Synthesis of Silver Nanoparticles

1. A solution of ANO, (1.0 x 103 M) in deionized water was
heated until it began to boil.

2. Sodium citrate solution was added dropwise to the silver
nitrate solution as soon as the boiling commenced. The color
of the solution slowly turned into grayish yellow, indicating
the reduction of the Ag+ ions.

3. Heating was continued for an additional 15 min, and then the
solution was cooled to room temperature before employing

for further experimentation.
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Synthesis of Gold Nanoparticles

1. Add 20 mL of 1.0 mM HAuCI, to a 50 mL round bottom flask
on a stirring hot plate.
Add a magnetic stir bar and bring the solution to a boil.

N

3. To the boiling solution, add 2 mL of a 1% solution of

trisodium citrate dihydrate

4. The gold sol gradually forms as the citrate reduces the
gold(lll). Stop heating when a deep red color is obtained.
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Construction of Core Shell Ag/Au@SiO, Nanoparticles

1. Under vigorous stirring, 1 ml of the silver/ gold colloids solution was mixed with
250 mL of isopropanol and 25 mL of deionized water.

2. Immediately after the addition of 4 mL of 30% ammonium hydroxide, different
amounts of tetraethoxysilane (TEOS) were added to the reaction mixture.

3. To obtain different silica layer thicknesses, TEOS solutions with a concentration
between 50% and 100% was added to the suspension. The reaction was stirred
at room temperature for 30 minutes and then was allowed to age without
agitation at 4 C overnight.

4. Each suspension of silica-coated silver/gold nanoparticles was washed and
centrifuged, followed by re-suspension in water. The thickness of the silica

layers was determined from TEM images .
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Figure 1. (a) Schematic iilustration of a
silica-core, gold-shell nanoshel,
indicating inner (ry) and outer (T3) radii
of the sheil fayers. (b) Depiction of a
four-layer, concentric nanoshell.

(c) Schematic illustration of a metallic
nanorod. {d) Piot of nanoshell
resonance as a function of core and
shell dimensions, overfaid with reported
spectral ranges of nanorod resonances
{red. transverse plasmon; purpie,
longitudinal pfasmon), and reported
nanoshell and concentric nanoshell
combined spectral range of plasmon
response.
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Figure 2. Plasmon hybridization and the sphere—cawvity mode! for nanosheilis: the interaction
between a sphere (resonance frequency. wy) and a cavity plasmon (resonance frequency;
;) is tuned by varying the thickness of the shell layer of the nanoparticle. Two hybrid
plasmon resonances, the w_ “bright " or “bonding,” plasmaon and the w, “dark,” or
“anti-bonding,” plasmon resonances are formed. The lower-energy plasmon couples most

strongly to the optical field.
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Figure 5. (a) Piasmon hybridization picture applied to surface plasmon resonance sensing with nanoshells: the low-energy “bonding” plasmon, w_ | is
sensitized to changes in its dielectric environment. The blue background schematically denotes the embedding medium for the nanoparticie.

(h) Experimental curves showing plasmon resonance shifts for nanosheli-coated films in various media; (i) carbon disulfide, (i) toluene,

(i} hexane, (iv) ethanol, (v) H,O, and (vi) air. The index of refraction for each embedding medium is noted on the far right of the spectra. Spectra
are offset for ¢larity. (¢) Scanning electron micrograph of nanoshells deposited anto a poly(viny! pyridine) functionalized glass surface, as used
to acquire data in (D). Inset. individual nanoshell.




Preparation of Fe;O,@Ag/Au

1. To the magnetic nanoparticle suspension obtained from commercial company,
add 50 ml of a solution of Au (lll) salt or Ag (I) salt at concentration of 0.01-1%
mmol/L , shaking for 30 minutes, allowing Au (l11) or Ag (1) ion to absorb on the
surface of magnetic nanoparticle sufficiently,

2. Then adding 15-40 ml of reducing agent, such as hydroxylamine hydrochloride
at concentration of 40 mmol/L, reacting for 5—40 minutes.

3. Further adding 1-10 ml of a solution of Au (lll) salt or Ag (I) salt at concentration
of 0.01-1%, shaking for 10 minutes, coating a reduced layer of gold or silver on
the surface of the magnetic nanoparticle, forming super-paramagnetic
composite particles having core/shell structure, separating magnetically,
washing repeatedly with distilled water.




Synthesis of Quantum Dots
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Figure 2. Two-step synthesis of core/shell nanocrystals.
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Scheme 1. Electronic energy levels of selected llI-V and [I-VI semi-
conductors using the valence-band offsets from Reference [12] (VB:
valence band, CB: conduction band).
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Figure 1. Schematic representation of the energy-level alignment in

different core/shell systems realized with semiconductor NCs to date.
The upper and lower edges of the rectangles correspond to the pos-
itions of the conduction- and valence-band edge of the core (center) and

shell materials, respectively.




Template Synthesis
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Porous Materials

AAO
MCM-41

Mobil Crystalline Materials, or MCM-41

Santa Barbara Amorphous type material, or SBA-15

Micro: < 2nm
Meso:
Macro: > 50nm
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FIGURE 3. Schematic representation of the use of anionic orga-
noalkoxysilanes for controlling the functionalization of the MSN
materials. The MCM-41-type mesoporous channels are illustrated
by the parallel stripes shown in the transmission electron microscopy
(TEM) micrograph of the MSN-SH material. Reproduced with
permission from ref 15. Copyright 2005, Royal Society of Chemistry.
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Figure 1. A. Schematic representation of a MSN loaded with drugs and capped with hard caps and soft caps highlighted in this
review. Transmission electron microscopy images of (B) a MSN along the axis of the mesopores, (C) capped with hard (Au NP)
and (D) with soft (polymer) caps.
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Figure 5. Schematic representation of the glucose-responsive MSN-based double delivery system for controlled release of
bicactive G-Ins and cyclic AMP. The controlled release mechanism was achieved by mears of the displacement reaction
between blood glucose and G-Ins based on reversible boronic acid-diol complexation. High glucose concentration triggers the
G-Ins uncapping and the release of oyclic AMP sequentially to diminish the higher than normal level of blood glucose.
Repecdursd with permission from [149).
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Block copolymer
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Phase Segregation




Self-Assembled Block-copolymer
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Fig. 1. Schematic of a CVD reactor for carbon nanotube growth. (Sketch by 5. Yarmolenko from

NCA&T State Umiversity)




