State-of-the-art device fabrication techniques

- ♣ Standard Photo-lithography and e-beam lithography
- Advanced lithography techniques used in semiconductor industry

Lithographic process:

Deposition: Thermal evaporation, e-gun deposition, DC & RF sputtering, Chemical vapor deposition (LPCVD, PECVD, APCVD)

Electrochemical deposition

Patterning techniques:

Standard etching process

Complementary process: lift-off

Substrate treatment process

Mix and Match technology

Moore's Law:

a 30% decrease in the size of printed dimensions every two years

"Reduced cost is one of the big attractions of integrated electronics, and the cost advantage continues to increase as the technology evolves toward the production of larger and larger circuit functions on a single semiconductor substrate."

Transistor dimensions scale to improve performance, reduce power and reduce cost per transistor.

SOURCES OF RADIATION FOR MICROLITHOGRAPHY Light g-line I-line KrF laser ArF laser EUV Bots twavelength (wavelength hyavelength (wavelength (wavelength SOURCE 13.5nm 193nm) type 436nm 365nm) 248nm) NAND Flash memory half-pitch (actual) 1,000 Microprocessor half-pitch (actual) NAND Flash memory half-pitch (estimate) Microprocessor half-pitch (estimate) Exposure wavelength gth (nm) channel length Commercial EUV in 2011 64-Gbit to 256-Gbit 100 Flash memory. microprocessors with 1.6 to 6.4 billion transistors, etc. 30-39nm generation: 64-Gbit NAND Flash, 1.6 billion transistor processors, etc. 20-29nm generation: 128-Gbit NAND Flash, 3,2 billion transistor processors, etc. 10-19nm generation: 256-Gbit NAND Flash, 6.4 billion transistor processors, etc. 10 1980 1985 2005 2010 2015 2020 1990 1995 2000 Volume production start (year)

Diagram by Nikkei Electronics based on materials from Intel, International Technology Roadmap for Semiconductors (ITRS), etc. http://www.newmaker.com/news_41958.html

Minimum feature size is scaling faster than lithography wavelength Advanced photo mask techniques help to bridge the gap

The Ultimates of Optical Lithography

Resolution: $R=k_1 (\lambda/NA)$

 $NA = \sin\theta = \text{numerical aperture}$

K₁ = a constant for a specific lithography process smaller K1 can be achieved by improving the process or resist contrast

Depth of Focus DoF= k_2 (λ/NA^2)

Calculated R and DoF values

UV wavelength	248 nm	193 nm	157 nm	13.4 nm
Typical NA	0.75	0.75	0.75	0.25
Production value of k ₁	0.5	0.5	0.5	0.5
Resolution	0.17 μm	0.13 µm	0.11 μιη	0.027 μm
DoF (assuming $k_2 = 1$)	0.44 µm	0.34 nm	0.28 μm	0.21 μm

P.F. Carcia et al. DuPoint Photomasks, Vacuum and Thin Film (1999)

Optical Proximity Correction

used in 90 nm (193nm) production line

Two types of phase shift mask

Ref: P.F. Carcia et al. DuPoint Photomasks, Vacuum and Thin Film (1999)

Immersion lithography

- ✓a photolithography resolution enhancement technique
- ✓a liquid medium fills the gap between the final lens and the wafer surface
- ✓ the liquid medium has a refractive index greater than one.
- ✓ The resolution is increased by a factor equal to the refractive index of the liquid.
- ✓ Current immersion lithography tools use highly purified water for this liquid, achieving feature sizes below 45 nanometers
- ✓ Currently, the most promising high-index lens material is lutetium aluminum garnet, with a refractive index of 2.14.
- **✓** High-index immersion fluids are approaching refractive index values of 1.7.
- ✓ These new developments allow the optical resolution to approach ~30 nm.
- **★ Double patterning** has received interest recently since it can potentially increase the half-pitch resolution by a factor of 2.
- **★** This could allow the use of immersion lithography tools beyond the 32 nm node, potentially to the 16 nm node.

Double patterning

For the semiconductor industry, double patterning is the only lithography technique to be used for the 32 nm and 22 nm halfpitch nodes in 2008-2009 and 2011–2012, respectively, using tools already available today.

Single Exposure

Dual-tone photoresist

The lowest and highest doses of a single exposure result in insolubility, while the intermediate doses allow the photoresist to be removed by developer.

Dual-Tone Development

Two develop steps remove highest and lowest exposure dose regions of the photoresist, leaving the intermediate dose edges.

