zone shaded.
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Two-Dimensional Photonic Crystals

After discussing the properties of 1-D photonic crystals,
we’ll start to talk about 2-D photonic crystals. In this part, we
are going to study the “2-D” crystals which are periodic in 2
directions (“‘usually” x-y plane) and homogeneous in the third
direction (“usually” Z direction).
In 1-D system, we consider the modes with the Bloch form,
say H field
1) H,(F)~ e ™ "u_(2) ~ g ety (2)
if the layer structure is along Z axis. Now, for 2-D
system, the Bloch state will be

@ Hup(F)~e™ U (xy)~e e (p)
if the 2-D photonic crystals are in x-y plane. Like 1-D

case, here U,z is a periodic function,

—_

u.-(p)=u_(p+ R) for all lattice vector R .

The main difference between equation (1) & equation (2) is

that in 2-D case, K, is restricted to the BZ in x-y plane and K, is

un-restricted. However, in 1-D case, kz Is restricted to BZ along
2 axis, and Ky, is not.
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Here is a example of 2-D photonic crystals. It contains a
square lattice of dielectric rods with a radians of r and a
dielectric constant of & . The background is air (&, =1). The
dielectric rods are periodic in x-y plane with lattice constant a,

and infinite along Z direction.

e
Q/

Conventionally, we choose x-y plane as the symmetry plane.
Then the system is invariant under reflections through this
symmetry plane. Like we discuss in page 40-44, we can classify
6 components of E and H fields and group them into 2
polarizations. The transverse-electric (TE) modes have
{HZ,EX,EV} . The transverse-magnetic TM modes have

{EZ, H,, Hy} . The band structure for TE and TM modes can be
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completely different. And the band gap night not appear in both
polarizations. It means that there are band gaps for TE mode, but
no band gap for TM mode in some cases.

Let’s consider in 2-D photonic crystals with the rectangular
dielectric rod array. The lattices have a lattice constant of a and
the rod radius of r. The refractive indices of the rods and
background are n and 1, respectively. Here is the illustration of

the 2-D photonic crystal lattices.

B %
2 @ ©

The 3 important parameters,{n,a,r}, are going to decide

the properties of this structure. The irreducible Brillouin zone of

the rectangular lattice is shown below
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The irreducible BZ is the shaded region. The whole square is
the first BZ, and the rest of first BZ can be related to the

irreducible BZ by rotational symmetry. The three symmetry

pointsT", X , and M correspond to S(k,) =0, ﬂ=§f< and

A 7Z- A -
X+ 2 Y, respectively.

|y

B=

With plane-wave expansion, we can calculate the band

structure @(f) for the 2-D photonic crystals. The band

structure shown here is for n=3.0 and r/a=0.2 . The red bands are

TE while the blue are TM modes.
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TE/TM Band Structure

Frequency (wa/2rnc=a/A)

In the band diagram, the horizontal axis is the in-plane wave
vectorgand T', M and X points are the symmetry points in the
irreducible BZ. The band structure is plotted (or calculated)
along. The edge of the irreducible zone, then it returns toI’

point to form a close loop. The vertical axis is the normalized

frequency which is the modal frequency normalized to % (or

wa

2—7zc)' Here a &c are the lattice constant of lattices and the

speed of light.
According to this band diagram, there is a band gap from
normalized frequency 0.32 to 0.44 for TM mode, while there is

no band gap for TE mode.
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Now we are going to take a look for EM field profiles at
several symmetry points.

The first figure in the next page is the E field profile at
I" point of the irreducible BZ of this rectangular photonic
lattices. Since B(I') =0, the fields have no in-plane wave
vector to propagate in-plane. It means the wave vector of
this mode is along Z axis of the structure, and the fields are
the same in each unit cell. The second figure is the E field

profile at x point of the zone edge. The mode has an in-plane

wave vector along X direction, i.e. 8(X)=—X _ The third

o [N

profile is the E field profile at M point. This mode has a

in-plane wave vector along X+ Y direction, i.e.

/f(lvl)=§x+ gy

o [N
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Now, let’s consider a triangular lattices with the embedded

air holes surround by the dielectric materials.

The lattice constant and hole radius are a and r. And the

refractive index of the material is n. The irreducible BZ

embedded in the first BZ is shown below.
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-

The shaded region is the irreducible BZ, and three

symmetry points I', M and K are f=0, ﬁ=§§/ and

/\

=5

The band diagram of the triangular lattices with the

7Z'
a

background index n=3.4 and the r/a value 0.3 is shown below.

51



TE/TM Band Structure
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r

The red lines are the bands for TE mode, and the blue lines
are for TM mode. In this band diagram, the TE mode has a band
gap from normalized frequency 0.21 to 0.28 . However, there is
no band gap for TM mode. If we consider a photonic crystal

with a lattice constant of 500 nm, the TE band gap region will

allocate at wavelength A =1785 nm ~ 2380 nm,
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