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Introduction:
Why electron microscopy?
Sensitivity:
Beam/solid (specimen) interaction
(Spatial) Resolution:
IMicroscopy vs. microprobe
Wavelength, properties of lens
Information other than the image
A brief history of electron microscopy



Traditional materials
characterization:
incidence beam (probe):
photon

exit beam (signhal): photon
detector: eye
processor/storage: brain
(M ENT)
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Various Electron Microscopes



first
electron microscope,

(replica)




first commercial
electron microscope,

1934

[ r— e |
Ruskas Commercial Electron Mictoscope
sfusenm T, ¥erkehr u, Technk, Berlin; 1987,




experimental

electron microscope,

1940s, Japan
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JEOL
JEM-4000EX

NTHU, 2016
After retirement of
machine and man
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MAJOR COMPONENTS OF A TEM

1. electron optics column A5
2. electronics and controls w3 i
3. vacuum system £E 3w

4. high voltage power supply iz €&
5. accessories %44¢.

the electron
microscope

structure and major
components
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. Anode chamber

Cathode assembly

. Anode chamber airlock valve
. Beam deflector coil 1
. Beam deflector coil 2

Condenser lens pole piece
15t condenser lens coil
2nd condenser lens coil

. Condenser lens stigmator coil

. Image wobbler coil

. Beam displacement

compensating coil 1

. Beam displacement

compensating coil 2

. Beam deflector coil 3

. Specimen holder

. Beam deflector coil 4

. Objective lens pole piece

. Objective lens stigmator coil
. Objective lens coil

. 1st intermediate lens coil

. Intermediate lens pole piece
. 2nd intermediate lens coil

. Projector lens coil

. Projector lens pole piece

. Viewing chamber

. Camera chamber

JEoL TEM-goC

The Electron Optics Column
of JEOL JEM-100C

The Lens System:
Condenser Lens:

Controls beam intensity, density,
convergence, coherence.

Objective Lens:

Magnification, introducing
contrast.

Intermediate Lens:

Further magnification, imaging
or diffraction.

Projector Lens:
Final magnification

Apertures
Specimen chamber
Camera
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Objective lens,

JEOL JEM-100C




OPTICAL MICROSCOPY

ABBE'S PRINCIPLE



Abbe’s principle of imaging
Ernst Abbe, 1840-1905

diffraction
pattern

diffraction
paitern

I
back focal pfan
[
objective
aperture

Abbe’s Principle of irnage
formation

Principle of Fundamental
geometrical and physical
optics

Abbe’s principle and the
back focal plan (BFP)

Contrast: Beam/solid
interaction
BFP and the objective
aperture:

Bright field (BF)

Dark field (DF) images.

1/p+1/q=1/f



Principle of image formation

Fundamental geometrical and physical optics
Abbe’s principle and the back focal plan (BFP)
Contrast: Beam/solid interaction
BFP and the objective aperture:

Bright field (BF) and dark field (DF) images.



Contrast: Beam/solid interaction
Back focal plane,
objective aperture,
diffraction pattern
Bright field (BF) and dark field (DF)
Images.

object “ s BFP

|
%

contrast©Tung Hsu 1992
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The electron gun:

An electrostatic lens +
an electron accelerator

Filament: Tungsten
LaBg
Field emission

Acceleration voltage:
(HV or HT)
100kV - 1MV

Fra, 2% The rubber-membrane model for experimental dotermination ¢
paths (exaggerated vertical scale).

madel, A 1s th ode, w grid.  The grid potentinl is increns-
ingly negative from A to C, (C "hilips Teeh. Iten., Hef. 2.)

C.E. Hall, "Introduction to Electron Microscopy", 2nd ed.
P.W. Hawkes, "Electron Optics and Electron Microscopy".









The electromagnetic lens

Fig. 1. Electron trajectorics in a uniform (a) and in a non-uniform (c¢) magnetic ficld, issuing from an
axial point of the specimen for different azimuth angles, but making the same angle with the lens axis.
(b) Field distributions corresponding to (a) and (c¢). B

— e e —— .

"The early development of electron lenses and electron microscopy .
Ernst Ruska, 1980, S. Hirzel Verlag Stuttgart



Electron micrographs
(EM, TEM images)

And

(Transmission) electron diffraction patterns
(TED patterns, DP)
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Wwhat is
DIFFRACTION

?