Surface Functionalization

« Recognition e Surfaces
— Molecular Recognition — Gold and silver
* Protein — Silicon oxide (glass)

« DNA — Quantum dots
« Saccharide — Polymer

* Reporting/Detection
— Dye
— Quantum dots
— SPR
— SERS/LSPR

e Separation
— Gel/Chromatography
— Magnetic




Molecular Recognition
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Carboxyl Presenting Surfaces

Carbosw lale
malecule

Saablc
amide bond

@'+

NH
l_.-'
9
.".-l--
~ o
Hiy0
- 2

Lepeneraled
carboxyl group

BH" -
j T ::
I Unstable reactive o ]
f ey liSOurea esier S o D'?E 0 @ A &
I o h, ol L . ot - N i
) I e T = : : ?13'
¥ '] 1
C BN ".':I;.S_-D | ,:-:,fH'h:;} = Q/\t
! 1§
T 0 ) Q’/\ {
N g 0
|-||'_|"'H Comi-swble Stable
o AMinNE-reacive amide bond
Sulfo-MHS MNHS-ker
o O
o i
* er u.-. ) 5 — ¥
e N - - HH./_ HH l".._ u "a
P :_-‘."-c /}_/
]
EDC HO — N
M.W. 191.70 ::r—
¥
0

EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide Hydrochloride)

Sulfo-NHS
M.W. 217.13




Amine Presenting Surface

Q NHS-AcAc

NH CH -CH, -0
I
0= Sl

dry DMSO
pyridine

0
Ch=?m,JLH

NH-CH,-CH, -0
|
0=Si




Scheme 1. Modular Design of Hydrophilic Ligands with Terminal
Functional Groups Used in This Study

Hydrophilic Functional group
Anchor segment " OH

<
- COOH
- Biotin

\".ilr ‘_’r!

SH SH
Bidentate thiol group

J. AM. CHEM. SOC. 2007, 729, 13987—13996 = 13987 )




Sulfhydryl Labeling
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Silica Modification
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Fig. 1. (A) Emission maxima and sizes of quantum dots of different composition. Quantum dots can be
synthesized from various types of semiconductor materials (II-VI: CdS, CdSe, CdTe...; lll-V: InP, InAs...; IV-VI:
PbSe...) characterized by different bulk band gap energies. The curves represent experimental data from the
literature on the dependence of peak emission wavelength on qdot diameter. The range of emission wavelength
is 400 to 1350 nm, with size varying from 2 to 9.5 nm (organic passivation/solubilization layer not included).
All spectra are typically around 30 to 50 nm (full width at half maximum). Inset: Representative emission
spectra for some materials. Data are from (72, 18, 27, 76-82). Data for CdHgTe/ZnS have been extrapolated to
the maximum emission wavelength obtained in our group. (B) Absorption (upper curves) and emission (lower curves)
spectra of four CdSe/ZnS qdot samples. The blue vertical line indicates the 488-nm line of an argon-ion laser, which
can be used to efficiently exdte all four types of qdots simultaneously. [Adapted from (28)] (C) Size comparison of
gdots and comparable objects. FITC, fluorescein isothiocyanate; GFP, green fluorescent protein; qdot, green (4 nm, top)
and red (6.5 nm, bottom) CdSe/ZnS qdot; grod, rod-shaped qdot (size from Quantum Dot Corp.'s Web site). Three
proteins—streptavidin (SAV), maltose binding protein (MBP), and immunoglobulin G (lgC)—have been used for
further functionalization of gdots (see text) and add to the final size of the gdot, in conjunction with the solubilization

chemistry (Fig 2). SCIENCE VOL 307 28 JANUARY 2005
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FIGURE 3 Maleimide functionalized QDs for conjugating thiol-containing ligands. TOPO stabi-
lized QDs are coated with a primary amine functionalized tri-block amphiphilic copolymer for pro-
ducing water-soluble QDs, which facilitate further conjugation to ligands with free thiols through
bi-functional cross-linkers.




Nanomaterials for Biodiagnostic

* Nucleic Acid
— Genetic information for identification
— Diseases, bacterium, virus, pathogen
— PCR with molecular fluorophore, State of the Art
— Expansive, Non-portable, Non-multiplexing

e Proteins

— Cancers and diseases, unusual high concentration of
marker

— ELISA (~pM) with molecular fluorophore
— No PCR version

&




ELISA (Enzyme-Linked Immunosorbent Assay)

IS a biochemical technique used mainly in immunology to detect the
presence of an antibody or an antigen in a sample. It utilizes two antibodies,
one of which is specific to the antigen and the other of which is coupled to an
enzyme. This second antibody gives the assay its "enzyme-linked" name,
and will cause a chromogenic or fluorogenic substrate to produce a signal.

HRP @ )
i
Secondary . Substrate

Antibod
Add nuclear Add primary Add anti-gG Add detection : d ' -
extract antibody _ HRP conjugate selutions ey .
Ly "‘,
.-'/\ -'/ B e e "‘-‘ #
- \ ¥ . — Detection
| il | - Antibod
e | 8
'» - 1 e 4 -
/—\ - -
“:'
-:-l ill - - Capture
L - /' Antibody
oy "
= Capture Peptide x|
coated plate Capture Assay

“Landwich” %




Why Nanomaterials?

 Molecular fluorophores
— Limited spectral response
— photostabllity

 Nanomaterials
— Small size (1-100 nm)
— Chemically tailorable physical properties
— Unusual target binding properties
— Structure robustness




Nanomaterial Detection

Optical

Electrical and electrochemical
Magnetic

Nanowire and Nanotubes
Nanofabrication




Colorimetric Detection of DNA

A 1.§£J¢: r\"ﬂff ‘ﬂé’iﬁ 'H?éﬂd

k gi; 1??3% T<Tm “r{jg?? -

2?
éﬁh@w T Tm é;ﬁ ngﬂ

B E — nanoparticle-modified DNA
c | — unmodified DNA
[ ]
-'E ? 2 | sgc| o
3
5 585°C| ©
£
R ——— o
a
without with < = — . , €0 °C
DNA target DNA target a0 40 50 &0 70

Temperature (°C)

Figure 2. In the presence of complementary target DNA,
oligonucleotide-functionalized gold nanoparticles will ag-
oregate (A), resulting in a change of solution color from
red to blue (B). The aggregation process can be monitored
using UV—vis spectroscopy or simply by spotting the
solution on a silica support (C). (Reprinted with permission
from Science (http:/www.aaas.org), ref 29. Copyright 1997
American Association for the Advancement of Science.)




