
Intermolecular Interaction: Super 
Molecule Approximation
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Super Molecule Approximation
To obtain the interaction between two waters perform 
calculation of two waters

Two things to be careful

• Size Consistency

• Basis set super position error
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Size Consistancy
• Consider H2…H2 with CISD infinite far away 

result for H2…H2 is not equal to 2 H2!!

H2A H2B
H2A H2B

H2A H2B

Two electron 
excitation ;

H2A H2A

Two electron 
excitation

Two electron excitation of 
two H2 has four electron 
excitation in H2…H2

H2A H2B
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Size Consistent Methods
• HF

• MP2

• CCSD
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Pople et al. have defined an empirical estimation of the four electron 
excitation contribution MRSDCI had defined +Q so for bond dissociation 
and potential energy surface calculation people use MRSDCI+Q to 
approximately take care of the size consistancy problem
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Basis Set Super Position Error

• When calculating the energy of a 
supermolecule we use the basis set of 
Molecule A and Molecule B together, when 
we calculate the separated products we 
calculate molecule A with basis of A, molecule 
B with basis of B

VS
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Counter Poise Correction
• Boys Lanbardi method: use ghost atoms (no 

charge just position to put basis)and put the 
basis for the respective partner in the energy 
calculation for molecule  A and B

VS

BSSE big for small basis sets
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Gaussian CP Input
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G09 CP output 1
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G09 CP output2
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G09 CP output3
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G09 CP output4
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G09 CP Output 5
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G09 CP output 6
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Optimized Geometry CP

W/O CP with CP
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Dunning Correlation 
Consistent Basis Set

T. Dunning decided on defining the contraction coefficient and 
exponential coefficient to maximize electron correlation

aug-cc-pVDZ  (X=2)
aug-cc-pVTZ  (X=4)
aug-cc-pVQZ (X=4)
aug-cc-pV5Z (X=5)

       2
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Density functional Theory: 
Dump everything to unknown
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Density Function Theory basic philosophy
• Calculate the ground state using the best electron 

density not the best wavefunction for n electrons

𝜌 𝒓 = 𝑛  

𝜎1=

 ±1 2

 𝑑𝑥2…𝑑𝑥𝑛 Ψ
∗ 𝑥1…𝑥𝑛 Ψ 𝑥1…𝑥𝑛

 𝑑𝒓 𝜌 𝒓 = 𝑛
Why?

1. Density is much easier to calculate than orbital is positive 

every where, only depends only on r not 3n coordinates

http://vergil.chemistry.gatech.edu/courses/chem3412/handouts/h2o-mo.html 2



Basic Idea: Hohenberg Kohn Theorem

• For a given number of electrons with external potential 𝑣 𝑟 there 
“exists” a functional of electron density 𝜌 𝑟 that

𝐸𝑣
𝐻𝐾 𝜌 ≥ 𝐸𝑣

𝐻𝐾 𝜌0 = 𝐸0
Where 𝜌0 and 𝐸0 are the EXACT GROUND STATE DENSITY AND 
ENERGY

• What is external potential 𝑣 𝑟 ??? 

POTENTIAL GENERATED BY NUCLEI

𝑣 𝑟𝑖 = 

𝐼

𝑁
𝑍𝐼
𝑟𝑖𝐼
→ 𝑉𝑒𝑥𝑡 = 

𝑖

𝑛

𝑣 𝑟𝑖

3



Minimization by density constraint
• So the ground state energy

𝐸0 = min
𝜌, 𝜌𝑑𝜏=𝑛

min
Ψ→𝜌
Ψ 𝑇 + 𝑉𝑒𝑥𝑡 + 𝑉𝑒𝑙𝑒 Ψ

Since the external potential only depends on sum of one electron part

Ψ 𝑉𝑒𝑥𝑡 Ψ =  𝑣 𝑟 𝜌 𝑟 𝑑𝑟

Then we DEFINE auxiliary functional 𝐹𝐻𝐾 𝜌 so
𝐹𝐻𝐾 𝜌 ≡ Ψ 𝑇 + 𝑉𝑒𝑙𝑒 Ψ

Here we are assuming that the kinetic and electron repulsion term CAN 
be written ONLY USING DENSITY, without wavefunction

𝐸𝑣
𝐻𝐾 𝜌 =  𝑣 𝑟 𝜌 𝑟 𝑑𝑟 + 𝐹𝐻𝐾 𝜌 →→ 𝐸0 = min

𝜌, 𝜌𝑑𝜏=𝑛
𝐸𝑣
𝐻𝐾 𝜌

• Is it possible to construct a quantum theory based only on density? 
Yes, but we have no idea how such theory can be constructed

WE DON’T 

KNOW HOW IT 

LOOKS!! 
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Kohn Sham Approximation

• Using fictitious n electron system that DO NOT INTERACT, but 
instead of using the nuclear external potential 𝑣 𝑟 we use a 
MAGICAL external potential 𝑣0 𝑟 which can give exact ground state 
density 𝜌0 of real system
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In the KS approximation, we use one Slater determinant for the wavefunction

𝜌 𝒓 = 

𝑖

𝑛

𝜓𝑖 𝑟
2

Kohn Sham 

Orbitals 𝜓𝑖 𝑟

Looks similar to 

Hartree Fock

equation!

