5. Quantum Nature of the Nano-world ( Fundamental of

Quantum mechanics)

What is the definition of nanomaterials ??

(i) Original:  “quantum size effect” where the electronic properties of solids are

altered with great reductions in particle size

(i1)) New (by European Union): On 18 October 2011, the European Commission

adopted the following definition of a nanomaterial:™*

A natural, incidental or manufactured material containing particles, in an
unbound state or as an aggregate or as an agglomerate and where, for 50% or
more of the particles in the number size distribution, one or more external
dimensions is in the size range / nm - 100 nm.

Quantum confinement effect
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Need to consider the effect of Quantum Mechanics !!



Elementary Quantum Mechanics
1. Matter Wave (by de Broglie)

2. Schrodinger equation

3. Partical in a box

4. Hyrdogen atoms

Matter Wave

Duality of Light: Wave or Particle

Wave: Diffraction, EM wave

Waves exhibit diffraction

Detector

(¢) X-ray diffraction
Atomic planes involves constructive
interference of waves
being "reflected" by
(C) various atomic planes in
the crystal.

Particle: Photoelectric effect, Blackbody radiation, Compton effect

" <"Electron gas" ("free"
electrons wandering
*_ [ around in the metal)

Free Electron
@—+>KE

Light wave

T T Distance, x
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The PE of an electron inside the metal is lower than outside by an energy
called the workfunction of the metal. Work must be done to remove the
electron from the metal.



3000 K Classical theory

Planck's radiation law

Spectral irradiance
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What did Plank do ??? (Quantization of energy OR Quanta)

Classical: E =kT (continuous)

to n=oco
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4hf 4
3nf 3
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Planck: E = nhf (discrete), n =0,1 2,3,....

The result is consistent with experimental observation !!!
Planck’s law:  E =unif (discrete), n =0,1 2,3,...

Duality of Matters:

1. Matter Wave (by de Broglie)
Foraphoton, E=hf =pc , c=fA



p= %(wave — particle)

A= ﬁ( particle - wave)
P

(c) Electron diffraction dc o h showing diffraction

pattern obtained by G. P paﬂernsrprodu':ed with an aluminum foil by

Thomson using a gold foil X-rays and electrons of similar wavelength.

target. Left: X-rays of A = 0.071 nm. Right: Electrons
of energy 600 eV.

The particle nature of matter(old quantum mechanics)

Thomson’s model

Figure 4-1 Thomson’s model of the atom—a sphere of positive charge
embedded with electrons.




Rutherford’s model of the atom

In the o particle scattering experiment, a large angle of scattering is observed, which

can not be observed by Thomson’s model.

Rutherford model

All the mass and position charge Ze were concentrated in a minute nucleus of the

atom of diameter 10 m and Z electrons must circle the nucleus in some way.
Problem of stability ( planet model )

Accelerating electrons = electromagnetic radiation = lose energy = atoms will

collapse to nuclear dimensions ???

Why are atoms stable ??? -  Bohr’s model

(a) (b) Y




Atomic spectra:
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Table 4-1 The Hydrogen Series
Names Wavelength Ranges Formulas
. 1 1
Lyman Ultraviolet K = Ry T~ = n=234,...
n
. 1 1
Balmer Near ultraviolet and ~ « = Ry{ 5 — — n=134,5,...
L 2 n
visible
Paschen Infrared K =Ry (iz — iz) n=4,586,...
3 n
Brackett Infrared : :
racke rart kK =Ry L i n=5617,...
Pfund Inf : 1 )
un nfrared K =Ry 2z n=6,78,...

1 11
7~ RCT=73), R=1.0973732%10"m"!
n, n



Bohr’s model

Figure 3.21 Diagram repre-
senting Bohr’s model of the hy-
drogen atom.

Lzmvr:nh:n—h , :>27rr:ﬂzﬂznﬂ
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Bohr’s postulate

(1)e™, nucleus— Coulomb force.
Q)L =nh, h= 21 (angular momentum quantized)
/4

(3) an electron moving in such an orbit doesn’t radiate EM eave—> total energy is
conserved.

(4) Atoms can exist only in certain state, and the frequency f of an emitted photon is
equalto (hf = E'—E").