A DNA-based method for
rationally assembling
nanoparticles into
macroscopic materials

Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic
& James J. Storhoff

Au nanoparticles
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FiG. 2 Cuvettes with the Au colloids and the four DNA strands responsible
for the assembly process. Left cuvette, at 80 °C with DNA-modified colloids
in the unhybridized state; centre, after cooling to room temperature but
before the precipitate settles; and right, after the polymeric precipitate
settles to the bottom of the cuvette. Heating either of these cool solutions
results in the reformation of the DNA-modified colloids in the unhybridized
state (shown in the left cuvette).
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Fig. 1. Schematic representation of tha concept
for generating aggregates signaling hybridization
of nanoparticle-oligonuclectide conjugates with
oligonuclectide target molecules. The nanopar-
ticles and the oligonuclectide interconnacts are
not drawn to scale, and the number of oligomers
per particle is believed to be much larger than
depicted.

Selective Colorimetric Detection of
Polynucleotides Based on the Distance-Dependent
Optical Properties of Gold Nanoparticles

Robert Elghanian, James J. Storhoff, Robert C. Mucic,
Robert L. Letsinger,*

Chad A. Mirkin*
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Fig. 2. Mercaptoalkyloligonuclectide-modified
13-nm Au particles and polynuclectide targets
used far examining the selectivity of the nanopar-
ticle-based colarimetric polynuclectide detection
system. (A) Complementary target; (B) probes
without the target; (C) a half-complementary tar-
get; (D) a 6-bp deletion; (E} a 1-bp mismatch; and
(F) a 2-bp mismatch. For the sake of clarity, only
two particles are shown; in reality a polymeric ag-
gregate with many particles is formad. Dashed
lines reprasent flaxible spacer portions of the mer-
captoalkyloligonuclectide strands bound o the
nancparticles; note that these spacers, because
of thelr noncomplementary nature, do not partic-
ipate in hybridization. The full sequences for the
two probes, 1 and 2, which bind to targets 3
through 7, are

1-5'8H-(CHgle- [CTA—ATC—CGC-ACA—G]
[CO-TAT-CGA- CCA TGC-T]
probe

2-5'SH-(CH,)-[ATG-GGAACT-ATA-C]
[GC-GCT-AGA-GTC-GTT-T]

probe




Fig. 3. (A) Comparison of A . s5.0°C [B
the thermal dissociation et
curves for complexes of
mercaptoalkylcligonucleo-
tide-modified Au nanopar-
ticles (black circles) and
mercaptoalkyloligonucleo-
tides without Au nanopar-
ticles (red squares) with the
complementary target, 3, in
hybridization buffer (0.1 M
NaCl, 10 mM phosphate
buffer, pH 7.0). For the first
set (black circles), a mixture
of 150 pl of each colloid T T J ’ T "

conjugate and 3 pl of the 1020 30 40 50 60 70

target oligonuclectide in hy- Temperature (*C)

bridization buffer (0.1 M

NaCl, 10 mM phosphate, pH 7.0) was frozen at the temperature of dry ice, kept for 5 min, thawed over
a period of 15 min, and diluted to 1.0 ml with buffer (final target concentration, 0.02 pM). The
absorbance was measured at 1-min intervals with a temperature increase of 1°C per minute.
The increase in absorption at 260 nm {4z, was ~0.3 absorption units (ALU). In the absence of the
oligonucleotide targets, the absorbance of the nanoparticles did not increase with increasing
temperature. For the second set, the mercaptoakyloligonucleotides and complementary targst
(each 0.33 pM) were equilbrated at room temperature in 1 ml of buffer, and the changes in
absorbance with temperature were monitored as before. The increase in Aye was 0.08 Al (Insets)
Derivative curves for each set (75). (B) Spot test showing T, (thermal transition associated with the
color change) for the Au nanoparticle probes hybridized with complementary target. A solution
prepared from 150 pl of each probe and 3 pl of the target (0.06 M final target concentration) was
frozen for 5 min, allowed to thaw for 10 min, transferred to a 1-ml cuvette, and warmead at 58°C for
5 min in the themally regulated cuvette chamber of the spectrophotometer. Samples (3 pl) were
transferred to a C, 5 reverse phase plate with an Eppendarf pipette as the temperature of the solution
was increased incrementally 0.5%C at 5-min intervals.
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Fig. 4. Selective polynuclectide detection for the
target probes shown in Fig. 2: (A) complementary
target; (B) no target; (C) complementary to one
probe; (D) a 6-bp deletion; (E) a 1-bp mismatch;
and (F) a 2-bp mismatch. Nanoparticle aggregates
were prepared in a 600-ul thin-walled Eppendorf
tube by addition of 1 plofa 6.6 wM cligonuclectide
target to a mixture containing 50 wl of each probe
(0.06 pM final target concentration). The mixture
wias frozen (5 min) in a bath of dry ice and isopropyl
alcohol and allowed to warm to room temperature.
Samples were then transferred to a temperature-
controlled water bath, and 3-pl aliquots were re-
moved at the indicated temperatures and spotted
ona C,, reverse phase plate.
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Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive
Detection of DNA Hybridization

Lin He, Michael D. Musick, Sheila R. Nicewarner, Frank G. Salinas, Stephen J. Benkovic,
Michael J. Natan, and Christine D. Keating*

Scheme 1. SPR Surface Assembly
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Figure 1. 5PR curves of surfaces prepared in sequential steps as
illustrated in Scheme 1: a MHA-coated Au film modified with a 12-
Qe o mer oligonucleotide S1(A), after hybridization with its complementary
/| / . .
/ / 24-mer target 52 (B), and followed by introduction of S3:Au conjugate
f,—“ / (C) to the surface. Inset: surface plasmon reflectance changes at 53.2°
for the oligonucleotide-coated Au film measured during a 60-min
/ ——— /| exposure to S3:Au conjugates.
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ds DNA Figure 5. Plot of normalized mntensity of SPR reflectance as a function

— of logarithmic concentration of the analyvte 24-mer olige (S52). Each
spot represents one data pomt at the corresponding concentration. CCD
parameters: exposure tume = 0.3 5, 16 bit resolution, spot size = 4.5
mm i diameter. Inset: a 2-D SPR image of a Au surface derivatized
with 20 4L of butfer blank, 1 pM. 0.1 nM, and 10 nM 52 oligos (from

left to night. respectively).