−
1

2
𝛻2 + 𝑣0 𝜓𝑖 = 𝜀𝑖𝜓𝑖

5



Ground state energy
• In KS approximation we write ground state energy as 

𝐸0
𝐾𝑆 𝜌 = 𝑇0 + 𝑣 𝑟 𝜌 𝑟 𝑑𝑟 + 𝐽 𝜌 + 𝐸𝑋𝐶 𝜌

Instead of the true kinetic energy of real system we use the KINETIC 
ENERGY OF THE FICTIOUS KOHN-SHAM ORBITALS

𝑇0 =
1

2
 

𝑖=1

𝑛

 𝜓𝑖
∗ 𝑟 𝛻2𝜓𝑖 𝑟

Second part is the true nuclei electron interaction, third is the self interaction, 
REPULSON OF THE ELECTRON CLOUD WITH ITSELF

𝐽 𝜌 =
1

2
 𝑑𝑟1𝑑𝑟2

𝜌 𝑟1 𝜌 𝑟2
𝑟1 − 𝑟2

every thing we don’t know we collect and call it exchange correlation 
energy 𝐸𝑋𝐶 𝜌 (remember it also has ignored kinetic correction)
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Determination of Kohn-Sham Orbitals
• Basic idea is the same as the Hartree Fock, we want to minimize the 
𝐸0
𝐾𝑆 𝜌 , with 

𝜌 𝒓 = 

𝑖

𝑛

𝜓𝑖 𝑟
2

So if 𝜓𝑖 𝑟 → 𝜓𝑖 𝑟 + 𝛿𝑖 𝑟 then 𝜌 𝒓 → 𝜌 𝒓 + 𝛿𝜌 𝒓 where

𝛿𝜌 𝒓 = 

𝑖

𝑛

𝛿𝑖
∗ 𝑟 𝜓𝑖 𝑟

2

So we minimize

𝐸0
𝐾𝑆 𝜌 − 

𝑖

𝑛

 

𝑗

𝑛

𝜀𝑖𝑗 𝜓𝑖 𝜓𝑗 − 𝛿𝑖𝑗

Last term is from the constraint that KS orbitals are normalized and 
orthogonal 

𝜓𝑖 𝜓𝑗 = 𝛿𝑖𝑗 7



Derivatives 1
𝐸0
𝐾𝑆 𝜌 = 𝑇0 + 𝑣 𝑟 𝜌 𝑟 𝑑𝑟 + 𝐽 𝜌 + 𝐸𝑋𝐶 𝜌

So the derivatives are

𝛿𝑇0 = −
1

2
 𝑖=1
𝑛  𝑑𝑟𝛿𝑖

∗ 𝑟 𝛻2𝜓𝑖 𝑟 ;  𝑣 𝑟 𝛿𝜌 𝑟 𝑑𝑟 =  𝑖
𝑛  𝛿𝑖

∗ 𝑟 𝑣 𝑟 𝜓𝑖 𝑟 𝑑𝑟

Remember the definition of using KS orbital 𝛿𝜌 𝒓 =  𝑖
𝑛 𝛿𝑖
∗ 𝑟 𝜓𝑖 𝑟

2

𝛿𝐽 =
1

2
 𝑑𝑟1𝑑𝑟2

𝛿𝜌 𝑟1 𝜌 𝑟2
𝑟1 − 𝑟2

+ 𝑑𝑟1𝑑𝑟2
𝜌 𝑟1 𝛿𝜌 𝑟2
𝑟1 − 𝑟2

= 𝑑𝑟1𝑑𝑟2
𝛿𝜌 𝑟1 𝜌 𝑟2
𝑟1 − 𝑟2

Remember 𝜌 𝒓 =  𝑗
𝑛 𝜓𝑗 𝑟

2

𝛿𝐽 =  𝑑𝑟1𝑑𝑟2
 𝑖
𝑛 𝛿𝑖
∗ 𝑟1 𝜓𝑖 𝑟1  𝑗

𝑛𝜓𝑗
∗ 𝑟2 𝜓𝑗 𝑟2

𝑟1 − 𝑟2
= 

𝑖

𝑛

 

𝑗

𝑛

 𝑑𝑟1𝑑𝑟2
𝛿𝑖
∗ 𝑟1 𝜓𝑖 𝑟1 𝜓𝑗

∗ 𝑟2 𝜓𝑗 𝑟2

𝑟1 − 𝑟2

Here if we remember the operator for exchange in Hartree Fock

𝐽𝑗 𝑟1 =  𝑑𝑟2
𝜓𝑗
∗ 𝑟2 𝜓𝑗 𝑟2

𝑟1 − 𝑟2
→ 𝛿𝐽 = 

𝑖

𝑛

 

