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Maxwell’s equations 

In 1846, James Clerk Maxwell wrote down the equations to 

describe all phenomena in electric & magnetic field from his 

publication “ A dynamic theory of the electromagnetic field” (* 

philosophical Transaction of the Royal Society of London, 155, 

pp.459-512, 1865). 

The equations were written down for the macroscopic 

electric & magnetic fields. In semiconductor photonics, we use 

Maxwell’s eqs. to describe light in a mixed dielectric medium, 

which is a composition of homogeneous dielectric materials. To 

solve the eqs. in the system, we treat the wave eqs. derived from 

Maxwell’s eqs. as a linear Hermition eigenvalue problem. This 

treatment is very similar to the Schrodinger's  eq. in Q, M. 

Maxwell’s wgs. In MKS unit are 

(1) 
t

trB
trE






),(
),(




  (Faraday's induction law) 

(2) 
t

trD
trJtrH






),(
),(),(




(generalized Ampere’s law) 

(3) 0),(  trB


        (Gauss’ law for magnetic field) 

(4) ),(),( trtrD


     (Gauss’ law for electric field) 
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Where 

),( trE


= electric field strength volts( )
m  

),( trB


= magnetic flux density 2
webers( = tesla)

m  

),( trH


= magnetic field strength 
Amperes

( )
m  

 ( , )D r t = electric displacement 2
coul( )

m
 

 ( , )J r t = electric current density 2
Ampers

( )
m

 

 ( , )r t = electric charge density )( 3m
coul   

Taking the divergence of 2nd & introducing 4th eg. , we 

have In MKS unit are 

(5) 0),(),( 



 tr

t
trJ


   

This is the conservation law for electric charge and current 

densities. 

We also need to characterized material media by so-called 

constitutive relations. 

In most of problems, we assume that sources of 

electromagnetic fields are given. Thus J  and   are known 

and satisfy the conservation eq. So far , in Maxwell’s eqs we 
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have 12 scalar unknowns for 4 field vector E


, H , B  and D . 

We also understand, eqs (3) & (4) are not independent eqs, and 

can be derived from eg (1), (2) & (5). The independent eqs are 

(1) & (2), which constitute 6 scalar eqs. Thus we need 6 more 

scalar eqs. These are the constitutive relations. 

For an isotropic medium, the constitutive relations can be 

written as 

ED


  

B H  

where 

    = permittivity &  = permeability. 

In free space, 0 =    & 0   

   
7

0

henry
 = 4 10    ( )

m
    

   )/(1085.8 12

0 mFarad  

SI (MKSA) unit and Gaussian unit： 

There are two separate sets of units used for 

electromagnetic. In page 2, the system of units is SI or MKSA. 

All units are defined in term of {kg, m, second, amprer} 
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2 2

2 3
                              

  

kg m kg m
Wb Coul Amp s Volt

Amp s Amp s

 
   


 

     

2 2 4

2 2 2
        

kg m Amp s
Henry Farad

Amp s kg m

 
 

 
 

There is another system of units, called Gaussian system. It 

defines all units in terms of 3 (not 4) quantities： 

length     mass      time

cm,        g,     second

 
 
 
  

. 

 In Gaussian units, Maxwells egs. are 

t

trB

c
trE






),(1
),(




 

),(
4),(1

),( trJ
ct

trD

c
trH




 





  

0),(  trB


 

4),(  trD


 

In Gaussian units, the unit for charge is esu (electrostatic 

unit) = stat. coulomb = 

3 1
2 2 cm g

s  

The relation between SI & Gaussian systems for charge is 
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)(

0

)(
4

1
GaussianSI qq 

   

or 
coulstatcoul 9

0

103
4

1


     

or  

2 4 212
10 10

3 3

3 1
2 2

9

9
#

1 1 1 

4 18.85 10
1.112 10 1.112 10

                                   3 10

                                   3 10  stat coul . 