Self-Assembled Nanoparticle Probes for Recognition and
Detection of Biomolecules

Dustin J. Maxwell, Jason R. Taylor, and Shuming Nie*T
9606 = J. AM. CHEM. SOC. 2002, 724, 9606—9612

& .T Hdsorpllon k
(o=@
s. T Te
Target DA
Ch ,LLLUMMLUJMJ\" J

Target DNA

k) -
“ Tyrmmmmm\fh—b I
"'\‘
=T T, s |

Figure 1. Manoparticle-based probes and their operating principles. Two
oligonucleotide molecules (oligos) are shown to self-assemble into a
constrained conformation on each gold particle (2.5 nm diameter). A Tg
spacer (six thymines) is inserted at both the 3~ and 5"-ends to reduce steric
hindrance. Single-stranded DN A 1s represented by a single line and double-
stranded DINA by a cross-linked double line. In the assembled (closed) state,
the fluorophore 15 quenched by the nanoparticle. Upon target binding, the
constrained conformation opens, the fluorophore leaves the surface because
of the structural nigidity of the hybnidized DNA (double-stranded), and

fluorescence is restored. In the open state, the fluorophore is separated from

the particle surface by about 10 nm. See text for detailed explanation. Au,

gold particle; T, fluorophore; 5, sulfur atom.
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Figure 5. Fluorescence responses and the lack of sequence recognition
abilities observed for nonthiolated nanoparticle probes. (A) Fluorescence
spectra of nonthiolated probes generated by a complementary target (red
curve), a noncomplementary target (green curve), and no target (black
curve). These probes are considered nonfunctional because they do not
recognize specific DNA sequences. (B) Fluorescence signals obtained from
the supernatant solution when the probes were treated with a complementary
target {red curve) or a nencomplementary target {green curve). The result
revealed that the oligos were released into solution by nonspecific adsorption
of the target on the particle surface. With a thiol group, this release was
not observed (litfle or no signal in solution, black curve in B). The
nonfunctional probes were prepared in the same way as the functional
probes, except that the 3™-end thiol group was deleted. The intensity
differences for the red and green curves were within experimental errors
and had ne particular significance.
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Figure 6. Schematic illustration of possible configurations for (a) nonthi-
olated and (b) thiolated olizonucleotides adsorbed on colloidal gold
nanocrystals. Detailed discussion in text




Silver Amplification

1
Target DNA A
1. an ~
<<ﬁ<f—" <o édydgf PYe
SN, 1S SYSGOS




Scanometric DNA Array
Detection with Nanoparticle
Probes

SCIENCE  VOL 289 8 SEPTEMBER 2000 T. Andrew Taton,'-2 Chad A. Mirkin,"2* Robert L. Letsinger'*

5 GGA TTA TTG TTA—-AAT ATT GAT AAG GAT 3’
CCT AXT AACAAT TTATAACTA TTC CTA 91
X = A (complementary),
G,C,T (mismatched)

1. NS\, (target DNA)
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hydroquinones
(pH 3.8)

50 fM => 0.2 fM =

quinone




Fig. 1. Images of 7 mm by 13 mm, oligonucle- —_ —_
otide-functionalized, float glass slides, obtained

with a flatbed scanner. (A) Slide before hybrid-
ization of target and nanoparticle probe. (B) A
slide identical to (A) after hybridization with
oligonucleotide target (10 nM) and then nano- A B
particle probes (5 nM in particles). The pink (10 nm)
color derives from the Au nanoparticle probes. -

(€) A slide identical to (B) after exposure to P T
silver amplification solution for 5 min. (D) slide

before hybridization of target and nanoparticle

probe. (E) A slide identical to (D) after hybrid- — -

ization with target (100 pM) and then nanopar- D E F

ticle probe (5 nM). The extinction of the sub- (100 pM)  {contral)
monolayer of nanoparticles is too low to be
observed visually or with a flatbed scanner. (F)
A slide identical to (E) after exposure to silver
amplification solution for 5 min. Slide (F) is
lighter than slide (C), indicating a lower con-
centration of target. (G) A control slide exposed
to 5 nM nanoparticle probe and then exposed
to silver amplification solution for 5 min. No
darkening of the slide is observed. (H) Graph of
8-bit gray scale values as a function of target o v
concentration. The gray scale values were taken s0 {" *- ¥
from flatbed scanner images of oligenudleo- = e
tide-functionalized glass surfaces that had been L 152 : o
exposed to varying concentrations of oligonu- Concentration (M)

cleotide target, labeled with 5 nM oligenucleo-

tide probe and immersed in silver amplification solution. For any given amplification time, the
grayscale range is limited by surface saturation at high grayscale values and the sensitivity of the
scanner at low values. Therefore, the dynamic range of this system can be adjusted by means of
hybridization and amplification conditions (that is, lower target concentrations require longer
amplification periods). Squares: 18-base capture-target overlap (5), 8 PBS hybridization buffer
[1.2 M Nacl and 10 mM NaHzPO,/Na;HPO, buffer (pH 7)], 15 min amplification time. Circles:
12-base capture-target overlap, 8 PBS hybridization buffer, 10 min amplification time. Triangles:
12-base capture-target overlap, 2 PBS hybridization buffer [0.3 M NaCl, 10 mM NaH PO,/
Na,HPO, buffer (pH 7)], 5 min amplification time. The lowest target concentration that can be
effectively distinguished from the background baseline is 50 fM.
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Fig. 3. (Left) Nano- Scanometric Fluorescence

particle-labeled arrays it A
developed at differ- A G TC X A G TGC

ent stringency tem-
peratures. Model oli- 40 °C ® & & 0 e @O ) 15 °C
onucleotide arrays
with the capture se-
quences shown in . E
Scheme 1) were 45 °C L & 25°C

treated with oligonu-

cleotide target and

nanoparticle probes, ° o
buffer wash at the
temperatures shown
and subsequent silver 55 °C 45 °C
amplification  (73).
Images were obtained
with an Epson Expression 636 (600 dots per inch) flatbed scanner (Epson America, Long Beach,
California). The darkened border indicates the array that showed optimum selectivity for the perfectly
complementary target; at this temperature, the ratio of background-subtracted, 8-bit gray scale values
for elements A:G:T:C, obtained from histogram averages in Adobe Photoshop (Adobe Systems, San Jose,
California), is 96:2:7:6. (Right) Fluorophore-labeled arrays washed at different stringency temperatures.
Model oligonucleotide arrays identical to those shown at left were treated with oligonucleotide target
and Cy3-abeled oligonucleotide probes, followed by a 2-min buffer wash at the temperatures shown.
Images were obtained with a ScanArray Confocal Microarray Scanner (GSI Lumonics, Billerica, Massa-
chusetts). The darkened border indicates the array that showed the highest selectivity for the perfectly
complementary target, as calculated by the QuantArray Analysis software package (GSI Lumonics); at
this temperature, the intensity ratio (in percent, with the intensity of the X = A element at 15°C set
to 100%) for elements A:G:T:C is 18:7:1: 1.




