
LETTER
doi:10.1038/nature11074

‘Big Bang’ tomography as a new route to
atomic-resolution electron tomography
Dirk Van Dyck1, Joerg R. Jinschek2 & Fu-Rong Chen3

Until now it has not been possible to image at atomic resolution
using classical electron tomographic methods1, except when the tar-
get is a perfectly crystalline nano-object imaged along a few zone
axes2. The main reasons are that mechanical tilting in an electron
microscope with sub-ångström precision over a very large angular
range is difficult, that many real-life objects such as dielectric layers
in microelectronic devices impose geometrical constraints and that
many radiation-sensitive objects such as proteins limit the total elec-
tron dose. Hence, there is a need for a new tomographic scheme that
is able to deduce three-dimensional information from only one or a
few projections. Here we present an electron tomographic method
that can be used to determine, from only one viewing direction and
with sub-ångström precision, both the position of individual atoms
in the plane of observation and their vertical position. The concept is
based on the fact that an experimentally reconstructed exit wave3,4

consists of the superposition of the spherical waves that have been
scattered by the individual atoms of the object. Furthermore, the
phase of a Fourier component of a spherical wave increases with
the distance of propagation at a known ‘phase speed’. If we assume
that an atom is a point-like object, the relationship between the phase
and the phase speed of each Fourier component is linear, and the
distance between the atom and the plane of observation can there-
fore be determined by linear fitting. This picture has similarities
with Big Bang cosmology, in which the Universe expands from a
point-like origin such that the distance of any galaxy from the origin
is linearly proportional to the speed at which it moves away from the
origin (Hubble expansion). The proof of concept of the method has
been demonstrated experimentally for graphene with a two-layer
structure and it will work optimally for similar layered materials,
such as boron nitride and molybdenum disulphide.

Consider a coherent plane electron wave that interacts with a single
atom. If we assume the atom to be a single point, it acts as a source for a
spherical wave (Ewald sphere) that propagates to the plane of detection
(the image plane), where it interferes with the spherical waves emitted
by the other atoms.

Using focal series reconstruction3,4 or off-axis holography5, it is
possible to reconstruct the exit wave of the object (in the future this
might even be possible using phase plates6). The challenge is how to
determine the three-dimensional position of every individual atom of
the object from the exit wave. Every spherical wave can be decomposed
in terms of Fourier components. In the Fresnel approximation for the
spherical wave, which is valid for high-energy electrons, the phase of
each Fourier component varies linearly with increasing distance from
the source and is given by plg2f, where l is the wavelength, g is the
spatial frequency and f is the focal distance between the atom and the
plane at which the exit wave is reconstructed. Thus, if we select the exit
wave around the projection of a particular atom, Fourier transform the
wave and plot the respective phases of the Fourier components as
function of the square of the spatial frequency, we obtain a straight
line. This plot is analogous with the Hubble plot7,8 in cosmology, which
shows that the distance and recessional speed of a distant galaxy are

related linearly. By linear fitting of our plot, we obtain the vertical
distance from the atom to the plane of observation (the reconstructed
exit wave). In our analogy, this distance is the counterpart of the time
between the Big Bang7,8 and the present (Fig. 1).

We assume that for high-energy electrons the scattering is forward
and that a single atom is a weak-phase object9. This allows us to neglect
multiple scattering and electron propagation inside the atom. Within
the weak-phase object approximation, the electron wavefunction
immediately behind the atom, that is, on the same side as the plane
of observation, is then given by

y(r)~1ziVp(r) ð1Þ
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Figure 1 | Big Bang analogy. a, b, Comparison between the Big Bang (a) and
the point-atom ‘big bang’ (b). c, Phase speed plotted against phase. The
relationship between the two is the same as that expressed in cosmology by
Hubble’s law, which gives the linear relationship between the distance and the
speed of a distant galaxy. Here the slope is the reciprocal focal distance, 1/f. Note
that at the position of the atom, the phase of the atom wave does not start from
zero; instead, it has a value, Qo, characteristic of the atom. d, Phase plotted
against phase speed, which we refer to as the Hubble plot here. The slope gives
the focal distance between the emitting atom and the plane of reconstruction of
the exit wave. e, Same as in d, but with a minor residual spherical aberration
with Cs 5 0.3mm (see text).
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where Vp(r) is the projected electrostatic potential of the atom and r is
the distance to the centre of the atom in the plane of projection.