Encyclopedia Britannica 1994-2002

Diffraction the spreading of waves around obstacles.
Diffraction takes place with sound; with electromagnetic
radiation..., and electrons, which show wavelike properties.
One consequence of diffraction is that sharp shadows are not
produced. The phenomenon is the result of interference...



Wikipedia 2006-2-2

Diffraction is the bending and spreading of waves when they meet
anh obstruction. It can occur with any type of wave...

Diffraction also occurs when any group of waves of a finite size is
propagating; for example...

Diffraction is one particular type of wave interference, caused by
the partial obstruction or lateral restriction of a wave; another
example...



http://en.wikipedia.org/wiki/Wave
http://en.wikipedia.org/wiki/Interference

Grant R. Fowles, “Introduction to Modern Optics”, 2nd ed.,
1975, Dover, p. 106

5.1. General Description of Diffraction

If an opaque object is placed between a point source of

light and a white screen, it is found that the shadow that
is cast by the object departs from the perfect sharpness
predicted by geometrical optics.



Born and Wolf, “Principles of Optics”, 4th ed., 1970.
Ch. VIII. Elements of the theory of diffraction

In carrying out the transition from the general electromagnetic
field to the optical field, which is characterized by very high
frequencies (short wavelengths), We found that in certain
regions the simple geometrical model of energy propagation
was inadequate. In particular, we saw that deviation from this
model must be expected in the immediate neighborhood of the
boundaries of shadows and in regions where a large nhumber of
rays meet. These deviations are manifested by the appearance
of dark and bright bands, the diffraction fringes.



Hecht “Optics” 2nd ed, 1989

p.3. The phenomenon of diffraction, i.e., the deviation
from rectilinear propagation that occurs when light
advances beyond an obstruction, was first noted ...

pp. 128-129. ... an optical device is ... unable to collect all
the emitted light; the system accepts only a segment of
the wavefront... there will always be an apparent
deviation from rectilinear propagation even in
homogeneous media - the wave will be diffracted.



J.M. Cowley, “Diffraction physics”

(No definitions given)



Feynman “Lectures on Physics” Ch. 30. Diffraction

This chapter is a direct continuation of the previous one, although the
hame has been changed from Interference to Diffraction. No one has
ever been able to define the difference between interference and
diffraction satisfactorily. It is just a question of usage, and there is ho
specific, important physical difference between them. The best we can
do, roughly speaking, is to say that when there are only a few sources,
say two, interfering, then the result is usually called interference, but if
there is a large number of them, it seems that the word diffraction is
more often used. So, we shall not worry about whether it is interference
or diffraction, but continue directly from where we left off in the middle
of the subject in the last chapter.




What else?



We don’t even need the word “diffraction”. What we observe experimentally
is the result of wave propagation. When there is an object in the way of the
propagating waves, a pattern associated with the shape and nature of the
object and the nature of the wave is formed. This can be called the Fresnel

pattern or the Fraunhofer pattern, depending upon the approximations used
in describing it.

Related terms:
Scattering (of particles)
Reflection (by atom plans in a solid)



WAVE PROPAGATION, SCATTERING, AND SUPERPOSITION

Electrons fly through the vacuum = electron wave propagating
through the vacuum.

Electrons (electron waves) can be scattered by electrostatic potential
of atoms.

When two or more electron waves meet, their amplitudes are added.



How to add waves:

Direct method
Amplitude-phase diagram (vector method)
Fourier transform

Optical bench (Atlas)

Computer

Diffraction Patterns from 3D objects

Bragg’s Law nA = 2dsin 0



amplitude/phase diagram
a/p@Tung Hsu 1891
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For finding diffraction patterns:

ImageJ®:
basic image processing. Ask Ms. Chen (2789-8394) about down loading.

DigitalMicrograph®:

professional image processing. Ask Ms. Chen about free demo copy.

Reciprocal lattice and Ewald construction:

These are so cool and important. Sorry we did not have time to cover them.
If you are interested, | can give a special lecture and demo on this subject.
It will be free except that you have to arrange a time outside your
scheduled classes.
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Try this on Imagel®
or
DigitalMicrograph®




Examples of electron micrographs and
(transmission) electron diffraction (TED) patterns
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2
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Plate X, Bright and dark-ficld micrographs of stainless steel, obtained with the Toulouse 1-5 MV microscops
12000%x ; @ = 1 MV.