Nanoparticles with Raman
Spectroscopic Fingerprints for
DNA and RNA Detection

YunWei Charles Cao, Rongchao Jin, Chad A. Mirkin*
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Fig. 1. Flatbed scanner images of microarrays hybridized with nanoparticles (A) before and (B) after
Ag enhancing. (C) A typical Raman spectrum acquired from one of the Ag spots. (D) A profile of
Raman intensity at 1192 cn™" as a function of position on the chip; the laser beam from the
Raman instrument is moved over the chip from left to right as defined by the line in (B).
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Figure 5. If Raman dyes (blue spheres) are attached to the labeling probe in the scanometric assay, the targets can be
encoded and detected via the Raman signal of their labels. (Reprinted with permission from Seience (http:/www.aaas.org),
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HVA  5-TTAGAG TTG CAT GGA —TTAACT CCT CTT TCT -3’
()-5--Cy3-AAT CTC AAC GTACCT  AAT TGA GGA GAA AGA _5'\’1

HVEB 5.TTG GCT TTC AGT TAT —ATG GAT GAT GTG GBTA -3'
(@-5-TMR-AAC CGAAAG TCAATA | TAC CTACTA CAG CAT -S|

HIV 5. AGAAGATAT TTG GAATAA —CAT GAC CTG GAT GCA -3’
() s-TR-TCTTCTATAAAC CTTATT ~ GTACTG GAC CTACGT --S\rl

EV
5'- GGA GTAAAT GTT GGA --GAA CAG TAT CAA CAA -3'
(@ -5-Cy3.5-CCT CAT TTACAACCT  CTT GTCATAGTT GTT "S\PI

W 5-AGT TGT AAC GGAAGA —TGC AAT AGT AAT CAG -3'
c-S-- RA-TCAACATTG CCTTCT  ACG TTATCATTIAGTC "SV-I

BA  5.GAG GGATTATTG TTA —-AAT ATT GTAAAG GAT -3'
C—S——CyE—CTC CCT AATAAC AAT  TTATAACAT TTC CTA — s\rl

ref 68. Copyright 2002 American Association for the Advancement of Science.)
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Fig. 3. (A) Flatbed scanner
images of Ag-enhanced
microarrays and (B) cor-
responding Raman spec-
tra. The colored boxes
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coded Raman spectra in
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observed.




Bio-Bar-Code-Based DNA Detection with PCR-like Sensitivity
Jwa-Min Nam, Savka |. Stoeva, and Chad A. Mirkin®

J. AM. CHEM. SOC. 2004, 7265, 59325933
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Figure 1. The DNA-BCA assav. (A) Nanoparticle and magnetic micro-

particle probe preparation. (B) Nanoparticle-based PCR-less DNA ampli-
fication scheme.
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Figure 2. Amplified anthrax bar-code DINA detection with the Verigene
ID system. (A) Anthrax bar-code DNA detection with 30 nm NP probes.
(B) Quantitative data of spot intensities with 30 nm NP probes {Adobe
Photoshop, Adobe Svystems, Inc., San Jose, CA). The horizontal line

represents control signal mtensity (47 £ 2).
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Nanoparticle-Based Bi

o—Bar

Codes for the Ultrasensitive
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Fig. 1. The bio—bar-code assay method. (A) Probe design
and preparation. (B) PSA detection and bar-code DNA
amplification and identification. In a typical PSA-detection
experiment, an aqueous dispersion of MMP probes functionalized with
mAbs to PSA (50 pl of 3 mg/ml magnetic probe solution) was mixed
with an aqueous solution of free PSA (10 pl of PSA) and stirred at
37°C for 30 min (Step 1). A 1.5-ml tube containing the assay solution
was placed in a BioMag microcentrifuge tube separator (Polysciences,
Incorporated, Warrington, PA) at room temperature. After 15 s, the
MMP-PSA hybrids were concentrated on the wall of the tube. The
supernatant (solution of unbound PSA molecules) was removed, and
the MMPs were resuspended in 50 pl of 0.1 M phosphate-buffered
saline (PBS) (repeated twice). The NP probes (for 13-nm NP probes,
50 pl at 1 nM; for 30-nm NP probes, 50 pl at 200 pM), functionalized
with polyclonal Abs to PSA and hybridized bar-code DMNA strands,
were then added to the assay solution. The NPs reacted with the PSA
immobilized on the MMPs and provided DMA strands for signal
amplification and protein identification (Step 2). This solution was
vigorously stirred at 37°C for 30 min. The MMPs were then washed
with 0.1 M PBS with the magnetic separator to isolate the mag-

Magnetic Particle Stap 4.

30 nm NP Probes

PCR-less Detection >
of Bar-Code DNA from

Zﬁﬁﬂ*
(-

_h
Magnetic
Flald

netic particles. This step was repeated four times, each time for 1 min,
to remove everything but the MMPs (along with the PSA-bound NP
probes). After the final wash step, the MMP probes were resuspended
in NANOpure water (50 pl) for 2 min to dehybridize bar-code DNA
strands from the nanoparticle probe surface. Dehybridized bar-code
DMA was then easily separated and collected from the probes with
the use of the magnetic separator (Step 3). For bar-code DNA
amplification (Step 4), isolated bar-code DNA was added to a PCR
reaction mixture (20-pl final volume) containing the appropriate
primers, and the solution was then thermally cycled (20). The bar-
code DNA amplicon was stained with ethidium bromide and mixed
with gel-loading dye (20). Gel electrophoresis or scanometric DNA
detection (24) was then performed to determine whether amplifica-
tion had taken place. Primer amplification was ruled out with appro-
priate control experiments (20). Notice that the number of bound NP
probes for each PSA is unknown and will depend upaon target protein
concentration.
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Fig. 2. Scanometric de-
tection of PSA-spedific
bar-code DMNA. PSA con-
centration (sample vol-
ume of 10 pl) was var-
ied from 300 fM to 3 aM
and a negative control
sample where no PSA
was added (control) is
shown. For all seven
samples, 2 pl of antidi-
nitrophenyl (10 pM) and
2 pl of p-galactosidase
(10 pM) were added as
background  proteins.
Also shown is PCR-less
detection of PSA (30 aM
and control) with 30 nm
NP probes (inset). Chips
were imaged with the
Werigene D system (20).