From the postulate:

Ze® v?
= —m—

F=- 5
4re,r r

L =mvr =nh
2

=>v, = L, (speed quantized)
4re,n
2
a=—S2—= L (dimensionless) = v, = Zac
4rsyhe 137 n



2
Atomic radius 7, = nh_ __nh :n_( f
my, Zac, 7 “‘mca
"

) (quantized)

If Z=Ln=1
h ° , .
r= =0.534=a, (Bohr’sradius)
mco
n 7 0

Total energy of an atomic electron moving in one of the allowed orbits.

2
E=K+V, K=im?® p-—_1 %
2 dre, r,
2
En=lmv2— 1 Ze
2 dre, T,
\ Zac., Ze¢* Zmca. 1  Zac,, Zac,
=—m - =—m —-m
2(1’1)472'6‘0(1’127’1)2(1’1) (n)
1 Zac,,
=——m
5™ " )

For ground state of hydrogen, Z =1n=1
—%mcza2 =-13.6eV

2

VA . .
L E =-13 .6n—2 (eV), (Hydrogen-like atomic energy level)

2 2

i g =
0 2 2
mca 2may n

The frequency of the EM radiation emitted when the electron makes a transition:

E, -E, m(Zac) 1 1
Soom = _ m(Zac) (5—-—)
h 2h Loon
c 1 m(Zac)* 1 1 ,, 1 1
==, — )Y =RZ*(—-—
S A A 2hc (nlz n22) g (”12 n22)

_m(ac)®  mc’a’

R
g 2hc 4hc

=1.10x10’m" (Rydberg constant)

The Bohr’s model can explain the atomic spectra successfully !!



De Broglie’s postulate of matter waves

For a photon, E=hf =pc , c= f4 :>/1:£
p

De Broglie: (Matter wave)

p=~N2mE =my
a=t_h
p my

- Wave-like properties of particles (Matter Wave)

Revisit Bohr’s model

Two slit interference experiment




(d)

One photon at a time reaches the detector.

3. Heisenberg’s Uncertainty principles:

The more precisely the position is determined, the less precisely the momentum is
know AxAp [l h

A(K)

20,

26/(
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4. Schrodinger equation (1-D)

E(total)=K(kinetic)+V(potential)
1 dy(x)

Ey () == = 54V () ()

(v | dx = probability)

Time independent Schrodinger Equation:

p2 h2 82
H="—+V=-——+V(x)
2m 2m Ox>
HW :EWE

o=(h*)~(h)" =A (Standard deviation)
= AE = <Energy2>—<Energy>2 =0 (Time independe Sch. Eq.)

- Eigenvalue and eigenfunction

Solution of Schrodinger Equation:

1. Infinite potential well

Energy

W(x)
Ve
n
56 )—— 15
E,=n?E,
242
16E, 4 E=TH
2ml?
<] 7))
—_— — 4 - 2
0 L x E, 1
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0 forO<x<L
Vi(x)= .
oo otherwise

2 2

0<r<l = 2L )= Eyx)  w(O)=p(1)=0
2m dx

=y, (x)= Asin%x , Normalizefo w, w,di=1 => A= \/%

2 . nrx n’r*h? nth?
X)=,|—sin—=x , E = = ,n=1,2,3....
V() L L 2mL*  8mlL’
V3 vs
\2/L L /\ 2/LL
of wL3\_jLiL x ol w323 L x
Vs v3
N2/l L 2/LL
0 L/Z\/IL X 0 L/2 IL X
12 vi
NEYAR 2/LL
0 L X 0 IL X
forn=1
2 . L
<x>=—J.Lxsmzﬂdx:—
LY L 2
2¢L . T d T
=—| sin—x(—-ihi—)sin—x dx=0
<p> L'[O L ( dx) L
2¢L . T d T i
2\ _ ~ T 4y T _
<p>—LI0s1an( zhdx) smLxdx 5
7] /]
A=A {p)=(p)Y =22 ApAr>
p=+(p’)-(p) ; pAY 2
2nrw 2nrw
» 2 arx ) l—cosTx 1 cosTx
x) =—sin"—x=—(——"6"—")=———=—
v, ()| i . L( : ) 7 7
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Quantum-mechanical
distribution

n ﬂ Classical distribution

_1
P= T O<x<L

0 L X

Remark: Comparison with classical results:

(I) Potential step
Vix)
V(z) = Vo
E

Figure 6-5 The relation between total and

potential energies for a particle incident upon
V) =0 . a potential step with total energy less than

0 the height of the step.