A S A S

F A S S
m

kg m kg m

cm g

s

 
 

 
 


 

 

 

 
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The wave equation 

Consider a “source-free” medium ( 0,  0)J   , We can 

have wave eq. from eq (1) in page 2, 

),(),( trB
t

trE






  

use the identity 

VVV


2)(   

we have 

B
t

EE






 2)(         (6) 

Here we just assume the simple constitutive relation  

HB


   & ED


            (7) 

where  & E  are scalar constants. 

Since source-free ( 0)    

)8(0

0

)(

)(0









E

scalaris

EE

ED














 

 

Apply eq. (7) & (8) into eq. (6) , we get  
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2

2

2

)(

)(

t

E

t

D

t

H
t

E

































        

use eg. (2) in page 2 & source-free 0J   

The wave eg. for electric field   is 

0
2

2
2 






t

E
E




                 (9) 

in free space. 

00

1


c

  

or 
0

1
2

2

2

2 





t

E

C
E




                (10) 

In an isotropic, source-free medium, a solution of eg (9) is a 

plane wave  

)(

0),( wtrkieEtrE 


                 (11) 

substituting eq (11) into (9), we have 
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zkykxkk

eE
zyx

eE

zyx

rki

rki



































0)(

0)(

0

2

2

2

2

2

2

2

0

22





  

So we have the dispersion relation ( )k  

0)( 2222
 zyx kkk    

or 

 22222
 kkkk zyx  

22 1
k


   

for free space 

     
00

2222 1
,


  ckc

        (12) 

So we can replace 


 by ki


 in Maxwell’ eqs. 

we have   

)113(  HEk


  

)213(  EHk


  

)313(0 Ek


 

)413(0 Hk


 

from eq. (13-1), we can have magnetic field  
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HEk





1
 

also we have 0&0  HkEk


 

i.e. HE


&  are   to k


 

 

 

           E


                          

 

          H


 

        x              x               x  

However, for most of cases,  & are not scalars. 

They are space & frequency dependent. 

),(

),(





r

r








 

Now, we assume 

(1)   is a pure real-valued function, and the freq. 

K

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dependence can be ignored i.e.   )(r


  

      ),()(),( trErtrD


  

(2) Consider nonmagnetic materials only, i.e.  ( )=1r  

 ( , ) ( ) ( , ) ( , )B r t r H r t H r t    

then Maxwell’s eqs become, 

      
)114(),(),( 




 trH

t
trE


 

      
)214(),()(),( 




 trE

t
rtrH




 

      )314(0)],()([  trEr


  

      )414(0)],([  trH


 

Apply plane wave solutions into eq (14-1) & (14-2) 

tierEtrE )(),(


  

tierHtrH )(),(


  

we have  

0)()(  rHirE


  

      0)()()(  rErirH


  

we can obtain the wave eg. for ( )H r  

)()](
)(

1
[ 2 rHrH

r


 


     (15) 
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& use 2nd eq. to obtain )(rE


 

      
)(]

)(
[)( rH

r

i
rE









       (16) 

we can write a eigenvalue eg, from eg. (15)  

      
2ˆ ( ) ( )  H r H r   

where 

)
)(

1
(ˆ 

r


  

̂  is a linear differential operator, and ( ) H r are the 

eigenvectors associated to eigenvalues 
2 . Since  is linear, 

any linear combination of solutions for is one of 

solutions of this eigenvalue eq. 

 

 

̂

( ) H r
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Linear Vector Space and Linear Operators in Hilber Space 

 1 2 k, ,..., ...