Table 1. Detection Limits of Nuecleic Acid Assays®

88 PCR genomic
assay DNA products DNA

nanostructure-based colorimetric®? (cross-linked Au nanoparticles) ~10 nM
methods colorimetric®® (non-cross-linked Au nanoparticles) 60 nM
magnetic relaxation®” (iron oxide nanoparticles) 20 pM
electrochemical® (nanoparticles) 270 pM

scanometricd®E887 (Ay nanoparticles with Ag amplification) 50 fM 100 aM? 200 fM
Raman spectroscopy®™ (Au nanoparticles with Ag amplification) ~1 fM
electrical®® (Au nanoparticles with Ag amplification) 500 M
electrical® (S1 nanowire) 10 fM
electricall®® (carbon nanotube) 54 aM

rezonant light-scattering® - (metal nanoparticles) 170 fM? 33 fM
fluorescence® (ZnS and CdSe quantum dots) 2 nM
surface plasmon resonance*! (Au nanoparticles) 10 pM
quartz crystal microbalance® (Au nanoparticles) ~1 fM
laser diffraction*? (Au nanoparticles) ~50 M
fluorescence*® (fluorescent nanoparticles) ~1 fM
bio-bar-code amplification’ (Au nanoparticles with Ag amplification) 500 zM

other non-enzymatic fluorescence® (molecular fluorophores) ~G00 M?
based methods fluorescence (dendrimer amplification)!* 2.5 ug

electrochemical amplification!?® (electroactive reporter molecules) 100 aM

@ Detection limits can vary based on target length and sequence; therefore, it is difficult to compare assays without testing
them uzing identical targets and conditions. ®* Values taken from ref 34.




Table 2. Detection Limits of Protein Assays

protein protein
assay target in saline in serum
nanostructure-based optical™ (Au nanoshells) rabbit IgG 0.88 ng/mL 0.88 ng/mL
methods (~4.4 pM)e (~d.4 pM)
optical™ (Au nanoparticles) IgE and IgG1 ~20 nM
magnetic relaxation® (iron oxide adenovirus (ADV) and 100 ADV/ 50 HSV/
nanoparticles) herpes simplex virus 100u4L 100 uLL
(HSV)
scanometric’® (Au nanoparticles with  mouse IgG 200 pM
Ag amplification)
Raman® (Au nanoparticles with prostate-specific antigen 30 M
Raman labels)
surface plasmon resonance®® gtreptavidin(S A) and ~1 pM SA and
(triangular Ag particles on surfaces)  anti-biotin (AB) ~T700 pM AB
electrical? (single-walled carbon 10E3 antibody to UlA RNA ~1 nM
nanotubes) splicing factor
electrical®® (S1 nanowires) streptavidin 10 pM
bio-bar-code amplification™ prostate-specific antigen 30 aM (3 aM)®* (30 aM)pP
(Au nanoparticles with
Ag amplification)
molecular fluorophore enzyme-linked immunosorbent various pM range pM range
methods assay
electrochemical methods electrochemical amplification 37 I=G 13 ™M
(oligonucleotide reporter molecules)
enzyme-bazed amplification immuno-PCR™® bovine serum albumin 2 M
methods rolling circle amplification™ prostate-specific antigen 3 M

¢ Reported in ng/mlL; authors converted to molar concentration for ease of comparison. ® These values are the lower limits
when PCR is used to amplify the bar-code DNA prior to scanometric detection of bar codes.
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AC Dielectric Response

2
) Plasma frequency

4
e =1-—L
FEr

(02

polarizability of a small metal sphere with dielectric function (A\)

“R -\,-"Eb—l—.;

o=

c—1
o= R? +
e+ 2
B
. b
E —_— 'E:‘l} —|_ J— - 2 l+ "

RS{ bu., — W )—I—E:wri-?b

[(Eb + 3}}&'.4.3 — L"’p] 4 iw Ir"{g_ R 1 3) .

+3). %




> g, (dielectric)

Surface plasmon
resonance

Energy

'Ei:_;"'f — E.j ‘I‘ 3_1'5--'__,3

Ear — £
Ear + 20

=
r . :
(.
| n
u

Silver

~~ 57

[} ]

e

=

]

=

E Eoxp m

2 ]

5 P =y

2

T

A
10 =

2 4

> 4 6 8 10 %
Energy (eV)




>

Biomolecular Binding in Real
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Probing Single Molecules and Single
Nanoparticles by Surface-Enhanced

Raman Scattering
SCIEMCE + WOL. 275 = 21 FEBEUARY 1997

Shuming Nie* and Steven R. Emory

Fig. 1. Single Ag nanc-
particles imaged with eva-
nescent-wave excitation.
Total internal reflection of
the laser beam at the
glass-liquid interface was
used to reduce the laser
scattering  background.
The instrument setup for
avanescent-wave micros-
copy was adapted from
Funatsuetal (71). Theim-
ages were directly record-
ed on color photographic
film (ASA-1800) with a
30-5 exposure by a Nikon
35-mim camera attached
tothe microscope. (A) Un-
fitered photograph show-
ing scattered laser "ght 200 nm 200 nm
from all particles immaki-
lized on a polylysine-coat-
ed surface. (B) Filtered
photographs taken from a
blank Ag colloid sample
fincubated with 1 mM
NaCl and no REG analyte
mclecules). (C) and (D) Fil-
tered photographs taken
from a Ag colloid sample
incubated with 2 = 10~
M R8GE. These images
were selected to show at
least one Raman scatter-
ing particle. Different ar-
eas of the cover slip were
rapidly screened, and most figlds of view did not contain visible particlas. (E) Filtered photograph taken from
Ag colloid incubated with 2 x 10~1° M RaG. (F) Filtered photograph taken from Ag colloid incubated with 2
» 1072 M R&G. A high-performance bandpass fitter was usad to remove the scattered laser light and to pass
Stokes-shifted Raman signals from 540 to 580 nm (220 to 2200 e~ 7). Continuous-wave excitation at 514.5
nm was provided by an Ar ion laser. The total laser power at the sample was 10 mW. Note the color
differences between the scattered laser light in (A) and the red-shifted light in (C) through (F).