When the electron can propagate freely behind the atom, the elec-
tron wavefunction, ye(r, z), at a distance z measured from the centre of
the atom is given in the Fresnel approximation by convolution (fl)
with the Fresnel propagator p(r, z), which is the parabolic approxi-
mation of the spherical wave:

ye(r, z)~y(r)6p(r, z)~1ziVp(r)6p(r, z)

Fourier transformation then yields

yd(g)~F(ye(r, z))~d(g)zif el(g) exp (iplg2f )

~d(g)zf el(g)exp(i(p=2zplg2f ))

where d is the Dirac delta function. The modulus of yd(g) is the
scattering factor, f el(g), of the atom, which is the Fourier transform
of the atom potential, Vp(r). Because Vp(r) is real and rotationally sym-
metric, f el(g) is also real and rotationally symmetric. Thus, it does not
contribute to the phase of the Fourier components. Note that the factor
of i produces an offset phase shift of p/2. The difference between Q, the
phase at the defocus distance f, and wo, the phase at defocus 0, is more
generally formulated as

Q{Qo~plg2f ð2Þ
We can rewrite equation (2) as

plg2~
1
f

(Q{Qo) ð3Þ

where the factor of 1/f is equivalent to the Hubble constant, Ho, in
Hubble’s law. In the weak-phase object approximation, Qo 5p/2.

Note also that the expression in equation (2) is rotationally sym-
metric. This allows us to perform rotational averaging to reduce noise,
without losing any information. Figure 1c shows a theoretical ‘Hubble
plot’ from equation (3). Unlike in the astrophysics case, we do not have
to measure the phase speed, plg2, because we know it from theory.
Hence, it is more appropriate for our purposes to switch the axes and to
treat the phase speed as the independent variable (Fig. 1d). The slope in
Fig. 1d is the distance between the plane of the reconstructed exit wave
and the emitting atom. The projected positions of the atoms in the
plane of projection can be obtained with picometre precision by com-
parison of the phase maxima with an ideal lattice.

In practice, an exit wave can be reconstructed from high-resolution
electron microscopy images using either a weighted combination of
images taken at different focus values (focal series reconstruction)3,4 or
a hologram5 obtained by interference with a reference wave. However,
to maximize the resolution we must not eliminate the residual aberra-
tions but instead properly balance them. Incoherent aberrations, such
as temporal and spatial incoherence9 and isotropic vibrations of the
atoms and of the microscope, will mainly cause an isotropic blurring of
the amplitude of an atom wave in real space, but not of the phase, and
therefore affects only the precision10 of the atomic position measure-
ment. Coherent aberrations such as defocus, spherical aberration and
astigmatism affect only the phase in Fourier space. The effect of
residual spherical aberration, which is proportional to g4, causes a
parabolic curvature for large values of g. It turns out that our method
is so sensitive that by quadratic fitting we can determine the spherical
aberration constant, Cs, with a precision of more than 1mm. Figure 1e
shows a typical example of a Hubble plot with the same focal distance
as in Fig. 1d but a spherical aberration with an aberration constant of
Cs 5 0.3mm (for 80-keV electrons). As a result of this aberration, the
plot deviates from a straight line. By fitting the curve with a quadratic,
we can determine the residual spherical aberration constant with sub-
micrometre precision. From the angular dependence of the atom wave
in Fourier space, we can in principle also determine the non-symmetric
higher-order residual aberrations, but for the moment we assume that
these aberrations as well as the incoherent aberrations can be suffi-
ciently corrected in the electron microscope.

We have successfully applied our method to the study of graphene
using both simulations and experimentally reconstructed exit waves of
single- and double-layer graphene observed with a Cs-corrected elec-
tron microscope at 80 keV. The graphene wave was reconstructed
from a focal series of 19 high-resolution transmission electron micro-
scope images11. The residual aberrations of the graphene exit wave
were corrected up to third order by applying a numerical phase plate
and by quantitative comparison with a simulated graphene exit wave11.
Graphene is a very challenging test object for our technique because
carbon atoms are very light (weak scatterers) but the distance between
neighbouring atoms is very small (1.4 Å), with the result that the
spherical wave of an atom is sensitive to interference from neighbours.
However, the theoretical distance between the graphene layers in the
double sheet is well known, and its determination therefore provides
an excellent test of our method.