       =a basis

a a a

:a vectora

   Hilbert spaceH

 

Now, let’s consider the EM wave eqs. as an eigenvalue 

problem. The Maxwell curl eqs. for time-harmonic field in a 

source-free region are  

EiH

HiE











 

Here assume   is a scalar, but   is ),(  r . From 2nd 

eq. , we can have  

         
0

)(

1
 EiH

r




   

then use the first equation, we get 



14 
 

HH
r






2

)(

1


 

or       
HH

r


2

)(

11





  

this become an eigenvalue problem 

2ˆ H H   

Where 
2  is the eigenvalue and the differential operator ̂  

is  

         


)(

11ˆ
r  

Also, the eigenvector, of course, is the H  field. We also 

can write an eigenvalue eq. For D , 

        
DD

r


2

)(

11





  

or       
2ˆ

DO D  

where the differential operator )(

11ˆ
r

OD



 

Note 

These 2 operators are linear operators. Linear operators have the 
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property that if A and B are eigenvectors of operator Ô  with 

the same eigenvalue 
2O  

        
2ÔA O A    &  

  
2Ô B O B  

then A B   is also an eigenvector of Ô . 

 

Before we examine ̂  & ˆ
DO  for Hermitian operator, 

we should know something about Hermitian operators. 

    Hermitian operators are important in Q.M., as well as in 

EM wave. Let’s consider the inner product  

     gfdxxfxgfg

dxxfxgfg

b

a

b

a












)()(&

)()(





     

For the system, we have an operator Ô & its adjoint operator Ô
, 

i.e. 

           fOgfgO ˆˆ 

  

The operator Ô  is Hermitian if  

ˆ ˆO O  
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or fOgfgO ˆˆ   

    An Hermitian (or self-adjoint) operator with appropriate 

boundary conditions have three nice properties.  

(1) The eigenvalues of an Hermitian operator are real. 

(2) The eigenfunctions of an Hermitian operator are 

orthogonal. 

(3) The eigenfunctions of an Hermitian operator form a 

complete set. 

We’ll demonstrate first two properties. 

(1) Consider a eigenvalue eq. 

 ffO 2ˆ   

form the inner product with f  

ffOf 2ˆ   

If Ô  is a Hermitian operator, 

i.e. fOgfgO ˆˆ   

then we have 

 fOfffOfOf ˆˆˆ 


 

so fOf ˆ
 is real. And ff  is also real. 
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Since fOf ˆ  and ff  are both real, we have a real 

eigenvalue 
2 . It means eigenvalues of an Hermitian 

operator are real. 

(2) Consider two eigenvectors of Ô  with different 

eigenvalues: 

1

2

11
ˆ ffO   

2

2

22
ˆ ffO   

         where 1 2   

we have  

12

2

2

12

1212

2

1

ˆˆ

ˆ

ff

HermitianisOffO

fOfff












 

        or 0)( 12

2

2

2

1  ff  

012

2

2

2

1  ff  

          i.e. 1f and 2f  are orthogonal.  

Now, we’ll start to prove  


)(

11ˆ
r  
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 is a Hermitian operator for EM fields. 

consider the field vectors ( )A r and ( )B r , and we assume 

)(r  is real, i.e. lossless media. 

      

scalaraisrB
r

rArd

rB
r

rArdBOA


















)(
)(

1
)(

1

)(
)(

11
)(ˆ

3

3





 

 

Then we need the first Green's identity for this prove.  

  







v V S

S
V

danQPVdQPdVQP

or

danQPdVQPQP

ˆ)(

ˆ)()(





Since the fields are zero on a surface at infinity, we can ignore 

the surface integral. 0ˆ)(  S danQVP


 

With the above identity, we can have  













)()(
)(

11

)(.)(
)(

1
)(

1ˆ

3

3

rBrA
r

rd

ronopaldifferentinorB
r

rArdBOA

P



  













Next, use the Green’s first identity again by letting. 
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BQA
r

P


  ,
)(

1

  

then we get  

ˆ ( ) ( )
( )

ˆ                 

31 1
A O B d r A r B r

r

OA B

 




   





 

[ ( ) , ( ) ( )]r is real r r   
 

so  


)(

11ˆ
r

O
   is a hermitian operator.  