(Conrtesy of Professor GG, Dupouy, Laboratoive d’Optique Electromque du C.N. RS, Toulouse)

Ref: Hawkes, P.W. (1974), Electron Optics and Electron Microscopy, Taylor & Francis, London
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Contrast mechanism:

Beam/specimen interaction
Amplitude and/or phase of the electron waves are altered by the specimen

Properties of lens

Waves (rays) initiated from a point on the object cannot be converged by
the lens to a point on the image.

Aperture limitation (“diffraction” related)
Spherical aberration

Chromatic aberration

Defocus (“diffraction” related)
Astigmatism

Detector: Fluorescence screen, Film, CCD, eyes



resolution©Tung Hsu 1991
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RESOLUTION:

Rayleigh’s criterion

Balancing the spherical
aberration effect and the
diffraction effect:

Smaller aperture produces

larger Airy disc (diffraction
pattern of the aperture).

Larger aperture produces more
diffused disc due to spherical
aberration
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function A BEFE defocus
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ASTIGMATISM

Stigma
Stigmatize
Astigmatism
Anastigmatic
Stigmator
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Specimen preparation -
Specimen: What characterization is all about.
the ultimate limit of resolution and detectability

General requirements:
thin, small, conductive, firm, dry

Various methods
Ultramicrotomy
Mechanical
Chemical
lon
(Lucky for nano-materials work: Minimal preparation)

Contrast enhancement:
Staining, evaporation, decoration



Specimen support and specimen holders

Specimen support

Grid
Holey carbon grid

Specimen holders:
Top entry
Side entry
Single/double tilt
Heating, cooling, tensile, environmental, etc.

Performance:
Tilt angle, working distance,



Specimen holders

10} mm

objective-aperture

P G

top entry Eholder

T4 H{. o

S

L
Py e e

A
Sy

side entry holder

|
HFEFE & & |

t is connected to a liquid
nitrogen tank. The low
temperature traps the gas
molecules around the specimen
and keeps the specimen clean.
So it serves as a pump.




stage
translation
controls

o . ' D

left right
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= -1st %
: +2nd tilt.
- -2nd tilt
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Movements and controls
of the specimen
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correction:

The holey carbon grid used for supporting powder specimen is
NOT made by carbonizing the organic film. Rather the holey
organic film is coated with a thin film of carbon. The carbon
coating provides electrical conductivity. Therefore it can be used
under the electron beam. For high resolution electron microscopy
the carbon coated organic film is often too thick as a support.
Then the organic film 1s dissolved with a solution such as acetone,
leaving only the very thin carbon film.



High Resolution Electron Microscope (HREM):
Approaching atomic resolution.
Requirements:
(Ultra) high resolution pole piece
Electronic stability
Mechanical stability
Clean environment: (Ultra) high vacuum
Specimen preparation: very very thin

In general HREM is needed for studying nano-materials.



VACUUM
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Thirty spokes share the wheel's hub;

[t is the center hole that makes it useful.
Shape clay into a vessel;

It 1s the space within that makes it useful.
Cut doors and windows for a room;

It 1s the holes which make 1t useful.
Therefore profit comes from what is there;

Usefulness from what is not there.

Tao Te Ching, by lao Tsu
Translation & Caliaranhy by
Gia-fu Feng & Jane English




HIGH VACUUM = LOW PRESSURE

Why vacuum ?
How to evacuate ?
How to measure the vacuum 9

Why the electron microscope has to be
evacuated ?
Stabllity of the speciman -
Filament life -
Sufficient mean free path of the electrons -
(for the required electron optical design. )



Physics of gases: Elastic gas molecules.
Constant motion of gas molecules,
colliding each others and wallls of container.
System in equilibrium.
Negligible external force (magnetic, gravity).

Physical phenomena under various pressures:
Boyle’s Law : p,V;=p,V, p : pressure V @ volume
GasLaw : pV =nRT n : number of moles

R : gas constant » 8.314 J/ K - mol

T : temperature

Number of molecules per unit volume at T and p :
nA/V = p/(RT) A : Avogadro number > 6.022x1023



Unit of pressure : 1 Pa =1 N/m?
=1.45 x 104 psi
= 7.50 x 103 torr (mm-HQ)

Mean free path L under pressure p torr
L = 5x10>/p (m)

Types of gas flow :
Turbulent : irregular, many vortices.
Smooth : regular, no vortices.
Knudsen : L < tube diameter.
Molecular : L > tube diameter;
Molecules do not interact with each others
except collisions.

(such is the case inside the electron microscope.)



Pumping :
When evacuating a chamber one does not draw molecules. One
allows gas molecules to diffuse out and prevent them from going

back in.