Figure 2 shows the phase of the exit wave of a layer of graphene that
is partly overlapped by a second layer. The position analysis was carried
out atom by atom, and because the theoretical positions of the atoms
are known, we can estimate the statistical precision that can be
obtained. There are four types of atom: those in the single layer
(red); those in the lower layer that do not superpose with those in
the upper layer (green); those in the two layers that superpose (brightest
phase peak; blue); and those in the upper layer that do not superpose
with those in the lower layer (black).

The analysis of the exit wave is done in the following steps. (i)
Although the original sampling of 0.00937 nm per pixel obeys the
Nyquist criterion, such that no information is lost, we need to sub-
sample the exit wave using spline interpolation at up to 0.00268 nm per
pixel (Fig. 3a) to process the data further. (ii) Figure 3b shows a sub-
sampled area of Fig. 3a. The positions of the atoms are determined by
fitting the phase peaks with Gaussian functions. The red crosses in
Fig. 3b are the positions of the maxima of the fitted Gaussians. (iii) In
Fig. 3c, the atom wave is isolated with a circular mark with a radius of
0.07 nm, which is half of the interatomic distance. To avoid the
artefacts from the Fourier transform of a sharp circular window, we
soften its edges. The background around the atom is estimated by
fitting from the pixel values at the edge of the mask. (iv) A square
patch of side length 0.14 nm around the isolated atom peak is selected.
The modulus and phase of the isolated atom are shown colour-coded
in Fig. 3d. (v) The background is calculated from the pixel values
outside the mask and subtracted from the pixel values inside the mask.
The modulus and phase of the isolated atom after background sub-
traction is shown in Fig. 3e. The value of the background wavefunction
for an ideal weak-phase object is y(r) 5 1 as described in equation (1).

Type 4

9 neighbour atoms

Type 3

Type 2

(2 atoms overlap, 

brightest atoms)

6 neighbour atoms 

Type 1

3 neighbour atoms

Figure 2 | Phase of the exit wave of a two-layer graphene object. Four
different types of atom are distinguished: type 1 (red), type 2 (blue), type 3
(green) and type 4 (black) (see text).
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We note that after background subtraction, the modulus of the wave
should maintain the shape of V(r), whereas the phase should be a
constant-phase plateau that is equal to p/2 for a weak-phase object.
(vi) The background-subtracted data (Fig. 3e) is Fourier transformed.
The phase contour map of the resulting Fourier transform is displayed
in Fig. 3f. (vii) The Fourier transform of the wave (Fig. 3f) is rotationally
averaged. The resulting phase contour map is depicted in Fig. 3g. (viii)
The phase value Q (from the centre of the rotationally averaged wave) is
plotted against phase speed, plg2 (in Å21) (Fig. 3h). This is the Hubble
plot described by equation (2). The depth of focus, f, that is, the distance
between the atom and the plane of the exit wave, can be determined by
linear regression of this plot.

By comparing these results with the ‘correct’ values given by the ideal
lattice, using the method described above, we were able to determine the
position of every atom in the plane of observation with an accuracy of
about 7–10 pm as compared with the correct values given by the ideal
graphene lattice (Supplementary Information and Supplementary Fig.
1). We were also able to determine the vertical position of every indi-
vidual carbon atom to a precision of about 0.2 Å. Because every atom is
measured independently, the standard deviation of the peak in the
histogram of the defocus values, f (Fig. 4e), provides an internal mea-
surement for the standard deviation of the whole fitting procedure.

Figure 4a–d shows the Hubble plots for four different types of atom
in the graphene exit wave. In total, there are 143, 111, 115 and 100
atoms of types 1–4, respectively. The histogram of the distances of all
the analysed atoms is given in Fig. 4e. The averaged f values for the four
types of atom are 20.26, 20.22, 20.18 and 23.5 Å, respectively. This
corresponds to a layer separation of 3.28 Å and shows that the gra-
phene structure has a flat bottom. This separation is close to that of
ideal two-layer graphene, which is 3.35 Å (ref. 12). As shown in Fig. 4f,
the flat-bottom model shows that the atoms of types 1 (red), 2 (blue)
and 3 (green) are in the bottom layer and that those of type 4 (black)
are in the top layer.