Double Patterning

Double exposure:

photoresist coating; first exposure; second exposure; development

Self-aligned spacer:

first pattern; deposition; spacer formation by etching; first pattern removal; etching with spacer mask; final pattern

Double Expose, Double Etch (lines):

mask removal

Photoresist coating over first pattern; photoresist features between previous features; etching;

Double Expose, Double Etch (trenches):Photoresist coating over first pattern;

etching adjacent to previous features; mask removal

State-of-the-art 193 nm tool with a numerical aperture of 1.35 can extend its resolution to 18 nm half-pitch with double patterning.

Due to this ability to use coarse patterns to define finer patterns, it offers an immediate opportunity to achieve resolution below 30 nm without the need to address the technical challenges of expensive next-generation lithography technologies such as EUV.

Even electron beam lithography may eventually require double patterning (due to secondary electron scattering) to achieve comparable half-pitch resolution, for instance, in the fabrication of 15 nm half-pitch X-ray zone plates.

EUV exposure tool

- Uses very short 13.4 nm light
- 13.4 nm radiation absorbed by all materials
- Requires reflective optics coated with quarter-wave Bragg reflectors
- Uses reflective reticles with patterned absorbers
- Vacuum operation
- Unique source for EUV light

Intel Corporation & EUV LLC Charles (Chuck) W. Gwyn

Cahners MDR Microprocessor Forum 2000

Electron Beam Lithography:

楊富量 (NDL), Outlook for 15nm CMOS Manufacture

Projection EBL Systems (SCALPEL):

scattering with angular limitation in projection electron beam lithography

Multibeam direct-write electron beam lithography system

Single source with correction lens array

AX ~50 wafers/hr Electron source Collimator lens CLA Aperture Deflector Lens 1 Principal -Plane Lens 2 Image of Electron source Correction lens Correction lens Correction lens

M. Muraki et al. J. Vac. Sci. Technol. B 18(6), 3061, 2000 *Canon Inc.*,

Multi-source with single electron optical column

E. Yin et al. J. Vac. Sci. Technol. B 18(6), 3126, 2000 *Ion Diagnostics Incorporated*

Parallel E-Beam Lithography

MAPPER (the manufacturer)

More than 10,000 parallel electron beams.

Fibre-optics is capable of transporting a large quantity of information.

In October 2008, Mapper and Taiwan Semiconductor Manufacturing Co. have signed an agreement, according to which Mapper will ship its first 300mm multiple-electron-beam maskless lithography platform for process development and device prototyping to TSMC.

90 nm Generation Transistor

source: Intel develop forum Spring, 2003

Experimental transistors for future process generations

65nm process 2005 production

45nm process 2007 production

CMOS 0.8 nm conventional gate oxide

32nm process 2009 production

22nm process 2011 production

Nano materials will play an important role in the silicon nanotechnology platform

Interconnectors with high electrical conductivity

Introduction of new materials

1st Production	1997	1999	2001	2003	2005	2007	2009	2011
Process Generation	0.25μ m	0.18µ m	0.13µ m	90 nm	65 nm	45 nm	32 nm	22 nm
Wafer Size (mm)	200	200	200/ 300	300	300	300	300	300
Inter-connect	Al	AI	Al	Cu	Cu	Cu	Cu	?
Channel	Si	Si	Si	Strained Si	Strained Si	Strained Si	Strained Si	Strained Si
Gate dielectric	SiO ₂	High-k	High-k	High-k				
Gate electrode	PolySi	PolySi	PolySi	PolySi	PolySi	Metal	Metal	Metal

source: Intel develop forum

Introduction of high-K gate dielectric

90 nm process

Capacitance 1X Leakage 1X

Experimental high-K

1.6X

<0.01X

Carolyn Block, Intel 2003

A message from Intel

Compress P-doped regions

by filling SiGe into carved trenches, hole conduction increased by 25%

Stretch N-doped regions

by annealing SixNy cover layer, electron conduction increased by10%

Strained silicon benefits

- Strained silicon lattice increases electron and hole mobility
- •Greater mobility results in 10-20% increase in transistor drive current (higher performance)
- •Both NMOS and PMOS transistors improved Intel develop forum

http://www.newscientist.com/news/news.jsp?id=ns99994493

Three types of new Fully Depleted Transistors

Planar fully depleted SOI

Fully Depleted Transistors made on SOI wafers

Raised S-D using Selective Epi-Si Deposition

Robert Chau, Intel, 61st Device Research Conference June 2003

From Tri-gate transistors to Nano-wire transistors

depletion electric field Gate

Tri-gate transistor

Nano-wire transistor