Fig. 2. Tapping-mode AFM images of screened Ag nancparticles. (A) Large area survey image showing
four single nanoparticles. Particles 1 and 2 were highly efficient for Raman enhancement, but particles
Sand 4 (smallerin size)were not. (B) Close-up image of a hot aggregate containing four linearly arranged
particles. (G) Close-up image of a rod-shaped hot particle. (D) Close-up image of a faceted hot particle.




Fig. 3. Surface-en- R
hanced Raman spectra . - ‘ .

of R6G obtained witha |~ " | <0 | R .
lineary polarized confo-
cal laser beam from two E
Ag nanoparticles. The
R6G concentration was
2 = 10" M, corre-
sponding to an average
aof 0.1 analyte molacule
per particle. The direc-
tion of laser polarzation
and the expected parti-
cle orientation are shown
schematically for each
spectrum. Laser wave- -
length, 514.5 nm; laser 5
power, 250 nW; laser fo- f ¥
cal radius, ~250 nm: in- WH'_,J "
tegration time, 30 s. All N
spectra were plotted on B | A — ————————
the same intensity scale 1800 1600 1400 1200 1000 1800 1600 1400 1200 1000
in arbitrary unitz of the Raman shift (em")

CCD detector readout signal.
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Fig. 4. Emission-polarized surface-enhanced Ra-
man signals of ReG cbserved from a single Ag
nanoparticle with a polarzation-scrambled confo-
cal laser beam. A dichroic sheet polarizer was
rotated 90° to select Raman scattering signals
polarized parallel (upper spectrum) or parpendic-
ular (lowver spectrum) to the long molecular axis of
R6G. (Inserts) Structure of REG, the electronic
transition dipole (along the long axis when excited
at 514.5 nm), and the dichroic polarizer orienta-
tions. Cther conditions as in Fg. 3.

troscopic signatures of adsorbed molecules. For single rhodamine 6G molecules ad-
sorbed on the selected nanoparticles, the intrinsic Raman enhancement factors were on
the order of 10" to 107, much larger than the ensemble-averaged values derived from
conventional measurements. This enormous enhancement leads to vibrational Raman

signals that are more intense and more stable than single-molecule flucrescence.




Electromagnetic contributions to single-molecule sensitivity

in surface-enhanced Raman scattering
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FIG. 3. (Color) EM-enhancement factor MFM at a cross section
through six different silver particle configurations. The wavelength
of the incident field 1s A =514 5 nm with vertical polarization The
left-hand column illustrates the EM enhancement for dimer con-
figurations of two spheres (top) and two polygons (bottom) with a
separation of 1 nm. The middle column shows the same situation,
but with a separation distance of 5.5 nm. The right-hand column
shows the case of an isolated single particle. All particles share a
common largest dimension of 90 nm. Note that the color scale from
dark blue to dark red is logarithmic. covering the interval 10°
<M< 108 Regions with enhancement outside this interval are
shown 1 dark blue and dark red, respectively.
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FIG. 3. EM-enhancement factor for a rotationally symmetric
silver droplet as a function of the angle defining the opening edge
. The field 1s polarized parallel to the axis of the droplet and the
evaluation position (star) 1s located 0.5 nm outside the tip. As the
droplet becomes sharper the enhancement increases several orders

of magnmitude.




Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced
Raman Spectroscopy Substrates
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Figure 1. (A) Schematic illustration of the fabnication of sub-10-nm gap
AuNP amays. (B) SEM image of the arrays. (C) SEM mmage of monolayer
of 1solated Au NPs on ITO glass. (D) Vis—NIE extinetion spectrum of the
menclayer of isolated Au NPs and arrays.
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Figure 2. (A) SEES spectra of 3 yuL of pMA with different concentrations
deposited on the NP ammays. The excitation laser wavelength 15 785 nm.
Adsorption 1sotherm of phA on the WP arrays obtained according to (B)
1077 and (C) 390 e~ modes in the SERS spectra. I is the peak intensity
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Profiling the Near Field of a Plasmonic
Nanoparticle with Raman-Based
Molecular Rulers
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Anal. Chem. 2003, 75, 8171-8174

Spectroscopic Tags Using Dye-Embedded

Nanoparticles and Surface-Enhanced Raman
Scattering

(a) (b)
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Figure 4. Chemical structures of four Raman reporters and their
surface-anhanced resonance Raman spectra: (a) 3,3-Diethylthiadi-
carbocyanine jodide (ODTOC) (b) malachite green isothiccyanate
[MGITC); () tetramethylrhodamine-S-isothiocyanate (TRITC); and (&)
rhcdamine-5-(and-G)-isothiocyanate (XRITC).




Anal. Chem. 2006, 78, 8087—8973

Nanoparticle Probes with Surface Enhanced

Raman Spectroscopic Tags for Cellular Cancer

Targeting
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Anal. Chem. 2007, 78, 816—822

Biological Imaging of HEK293 Cells Expressing
PLCy1 Using Surface-Enhanced Raman Microscopy

- N
- Gold Seed
j ? Rhedamine 6G
i - % < >
‘ / ' ’L Eowine Serum Albumin
— S .__,-""_
Sitver Shell
Auihg Core-Shell Manoparticle
~ -
1 ‘ O
OPSS-PEG-NHS - -
NH,——— NH-PEG-55 +
Owernight g::) &
NHS
*\f&%‘a Vg
LTy o g A4
1. Incubationforih [, & 4+ SH-pEG Centrifugation 4 ).
2. Centrifugation . {stabilizer) | . .:"




(T S Marker
vy T T -\?;‘l\} Exprassion
Normal Cell
" ™
'+ *  Nanoprobe
Primary
9 | Antibody e
* ] Amtigen
o A

-

~r S s 7 Primary
o i
i o AL i conjugate
Cancer Ceall
Laser L -
Lig £
-:F_ P"a—l 'E
y 5
Rl e, 2
e T \J LJLA
£n L] . & ILlhux.fll-A'\—-—'\—-——-
& 1546 100

Raman Shilt {em )

Figure 4. Schematic diagram depicting immabilization of Aufsg core—shell nanoprobes on PLCy1-expressing HEK283 cells and their SERS

detection.