V, for x>0
V(x)=
0 for x<O
Casel E>V,
(a) Energy
E
V(x) = V,
V(x) =0
0
| I X
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(b) v(x)

Region I :
A A 'mE
v, (x)= Ae™ + Be ™| k, = ;l"

2 % 2 2 % 2
|l//incident = A A = |A| s l//reﬂected = B B = |B|
Region II:

; A A2m(E -V
l//H (X) — Cetkzx + Deftkzx , k2 — (h 0)
No reflected wave — D =0
2 % 2
|Wtrans = C C = |C|

Boundary conditions:
M v, 0)=y,0) =4+B=C

@ Wi Wl kB -k
ox ox |,

| |2 _probability « number

x=0

length length

number  number distance

Reflection and transmission oc oc |1//|2 v (Probability flux)

time distance time

2 2 .
T = |lr//tran Vi — |Wtran kz _ C Ck2
2 2 *
|‘//m Vi |Win k, A Ak,
Wl v Wl BB
N 2 2 -
|y/in v] |l//in A A
A+B=C o .
) k2 j— C = 1 A , B = 1~ M2 A
A_sz_c ki +k, k, +k,
1
_ 4k1k2
(k, +k,)
, =>T+R=1, R=#0,waveproperty
R= (kl _kz)
(k, +k,)’
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Figure 6-11 The reflection and transmission coefficients R and T for a particle incident
upon a potential step. The abscissa E/V,, is the ratio of the total energy of the particle to
the increase in its potential energy at the step. The case k; = 2k, illustrated in Figure
6-10, corresponds to £/Vy = 1.33.

Remark:
Classical: no reflection for E >V, (R=0)

Quantum: R=#0 for E >V, (wave property)

CaseIl E<V,(bound)

V(x)

Viz)= Vg

Figure 6-5 The relation between total and

potential energies for a particle incident upon

V=0 a potential step with total energy less than
0 the height of the step.

2mE

RegionI: y,(x)= de™ + Be™" | k =

Region II: y,(x)=Ce™ + De™ |, a=

y ,; cannot diverge= C =0
Boundary conditions:
D v, 0)=y,0) =A4+B=D

(2) a(;//1| — al//Il|
X x=0 ax x=0

= ik, (A~ B) = —aD

:>B=—a+lkA
o —ik
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~|B=\B'B = \/(—““k A)*(—OCH:]; Ay =N a4 =4
a—1

o —ik
R= B*B =1 ,T=0
A A
0= R (penetration depth)
a 2m(V,-E)

(IT) Tunneling barrier

(a) Energy (b) W(x)

0 for x<0 (1)
V(x)=4V, for O<x<a ()
0 for x>a (M)

Casel E<V,
Region I : w,(x)=Ae™ +Be™ | k = ;n
1 —ax ax V 2m(V0 - E)
Region I : y,, (x)=Ce ™ + De , 0{:T
- : N2mE
Region IIl: y,, (x) = Fe™* +Ge™" | k = ;ln

B.C. l//(x)’ﬁil// must be continuous at x =0, x =a and let k=£;
X

A+B=C+D
ikA—ikB = aD — aC
Ce™ + De™ = Fe'™

(aD)e™ —(aC)e™ = ikFe™



® 2 -1
s T = FF* = 1+l N sinh®(aa)
AA 4 E(V,-E)

2 -1
={H L W (62“”—2+e_2““)}

16 E(¥, - E)
= 16£(l—£)e‘2““ for ca >>1
0 0

Example: Scanning Tunneling Microscopy (STM)

Principle of STM

etz Vacuum Metal Vaillum
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3. Case 3. Particle in a box (3-D)

z
\
V=0w
(&
V=cw
” V=0
- a V=

Electron confined in three dimensions by a three dimensional infinite "PE
box". Everywhere inside the box, V= 0, but outside, V= . The electron
cannot escape from the box. What is the energy and wavefunction of the
electron?