Various pumps : mechanical, diffusion, turbo-molecular, ion,

sorbtion....
Multi-state pumping is necessary for 103 torr or below.

Pumping rate : (torr)-liter/sec.

To maintain vacuum, keep on pumping to balance the leak and
outgas.

leak : (torr)-liter/sec.

outgas : torr-liter/cm?-sec.



measurement of vacuum :
based on physical phenomena at various pressure.

Vacuum (pressure) gauges :
Mercury column, thermo couple, ionization current.

Maintain good vacuum :
Instrument design and operation procedure.
Operator’s good practice and skill.
Environment of the lab.
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rotary pump

- diffusion pump
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A turbo pump




scanning electron
microscope (SEM)
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FIG. 1.2 Scanning electron microscope.




Flgure 4.17. Schematic diagram of Everhart-Thornley scintillator—photomultiplier electron
detector. B, backscattered electron; SE, secondary electron; F, Faraday cage; S, scintillator:
LG, light guide: PM, photomultiplier.
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sem@Tung Hsu, 1999

Ref. "Scanning electron microscopy and x-ray microanlalysis”,
Goldstein, et al, 1981, Plenum, Ch. 2.

Scanning electron microscopy -
microprobe

Beam/specimen interaction: When
the specimen is thick, “semi-
infinite”.

Monte Carlo simulation

The probe forming system:

Forming a small probe is the
same as forming a small spot in
the image

The column

Contrast mechanism:
Secondary electrons
Back scattered electrons
Other signhals

Resolution:
Low mag: limited by scan rate

High mag: limited by lens
defects - same as TEM

Detector



Examples
of SEM
images
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SEM TEM
Ek&V)| 10 20 30 | 100 200 400
A (R) | 0122 0.0859 0.0698 0.037 0.025 0.0126

Cs (mm) 10-20 1-3

Resolution: beam size image point size
r = )\ 3/4Cgl/4 ¢ = )\ 3/4Cgl/4




The following material was not covered.



Electron microprobe / Analytical electron microscopy:
(EPMA)

Energy dispersive (X-ray) spectrometer, EDS (EDX)
Wavelength dispersive (X-ray) spectrometer, WDS (WDX)
Electron energy loss spectroscopy, EELS

Quantitative analysis

etc.

Ref. Dr. Yoshi lizuka
Institute of Earth Science
Academia Sinica

He has two cutting edge EPMAs.
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Parameter NA 2d sind
—diffraction Known calculated measured
—spectrometry(wDsS) calculated known measured
—spectrometry(EDS) E: measured |

(for the same spectral line, K, KB, ...)

EShe/A. X = C(Z - ©¢)2



Instrumentation: Electron probe/microscope
Other particle beam
X-ray fluorescence
radioactive sources
WDS: x-ray optics
regular crystals = O and up
"soap” film crystals > Be and up
EDS: Si(Li) detector
Multi-channel analyzer (MCA)
Be window = Na and up
Ultra-thin window or Windowless = B and up
Dead layer in Si(Li) detector is the limit
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EPMA at NTHU



Microscopy Soclety of America
_Poslifon on Ethical Digital imaging

RESOLUTION carried as follows: Be it_resolved
that the MSA position on digital image processing be
approved as follows: '

“Ethical digital imaging requires that the original
uncompressed image file be stored on archival media
(e.g., CD-R) without any image manipulation or pro-
cessing operation. All parameters of the production
and acquisition of this file, as well as any subsequent
processing steps, must be documented and reported
to ensure reproducibility. : -

Generally, acceptable (non-reportable) imag-
ing operations include gamma correction, histogram
stretching, and brightness and contrast adjustments.
All other operations (such as Unsharp-Masking, Gauss-
ian Blur, etc.) must be directly identified by the author
as part of the experimental methodology. However, for

_diffraction data or any other image data that is used for
subsequent quantification, all imaging operations must
be reported.”

MSA 2003 Summer Council Meeting Minutes




Protect your eyes. They are
the most versatile, responsive,
precious, and beautiful optical
Instrument in the world.

;‘x
47 JEOL LTD.

1418 Nakagami Akishima Tokyo Japan
Telephone: (0425) 43-1111 Telex: 0-2842-135




[ GUESS IM FINALLY
BEGINNING TO REALIZE
THAT YOULL ALWAYS LOVE

YOUR ELECTRON MICROSCERE
MORE THAN YOULL EVER LOVE ME...

hsprive by /5. 4:1&-5%/
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