Also, we can prove 

)(

11ˆ
r

OD



  

is not hermitian. 
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Plane-Wave Expansion Method for Photonic Crystal Band 

Structure 

For photonic band structure, we need to solve the 

eigenvalue problem  

)()(ˆ 2 rHrH
kk


  , 


)(

11ˆ
r


      or  

(1) 
)()(

)(

11 2 rHrH
r kk


  




  

where )(rH
k


  is a Bloch state 

(2) 
1

H ( )= ( )ik r

k k
r e u r 


 

    is the volume of the crystal included here for 

normalization. The orthogonality relations for Bloch states 

are 

(3) ',',

3

,','
)()()(

kknnknkn rdrHrrH 


 


  & 

(4) ',',

3

,','
)()()(

kknnknkn rdrErrE 


 


 

  where n is band label. 

   Let plug equation (2) into equation (1), we have 
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(5) )()(
)(

11 2 ruerue
r k

rki

k

rki 
 






  
   

   In equation (5) , 

z
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x
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rki

ueueue

zyx

zyx
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







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












ˆˆ
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)(ˆ

)(ˆ

)(ˆ

)(ˆ

)(ˆ)(ˆ

rukie
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rki

z
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y

x

rki
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rki
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rki

z
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y

rki

z

rki


















































































































 

Similarly, we can replace the next   by  ki


. So 
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we have the eigenvalue equation 

(6) )()()(
)(

1
)(

1 2 rueruki
r

kie
k

rki

k

rki 







  


 

or 

(7) 
)()()(

)(

1
)(

1 2

)(ˆ

ruruki
r

ki
kk

ruO
k



  










.  

here k  can be consider as a parameters, and ( )
k

u r  

follow the condition 

( ) ( )
k k

u r u r R     

The Hermitian operator ˆ  O with the periodic boundary 

condition has a complete set of eigenvectors, ( )
k

u r . The 

spectrum contains an infinite set of discrete eigenvalues for each 

k . We label this infinite set of modes by the band index, n. The 

Bloch modes form a complete set for each k


.  

There are couple things we should note before we start to solve 

this eigenvalue problem. Solving the problem for photonic crystal 

band structure is quite similar to finding electronic band structure 

for solid. However, there are couple differences.  
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(1)EM wave in Maxwells’ equations are vectors while 

electron waves in Schrodinger's  equations are scalar. 

 

(2)Pauli exclusion principle doesn’t apply to photonic band 

structure since photons are spin-one particles. (Note:  

electrons are spin-half particles) 

 

(3)Solving Maxwells’ equations for a single EM wave can 

lead to exact results since photon-photon interaction are 

negligible. But solving single-electron Schrodinger  

equations can’t be exact solution since electron-electron 

interactions are significant. 
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Now let’s consider a two-dimensional photonic crystal 

lattice, for example, an array of dielectric rods with the infinite 

height in ẑ -axis. 

 

For this system, we have EM fields components

 
zyxzyx HHHEEE ,,,,, . We can group them into 2 parities. 

An “even” parity mode is a mode which has an E


 field 

invariant under mirror reflection in x-y plane, namely E


 and 

the vector plane-wave involved are polarized within x-y plane. 

Its parity is even, because a vector in the x-y plane is invariant 

by the mirror in the x-y plane. The 𝐻⃑⃑  field is directed in the ẑ  

direction, perpendicularly to the E


 field. This is called 

transverse electric (TE) mode.  

The “odd”-parity mode has E


 field in the ẑ -direction. 

In this case the mirror reflection turns a ẑ -directed 
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polarization vector to a ẑ -directed vector. This is the transverse 

magnetic (TM) mode. Very often the TE and TM modes are 

called 𝐻⃑⃑  mode and 𝐸⃑  mode, respectively.  

In summary, 

 TE has 
zyx HEE ,, ; TM has 

zyx EHH ,, . 

For three-dimensional lattice, this separation is not possible, 

and modes cannot be classified as either TE or TM.  

 

So we can solve the scalar field zH  for TE polarization 

and the scalar zE field for TM polarization. 