Figure 5. Serial fluorescence optical seclions of PLCy1-expressing HEK283 cells using red QDs. The z-axis interval of optical slices is 1.2

g, Cells were incubated for 20 min in red QDs, after which the free Q0= were washed away. These fluorescence images indicate that PLCy 1
markers are only expressed on the surface membranes. Scale bar, 10 um.
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Figure 6. Flucrescence and SERS images of normal HEK293 cells and PLCy1-expressing HEK293 cells. (a) QD-labeled fluorescence images
of normal cells: (left) brightfield image, (right) fluorescence image. (b) SERS images of single normal cell: (left) brightfield image, (right) Raman
mapping image of single normal cell based on the 1650-cm~' R6G peak. The cell area was scanned with an interval of 1 um. Intensities are
scaled to the highest value in each area. (c) Overlay image of brightfield and Raman mapping for single normal cell. Colorful spots indicate the
laser spots across the middle of the cell along the y axis. (d) QD-labeled fluorescence images of cancer cells: (left) brightfield image, (right}
flucrescence image. () SERS images of single cancer cell: (left) brightfield image, (right) Raman mapping image of single cancer cell based
on the 1650-cm~' R6G peak. The cell area was scanned with an interval of 1 pm. Intensities are scaled to the highest value in each area. (f)
Overlay image of brightfield and Raman mapping for single cancer cell. Colorful spots indicate the laser spots across the middle of the cell

along the y axis.
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Mammalian Cell Surface Imaging with Nitrile-Functionalized Nanoprobes:
Biophysical Characterization of Aggregation and Polarization Anisotropy in
SERS Imaging

(a)

k3
Raman ktensity (arh. writs)

Figure 2. (a) SEM mage of a cell. Upper nght inset: magmfication of a
group of aggregated WPs. The scale bar is 200 nm. Lower left inset: the
comesponding Raman intensity mmage of the same cell obtained with a power
density of 107 Wiem®. Laser-nduced damage to the cell iz shown in (b)
p . . the monomer (blue circle in &), (c) the aggregates, and {d) a pair of dimers.
Figure 1. (a) The chemical structure of Faman reporter 1; (b) Faman
spectra of the CN vibration mode extracted from pesitions L II, and IIT of
the cell shown in the optical image (c). Inset of (b) 1z a cellular Eaman
spectrum taken from spot IV of the same cell. (d) Raman mtensity map of
the C=N band of the same cell. and (g} the coresponding SEM image.
Inset in (g) showed the INPs in the lower nght circle. (f) The group of NPs
as shown in the large oval of ().




Molecular imaging of live cells by Raman microscopy
Almar F Palonpon'<, Mikiko Sodeoka*” and Katsumasa Fujita'*

Current Opinion in Chemical Biology 2013, 17:708-715
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A) General click chemistry
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Figure 1. Concept of click-free imaging.
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Alkynyl sugar analogs for the labeling and
visualization of glycoconjugates in cells

biotin/
nuclei streptavidin overlay
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Scheme 1. Modified sugar analogs and probes used in this study.
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Cell-permeable probe for
of sialidases

PDFSA

o «
PDFSA B, -
v e
= = St
R .
DFSA =) \..aill
I
Lysosome
Cytosol Mitochondria
4
=—<_ _J :DFSA-sialidase complex
RQ OR rRo CR ;
&CJR' CO,R N - 0,S|aildase
\\b\/\rrn o i i MN§ 07 ~COR
I ro [ 1R [
PDFSA: R = Me, R' = Ac
DFSA:R=R'=H

Fig. 1. Identification and imaging of sialidase with activity changes using
these activity-based sialidase probes.
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Figure 1. Fabrication scheme for the construction of multi-element DNA arravs. A clean gold surface 1s reacted with the amine-termmated alkanethiol
MUAM. and subsequently reacted with Fmoc-NHS to create a hydrophobic surface. This surface 1s then exposed to UV radiation through a quartz
mask and rinsed with solvent to remove the MUAM+Fmoc from specific areas of the surface, leaving bare gold pads. These bare gold areas on
the sample surface are filled in with MUAM, resulting in an array of MUAM pads surrounded by a hydrophobic Fmoc background. Solutions of
DMNA are then delivered by pipet onto the specific array locations and are covalently bound to the surface via the bifunctional linker SSMCC. In
the final two steps, the Fmoc-terminal groups on the array background are removed and replaced by PEG groups which prohibit the nonspecific

binding of analyte proteins to the background.
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Figure 2. Surface reaction scheme showing the steps involved m the
reversible modification of the array background. (Step 2) The starting
amine-terminated alkanethiol surface (MUAM) 15 reacted with the
Fmoc-NHS protecting group to form a carbamate linkage thus creating
a hydrophobic Fmoc-terminated surface. (Step 6) After DNA im-
mobilization (see Figure 3), the hydrophobic Fmoc group 1s removed
from the surface with a basic secondary amine, resulting in the refurn
of the oniginal MUAM surface. (Step 7) In the final array fabrication
step, the deprotected MUAM 1s reacted with PEG-NHS to form an
amide bond that covalently attaches PEG to the array surface.
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Figure 3. Surface reaction scheme showing the immebilization of thiol-
termunated DNA to the array surface. In Step 5 of the DNA array
fabrication, the heterobifunctional linker SSMCC 1s used to attach 5'-
thiol modified oligonucleotide sequences to reactive pads of MUANMNL
This linker contamns an NHSS ester functionality (reactive toward
amines) and a maleimide functionality (reactive toward thiols). The
surface 1s first exposed to a solution of the linker, whereby the NHSS
ester end of the molecule reacts with the MUAM surface. Excess linker
15 rinsed away and the array surface 1s then spotted with 53'-thiol-
modified DNA that reacts with the maleinude groups forming a covalent
bond to the surface monolaver.

J. Am. Chem. Soc. 1999, 12], 8044—28051




Glass Surface Modification
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Scheme 2.2 Reagents for derivatization of glass 5 HE-APTS = his{hydroxyethyl)aminopropyltrieth-
surfaces. T APTES = aminopropyitriethoxysiane; cxysilane); 6 4.trimethoxysilylbenzaldehyds:

2 MPTS = 3-mercapiepropyltrimethoxysilane; 7 GETS{HEG = glycidoxypropyltrimethoxysilane-
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Biotin-Streptavidin
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Figura 2.3 Schematic respresentation of a steptavidin sensor surface assembled on a
reactinn-controlled biotinylared SAM [28],
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Protein Array
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BSA Blocking
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Cell Array
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hCG Immunoassay
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Nucleotide Sensor
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