To determine the quantitative limits of precision, we analysed in
detail the spread in the histograms of the vertical positions. The pre-
cisions in vertical position for atoms of types 1–4 can be derived from
the standard deviation of the histogram as 0.3, 0.19, 0.26 and 0.87 Å,
respectively. To analyse further the origin of the larger spread for
atoms of type 4, we subdivided the histogram for these atoms into four
segments, each containing the same number of atoms (Fig. 4e, blue
dashed lines), colour-coded magenta, brown, pink or purple according
to segment, and analysed them in real space. As shown in Fig. 4g
(where atoms of types 1–3 are coloured yellow), atoms of type 4 with
different focal distances are distribute randomly rather than system-
atically. Because we have a flat-bottom structure (Fig. 4f, where the
original atom colour coding is used), each atom of type 4 has nine
nearest-neighbour atoms (three in the top layer and six in the bottom
layer; Fig. 2). There are, however, three near neighbours for atoms of
type 1 and six for atoms of types 2 and 3. It is possible that the large
spread may be due to a poor signal-to-noise ratio, which may arise
from the influence of nearest-neighbour atoms, because atoms of
type 4 are most highly influenced in this way.

When analysing the histogram of the atoms of the single sheet
(type 1), we notice a systematic difference in vertical position between
two subtypes of these atoms. In Fig. 4e, the histogram for these atoms is
divided at f 5 20.22 Å into two segments (red dashed line), with ref-
erence to the positions of two subpeaks in the histogram. The atoms
were coloured grey or white if the associated focal values were less
than or, respectively, greater than 20.22 Å. As shown in Fig. 4h, the
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Figure 3 | Steps in the Hubble analysis. a, Subsampling of the exit wave.
b, Finding the peak positions of the atom wave. c, Isolating the atom wave using
a soft mask. d, Modulus and phase of the isolated atom wave. e, Modulus and
phase of the isolated atom wave after background subtraction. f, Phase contour
map of the Fourier transform of e. g, Phase contour map of the rotationally
averaged Fourier transform. h, Hubble plot. The phase value is extracted from
the red line in g.
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Figure 4 | Hubble plots and histogram of the focal distance. a–d, Hubble
plots. e, Histogram of f for four different types of atom. f, The flat-bottom
model. fo, average focal distance; s, standard deviation. g, Subtypes of atoms of
type 4. h, Subtypes of atoms of type 1. Note that the sub-colours do not mean
the same as in Fig. 2.
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difference between the average vertical positions of the white and grey
atoms in the histogram suggests that the single layer may have a
buckled structure, but we must still consider the possibility that this
effect is due to a very small asymmetric aberration. Work on this is in
progress.

If we discard the few outlying atoms of type 4 (those for which f is
greater than 22.2 Å or less than 24.8 Å), the remainder have an
average focal value of 23.5 Å. The three-dimensional structure
deduced from our Hubble analysis of the experimental graphene exit
wave can then be formed by distinguishing the outlier atoms from the
rest. Normal and perspective views of this three-dimensional structure
are shown in Supplementary Fig. 2b and Supplementary Fig. 2c,
respectively (see Supplementary Information, Supplementary Fig. 2
and Supplementary Movie 1 for more detail).
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CORRECTIONS & AMENDMENTS

CORRIGENDUM
doi:10.1038/nature11422

Corrigendum: ‘Big Bang’
tomography as a new route to
atomic-resolution electron
tomography
Dirk Van Dyck, Joerg R. Jinschek & Fu-Rong Chen

Nature 486, 243–246 (2012); doi:10.1038/nature11074

In this Letter, the name of Joerg R. Jinschek (FEI Europe, Europe
NanoPort, Achtseweg Noord 5, 5651 CG Eindhoven, The
Netherlands) should be included in the author list. On page 244, this
sentence should be deleted: ‘‘The experimental data were obtained
from ref. 11.’’. The Author Contributions section should include the
sentence: ‘‘J.R.J. provided the experimental images of graphene.’’. The
Acknowledgements section should include the sentence: ‘‘J.R.J.
thanks E. Yucelen, R. Dunin-Borkowski and Ch. Kisielowski for sup-
port, and N. Alem and A. Zettl for the gift of the graphene sample.’’.
The PDF and HTML versions of the original paper have been
corrected online.
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