Let’s start with TE modes. The solution of the form 

(8) ˆ( , , , ) ( , ) i t

zH x y z t H x y e z  

(9)  ˆ ˆ( , , , ) ( , ) ( , )i t

x y
E x y z t e E x y x E x y y    
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The Maxwell’s curl equations 

(10) E i H    

(11) H i E   

 

Plug-in equation (8) & (9) into equation (10) & (11), we have 

(12) 

y x
Z

E E
i H

x y


 
  

    

(13) 
z

x

H
i E

y



 

   

(14) 
z

y

H
i E

x



 
  

Now use equation (13) & (14) to eliminate x
E  and y

E  from 

equation (12), i.e. 

z
x

H1
E

i y




  

& 

(15) 
( )x z

E H1 1

y i y y 

 


     
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Similarly  

x

H

iw
E z

y







1
    

& 

(16) )
1

(
1

x

H

xiwx

E
zy














   

equation (15) & (16) → equation (12), we get     

( ) ( )z z
z

H H1 1 1 1
i H

i x x i y y


   

  
   

     

or (17) 
0)

1
()

1
( 2 

















z

zz H
y

H

yx

H

x


   

     Now we expand 


1
 and zH  

(18)  
'

)'(
),(

1

G

GieG
yx 




   

(19)  




G

Gki

kz eGCH



)()(

1
  

where  : sample volume for normalization 

      


: in-plane position vector 

      ,G G : reciprocal lattice vectors 
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Now plug equation (18) & (19) into equation (17), we have  

 

The first two line can be added, we have  

( ' )

'

( )

( ') ( )( )( ' )

( )

i G G k

G G

2 i k G

G

1
G C G k G G G k e

1
C G e 0







 

   

  

   


 






We multiply 






)"(1 kGie  and integrate over the crystal 

volume  ,  

( ' )

'

( ' )

'

( )

( ') ( )( )( ' )( )( )

( ') ( )( )( ' )( )( )

( )

i G G k

x x x x x
G G

i G G k

y y y y y
G G

2 i k G

G

1
G C G i G G k i k G e

1
G C G i G G k i k G e

1
C G e 0











 

   

   

  

     


     


 








' ( )

'

' ( )

'

( )

( ') ( )( )( )

( ') ( )( )( )

( )

iG i k G

x x
G G

iG i k G

y y
G G

2 i k G

G

1
G e C G i k G e

x
1

G e C G i k G e
y

1
C G e 0

 

 







 

    

    

  


  
 

   
 

 







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(20) 

( ' " )

'

( " )

( ') ( )( )( ' )

( )

i G G k G k

G G

2 i G k G k

G

1
G C G k G G G k d e

1
C G d e





 

  

     



    



   





 

 

  

and we have the relation 

(21) 


 


0,

1
k

kied 



 

 

Plug equation (21) into equation (20), we have 

0)(

)'())(()'(

",

2

'",
'







 

GG
G

G
GGG

G

GCw

KGGKGGCG
















 

0)"()"()'")("()'( 2

"

 


GCwkGkGGGGCG
GG




  

Let 1 1 G G G G G G         

Then we have an equations for the coefficients ( )C G . 

(22) ( " ) ( )( ) ( " ) ( ")
1

2

1 1 1
G

G G C G G k G k C G        

This is the matrix form of the eigenvalue problem for TE modes. 

Note the matrix is symmetric ( )ij jia a . 
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The TM modes work similarly. The fields for TM are  

(23) zeyxEtzyxE ti

z
ˆ),(),,,( 


  

ˆ ˆ( , , , ) ( ( , ) ( , ) )i t

x yH x y z t e H x y x H x y y   

Plug equation (23) into curl equation of Maxwell’s equations, 

we can have 

(24) 0)(
),(

1 2

2

2

2

2










zz EE

yxyx



  

and expanding zE  

(25)  




G

Gki

z eGBE



)()(

1
.  

Then we’ll have a matrix form of eigenvalue problem for TM 

modes. 