𝑗

𝑛

 𝛿𝑖
∗ 𝑟1 𝐽𝑗 𝑟1 𝜓𝑖 𝑟1
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Derivatives 2
• We don’t know how 𝐸𝑋𝐶 𝜌 looks BUT ASSUME it has functional 

derivative

𝛿𝐸𝑋𝐶 𝜌 =  𝑑𝑟
𝛿𝐸𝑋𝐶
𝛿𝜌 𝑟
𝛿𝜌 𝑟 = 

𝑖=1

𝑛

 𝑑𝑟𝛿𝑖
∗ 𝑟
𝛿𝐸𝑋𝐶
𝛿𝜌 𝑟
𝜓𝑖 𝑟

• Derivative for orthogonal condition 

𝛿 𝜓𝑖 𝜓𝑗 =  𝑑𝑟𝛿𝑖
∗ 𝑟 𝜓𝑖 𝑟 + 𝑐𝑐

So adding all the terms we want to solve

𝛿 𝐸0
𝐾𝑆 𝜌 − 

𝑖

𝑛

 

𝑗

𝑛

𝜀𝑖𝑗 𝜓𝑖 𝜓𝑗 − 𝛿𝑖𝑗
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Derivative 3

𝛿 𝐸0
𝐾𝑆 𝜌 − 

𝑖

𝑛

 

𝑗

𝑛

𝜀𝑖𝑗 𝜓𝑖 𝜓𝑗 − 𝛿𝑖𝑗

Can be written using KS orbitals as

 

𝑖=1

𝑛

 𝑑𝑟𝛿𝑖
∗ 𝑟
−1

2
𝛻2 + 𝑣 𝑟 + 

𝑗

𝑛

𝐽𝑗 𝑟 +
𝛿𝐸𝑋𝐶
𝛿𝜌 𝑟

𝜓𝑖 𝑟 − 

𝑖

𝑛

 

𝑗

𝑛

𝜀𝑖𝑗 𝑑𝑟𝛿𝑖
∗ 𝑟 𝜓𝑗 𝑟 = 0

So we have to solve

−1

2
𝛻2 + 𝑣 𝑟 + 

𝑗

𝑛

𝐽𝑗 𝑟 +
𝛿𝐸𝑋𝐶
𝛿𝜌 𝑟

𝜓𝑖 𝑟 = 

𝑗

𝑛

𝜀𝑖𝑗𝜓𝑗 𝑟

Or by using canonical KS orbitals which diagonalize 𝜀𝑖𝑗 we have KS equation

−1

2
𝛻2 + 𝑣 𝑟 + 

𝑗

𝑛

𝐽𝑗 𝑟 +
𝛿𝐸𝑋𝐶
𝛿𝜌 𝑟

𝜓𝑖′ 𝑟 = 𝜀𝑖𝜓𝑖′ 𝑟
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Summary of Density Functional Kohn Sham 
Approximation

• Looking back at our derivation we said we have some magic external 
potential 𝑣0 which we just have to solve for KS orbitals

−
1

2
𝛻2 + 𝑣0 𝜓𝑖 = 𝜀𝑖𝜓𝑖

• After putting all the “UNKOWN” to 𝐸𝑋𝐶 𝜌 and properly evaluating 
what we know we got Kohn Sham equation

−1

2
𝛻2 + 𝑣 𝑟 + 

𝑗

𝑛

𝐽𝑗 𝑟 +
𝛿𝐸𝑋𝐶
𝛿𝜌 𝑟

𝜓𝑖′ 𝑟 = 𝜀𝑖𝜓𝑖′ 𝑟

So the magical external potential is 

𝑣𝑋𝐶 ≡
𝛿𝐸𝑋𝐶
𝛿𝜌 𝑟

→ 𝑣0 = 𝑣 𝑟 + 

𝑗

𝑛

𝐽𝑗 𝑟 + 𝑣𝑋𝐶

Remember that I 

still have not told 

you how vXC looks 


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Things to be careful when using KS equation
• People will call is “DENSITY FUNCTIONAL THEORY” or DFT 

when they run the KS calculation, which is really an approximation to 
the theory

• Since 𝐸𝑋𝐶 𝜌 is unkown we have to pick an approximation. This is not 
an easy problem, so there are many exchange correlation functionals:

1. Local Density Approximation:𝑣𝑋𝐶~𝜌
 1 3

2. General Gradient Approximation: such as BLYP, PBE 
𝑣𝑋𝐶 𝜌 ~𝜌 + 𝛻𝜌 add in density derivative contribution

3. Hybrid: such as B3LYP, B3PW91𝑣𝑋𝐶 𝜌 ~𝜌 + 𝛻𝜌 + 𝐾𝑗 where the 
last part is Hartree Fock exchange(depends on orbital)

4. Meta: M06, M11

• Since integration of 
𝛿𝐸𝑋𝐶

𝛿𝜌 𝑟
is done with numerical integration one has to 

be careful with the integration grid
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