Schrondinger’s equation for three dimensions

2 2 2
g ;12/+8 1/2/+8 "[2/+2T(E—V)c//=0
ox~ oy 0z h

if L,=L,=L =L=(n,n,,n) corrospond to one state

222 2 2 2
Th n n n
= F= x4 Y 4z
2m (Lj L} Lj)
222
. 2 2 2\ Th
(lfozLyszzL) =(l’lx +7’ly +nz )szz

Hydrogen Atom:

403
P(r,0,¢)

o -e

0)

Nucl
ucleus Aner

0

+Ze
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e
drs,r

y =Ly,

y(r,0,9) = R(r)O(0)D(4)

Three quantum number (n, [, m,)

W(ra 95 ¢) = Rn,[(r)Y[,ml (97 ¢)> Yl,m, (0> ¢) = @(0)(1)(¢)
Y: spherical wavefunction

R(7): radial wavefunction,

Electron energy in the hydroge atom is quantized.

n is a quantum number, 1,2,3,
me’ __(13.6¢eV)

" 8s,h’n® n’
A,
a, =220 = 0.0528nm
me

--> Borh radius

momentum quantum
number

n Principal quantum |»n = 1,2.3, Quantizes the energy of the electron,
number E=—13.58eV)i.
( Orbital angular /=0,1,2,.@0-1) Quantizes the magnitude of orbital

angular momentum,L.
L=74[4/+D)]"

n;

Magnetic quantum
number

m,=0,t1,+2, ... 7

Quantizes the orbital angular
momentum component alorg a
magnetic field,B.

L. .= m#

m,

Spin magnetic
quantum number

m, =2/,

Quantizes the spin angular momentum
component along a magnetic field5..

S =mJi

19



Table 3.1 Labelling of various n/ possibilities.
/ 0 1 2 3 4
n
1 ls
2 2s 2p
3 3s 3p 3d
4 4s  4p 4d 4f
5 5s 5p 5d 5f 5g
Table 3.2
The radial and spherical harmonic parts of the wavefunction in the hydrogen atom. (¢,= 0.0529nm)
n . R) m ey,
L L 1
1 0 (;“)' 2exp( ((,) 0 ZJ}
L snn L e _]
20 ogrepen) 0 gl
I 0 -; écose
| R I
2 1 (Z’) (B q‘)eXP( 2%) | _; sing €

sm@ e’®

o =
N I""I o Ib.) N

ocSINGCos
Correspond
m=-land
ocsingsing
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n=1 n=9 n=1 n=2
I
<= < 1
— ol ==
[ = 1% 5
(o ]
(S S
2s
0 \/ o
f’ri‘
- <
ls i ls ]
& & e 2p
- 04 0
0 T 02 04 "0 0z 04 06 o8 VR U 02 04 06 08
r(nm) r(nm) 7 (nm) r (nm)
(a) (b)

(a) Radial wavefunctions of the electron in a hydrogenic atom for various

n and / values. (b) r |Rn /> gives the radial probability density. Vertical axis
scales are linear in arbltrary units.

o || o

Y fora ls orbital Y fora 2]7 orbital YI for a 1s orbital |YI for a 2[7\ orbital

oo g || oo g

Yfora2p orbital Y fora 2p_orbital (m; = |Y]? for a 2p, orbital |Y1* for a 2p_ orbital
(m/ 0)
(a) (b)

(a) The polar plots of ¥, (6,¢ ) for 1s and 2p states. (b) The angular dependence of the
probability distribution which is proportional to |Y, (6,4 )?.
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Oritabl angular momentum and Space quantization

external A

Bc.\'lcmal i m,

f

— —)I]

B flcmal

-

<SI=20H)

= e =

L o e

¥ Orbiting electron

(a)

(a) The electron has an orbital angular momentum which has a quantized
component, Lz, along an external magnetic field, Bexternal- (b) The

orbital angular momentum vector L rotates about the z-axis. Its
component Ly is quantized and therefore the orientation of L, the angle

6, is also quantized. L traces out a cone. (c) According to quantum
mechanics, only certain orientations () for L are allowed as determined
by Zand m /.

Orbital Angular Momentum and Space Quantization

Orbital angular momentum

L=nle(+1)]"

where (=0, 1,2, ....n—1

Orbital angular momentum along B,

L. =mh

Selection rules for EM radiation absorption and emission

Af :il and Am€ ZO,il
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Electron Spin and Intrinsic Angular Momentum §

Electron spin

S=ts(s+1)]> 5=

Spin along magnetic field

S =mh  motl

Z

the quantum numbers s and m, are called the spin and spin magnetic
quantum numbers.

S. (along B,) Spin Up
—
~
AN

tn/2 b —— m = +]/7

-n/2 '—

I, = 11y

/

7
o — -~
[ Spin Down

Spin angular momentum exhibits space quantization. Its magnitude
along z is quantized so that the angle of .S to the z-axis is also quantized.
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