(26) )()'()')('( 22

'

GBGBGkGG
G




    

However, the matrix in equation (26) is not symmetric.  

Now let ( ) ( )C G k G B G  .  

We get  








Gk

GC

Gk

GC
GkGG

G












)(

'

)'(
')'( 2

2

'

  
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(27) )()'(')'( 2

'

GCGCGkGkGG
G




    

This is an eigenvalue problem for a symmetric matrix. 

There are several things we should note. ○1 This numerical 

method, plane-wave expansion (PWE) method, which is based 

on the Fourier expansion of the EM waves and the dielectric 

functions. ○2 In the real numerical calculation of photonic bands, 

the  in equation (22) & (26) is calculated up to a sufficiently 

large number N of 1 1(or )G G , and an eigenvalue problem for 

each k is solved, which is equivalent to the diagonalization of 

the matrix defined by the left-hand side of equation (22) & (26). 

○3 The dimension of the matrix that should be 3N. However it 

could be 2N since H( , , , )x y z t  is perpendicular to k G  

with polarization, and its degree of freedom is two. Hence, the 

matrix in the equation has the dimension of 3 3N N , generally. 

In fact, the converge of the plane-wave expansion method is not 

good when the variation of dielectric constant is large, and 

numerical error exceeds 5% in certain cases even N >3000.   
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Now, we start to calculate the Fourier coefficients, )(G


 , 

of 
),(

1

yx  

 

Case 1 Dielectric Sphere 

 

Consider a dielectric sphere array with lattice vector R . 

The radius of sphere is ar , and the dielectric constants inside 

and outside the sphere are a  & b , respectively. 

We can write down the dielectric function 

(28) )()
11

(
1

)(

1
rS

r bab





   

where ( )S r  is defined such that 

(29) 

1 ,   
( )  

0 ,  >  

a

a

r r
S r

r r


 


 

Then the Fourier coefficients are  
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(30) 


V

Gi

c

ed
V

G
)(

11
)(


 


 

  cV : volume of unit cell 

Equation (28) & (29) → equation (30), we have 

(31) 


V

Gi

baC

G

b

eSd
V

G 










)()

11
(

11
)(

0,  

In order to calculate equation (31), we use spherical 

coordinates ( , , )r   , and assume the direction of G is 0  . 

For 0G  , the integral in equation (31) is  


 


Gi

V

eSd )(
 




 cos

0

2

0

sin2 iGr

r

erddr
a



  

  GGGrGrGr
G

aaa


 ,)cos()sin(

4
3


 

For G=0  , the integral became 

 


Gi

V

eSd )(
 

                            
V

aa VrrSdr
3

3

4
)(


 

So we have the Fourier coefficients for the dielectric 

spheres.  
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(32) 

( )          ,

( ) sin( ) cos( )
( ) ,

( ) ( )

a

b a b c

a a a

3 2
a b c a a

V1 1 1
for G 0

V

G V Gr Gr1 1
3 for G 0

V Gr Gr

  



 


  


  

   
  


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Case 2 Dielectric Rods (or Holes) 

 

Consider a 2-D dielectric rods (or holes) array in x-y plane, 

and they are infinite along z axis. The dielectric function can be 

described as  

(33)  
Rbab

RS
yx 


)()

11
(

1

),(

1


  

Where 













A

A
S






,0

,1
)(


 

The Fourier coefficients are  

,

( )
( )

( ) ( )

iG

ac

iG

G 0
ab a b c

1 1
G d e

a
1 1 1 1

d e s
a





 
 

  
  







  




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For 0G   

(34) ( ) ( ) ( )
ab a b c

1 1 1 1
G d S

a
  

  
     

          
cbab a

A
)

11
(

1




      

h o l e sorrodsthe

oftioncrosstheA

ASd

sec:

)( 


 

For 0G , we need to evaluate the integral  

(35)   
A

R
iGr

c

Gi

c

edrdr
a

ed
a 0

2

0

cos11


 


 

,where   is the angle between G and r.  

Using the integral representation for ( )oJ x  

(36) 

2
cos

0

1
( )

2

ix

oJ x e d


 


    

Compare equation (35) and (36), we get the integral 

(37) 0
0

2
( )




ar

c

rdrJ Gr
a  

Then we can use the relation of Bessel functions 

(38) 1( ) ( )n n

n n

d
x J x x J x

dx


      

we have 

(39) 1( ) ( )n n

n ndxx J x x J x   
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Let x Gr , dx Gdr  or 
dx

dr
G

 .  

Equation (37) became 

1 02 20

2

2 2
( ) ( )

2
                           

 



 




a

a
Gr

Gr

o

c c

c

xdx
J x J x

a G a G

a G
G 1

1

( )

( )2
                           

a a

a

c a

r J Gr

J GrA

a Gr

 

    ,where 
2

aA r  

So we obtain the Fourier coefficients 

( )            ,

( )( )
( ) ,

b a b c

1 a

a b c a

1 1 1 A
for G 0

a
2 J GrG 1 1 A

for G 0
a Gr

  



 


  


 

 




 

, where ar  is the radius of the rods or holes,  

and 1J  is a Bessel function. 

Now given a particular lattice, the G  vector can be 

determined and the eigenvalues can be calculated. 
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The Irreducible Brillouin Zone 

Photonic crystals usually have translation invariance and 

symmetries in the structures simultaneously. It means a photonic 

crystal might be invariant under periodic translation, mirror 

reflection or rotation with specific angles. 

Now we consider a rotation symmetry for the photonic 

crystals. Let ˆ ˆ( , )R n  be an operator which rotates the vector by 

an angle about the n̂ axis. The vector field operator ˆ
RO  is 

defined as  

1ˆ ˆ ˆ ˆ( ) ( , ) ( ( , ) )RO H r R n H R n r   

(  To rotate a vector field, we rotate the vector by R and 

the argument by
1R
) 

If a rotation by R  leaves the crystal invariant, then  

        0]ˆ,ˆ[  RO  

where  


)(

11ˆ
r


  

so  
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        2

ˆ ˆˆ ˆ( ) ( )

ˆ                

R Rnk nk

R nk

O H O H

O H

  

  

It means 
ˆ

R nk
O H  is an eigenstate of ̂ with the same 

eigenvalue as nk
H . It can also be shown that 

ˆ
R nk

O H  is just the 

Bloch state with wave vector kR
~

. Then we have  

       )()
~

( kkR nn


   

The dispersion relation ( )n k  has the full symmetry of 

the crystal. Therefore, we don’t need to consider the entire 

Brillouin zone, because different portions are related with others 

through symmetry. The smallest region of the Brillouin zone for 

( )n k  is called irreducible BZ. This BZ is not related by 

symmetry. 
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Two-Dimensional Photonic Crystals 

After discussing the properties of 1-D photonic crystals, 

we’ll start to talk about 2-D photonic crystals. In this part, we 

are going to study the “2-D” crystals which are periodic in 2 

directions (“usually” x-y plane) and homogeneous in the third 

direction (“usually” ẑ direction). 

In 1-D system, we consider the modes with the Bloch form, 

say H  field  

    (1) )(~)(~)( // zueezuerH
kn

zikki

kn

rki

kn
z 







  

 

        if the layer structure is along ẑ  axis. Now, for 2-D 

system, the Bloch state will be  

    (2) )(~),(~)( // 
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        if the 2-D photonic crystals are in x-y plane. Like 1-D 

case, here nk
u  is a periodic function, 

( ) ( )
nk nk

u u R    for all lattice vector R .  

    The main difference between equation (1) & equation (2) is 

that in 2-D case, //k


is restricted to the BZ in x-y plane and zk is 

un-restricted. However, in 1-D case, zk is restricted to BZ along 

ẑ axis, and / /k is not.  
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    Here is a example of 2-D photonic crystals. It contains a 

square lattice of dielectric rods with a radians of r and a 

dielectric constant of . The background is air ( 10  ). The 

dielectric rods are periodic in x-y plane with lattice constant a, 

and infinite along ẑ direction. 

a

x
y

z

r

 

     

   Conventionally, we choose x-y plane as the symmetry plane. 

Then the system is invariant under reflections through this 

symmetry plane. Like we discuss in page 40-44, we can classify 

6 components of E


and H fields and group them into 2 

polarizations. The transverse-electric (TE) modes have

 
yxz EEH ,, . The transverse-magnetic TM modes have

 yxz HHE ,,  . The band structure for TE and TM modes can be 
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completely different. And the band gap night not appear in both 

polarizations. It means that there are band gaps for TE mode, but 

no band gap for TM mode in some cases. 

    Let’s consider in 2-D photonic crystals with the rectangular 

dielectric rod array. The lattices have a lattice constant of a and 

the rod radius of r. The refractive indices of the rods and 

background are n and 1, respectively. Here is the illustration of 

the 2-D photonic crystal lattices.  

2ra

a

n

0 =1.0n

 

   The 3 important parameters, , ,n a r , are going to decide 

the properties of this structure. The irreducible Brillouin zone of 

the rectangular lattice is shown below  
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   The irreducible BZ is the shaded region. The whole square is 

the first BZ, and the rest of first BZ can be related to the 

irreducible BZ by rotational symmetry. The three symmetry 

points  , X , and M correspond to 0)( // k , x̂
a


   and

ˆ ˆx y
a a

 
   , respectively. 

With plane-wave expansion, we can calculate the band 

structure ( )   for the 2-D photonic crystals. The band 

structure shown here is for n=3.0 and r/a=0.2 . The red bands are 

TE while the blue are TM modes. 
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In the band diagram, the horizontal axis is the in-plane wave 

vector  and  , M and X points are the symmetry points in the 

irreducible BZ. The band structure is plotted (or calculated) 

along. The edge of the irreducible zone, then it returns to  

point to form a close loop. The vertical axis is the normalized 

frequency which is the modal frequency normalized to 
a


 (or

2

a

c




). Here a &c are the lattice constant of lattices and the 

speed of light.  

According to this band diagram, there is a band gap from 

normalized frequency 0.32 to 0.44 for TM mode, while there is 

no band gap for TE mode. 
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Now we are going to take a look for EM field profiles at 

several symmetry points. 

The first figure in the next page is the E field profile at 

 point of the irreducible BZ of this rectangular photonic 

lattices. Since ( ) 0   , the fields have no in-plane wave 

vector to propagate in-plane. It means the wave vector of 

this mode is along ẑ axis of the structure, and the fields are 

the same in each unit cell. The second figure is the E field 

profile at x point of the zone edge. The mode has an in-plane 

wave vector along x̂  direction, i.e. ˆ( )x x
a


   . The third 

profile is the E field profile at M point. This mode has a 

in-plane wave vector along ˆ ˆx y  direction, i.e.

ˆ ˆ( )M x y
a a

 
   . 
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Now, let’s consider a triangular lattices with the embedded 

air holes surround by the dielectric materials. 

 

The lattice constant and hole radius are a and r. And the 

refractive index of the material is n. The irreducible BZ 

embedded in the first BZ is shown below. 

M point 
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The shaded region is the irreducible BZ, and three 

symmetry points  , M and K are 0  , ŷ
a


   and 

ˆ ˆ
3

x y
aa

 
   . 

The band diagram of the triangular lattices with the 

background index n=3.4 and the r/a value 0.3 is shown below. 
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The red lines are the bands for TE mode, and the blue lines 

are for TM mode. In this band diagram, the TE mode has a band 

gap from normalized frequency 0.21 to 0.28 . However, there is 

no band gap for TM mode. If we consider a photonic crystal 

with a lattice constant of 500 nm, the TE band gap region will 

allocate at wavelength 1785 nm ~ 2380 nm  . 

 

 


