Potential Energy Surface Transition State

Making INPUT 1

- First lines are input of method and basis set
 - #P HF/STO-3G pop=reg
- Empty line
- Title of the calculation: Anything is OK
- Empty line
- Charge and spin multiplicity: usually we consider neutral molecule so charge 0, multiplicity is number of unpaired electrons +1, usually we consider filled electron so 1

Making INPUT 2

 Then define the molecule either using XYZ or Z-matrix input

01

```
O2 1, RO1O2
        0.000000 0.754227 -0.058812
01
                                     H3, 2, RO2H3, 1, AO1O2H3
        0.000000 -0.754227 -0.058812
02
                                     H4, 1, RO1H4, 2, AO2O1H4,
                                                                 3. DH3O2O1H4
H3
        -0.742068 -1.085986 0.470499
H4
       0.742068 1.085986 0.470499
                                      RO102=1.50845307
                                      RO2H3=0.97
                                      RO1H4=0.97
                                      AO102H3=110.0
                                      AO2O1H4=110.0
                                      DH3O2O1H4=109.
```

Then end with one blank line

Review

- Last week we did diatomic molecules with only on bond so we only have to think about forming a bond or breaking that bond
- Today we will consider something more complex molecules
- Then we will make and break a bond a the same time REACTION

Water Molecule Potential Energy Curve

Water Molecule: Stretch Stretch Potential Energy Surface

Water Molecule: Stretch Bend Potential Energy Surface

Normal Mode Vibration

First we consider mass -weight Cartesian Coordinates

$$q_1 = m_1^{1/2} \Delta X_1; q_2 = m_1^{1/2} \Delta Y_1; q_3 = m_1^{1/2} \Delta Z_1; q_4 = m_2^{1/2} \Delta x_2; ... q_{3N} = m_N^{1/2} \Delta Z_N$$

Next expand the potential energy to second term near equilibrium

$$V = V(0) + \sum_{I}^{3N} K_{I} q_{I} + \frac{1}{2} \sum_{I}^{3N} \sum_{J}^{3N} K_{IJ} q_{I} q_{J} = \frac{1}{2} \sum_{I}^{3N} \sum_{J}^{3N} K_{IJ} q_{I} q_{J}$$

Total energy is given as $E = \frac{1}{2} \sum_{I}^{3N} \dot{q}_{I}^{2} + \frac{1}{2} \sum_{I}^{3N} \sum_{J}^{3N} K_{IJ} q_{I} q_{J}$

Cross term

If we diagonalize
$$K_{IJ}$$
 $E = \frac{1}{2} \sum_{I}^{3N-5/6} \dot{Q}_{I}^{2} + \frac{1}{2} \sum_{I}^{3N-5/6} \lambda_{I} Q_{I}^{2}$

Motion described by 3N-6(5 for linear molecule) NORMAL MODES

$$Q_I = \sum_{I=1}^{3N} L_{IJ} q_J$$
 $I = 1,3N - 5/6$

5/6 Modes that are ignored have zero λ_I TRANSLATION/ROTATION

Normal Modes of Water

F+HCl→FH+Cl Potential Energy Surface

Hydrogen Abstraction Reaction, break a HCl bond form a HF bond

Potential Energy Curve along IRC

You need enough energy to go over the potential barrier to react!

The minimum energy path that connect the barrier with reactant and product is called intrinsic reaction path

For F+HCl case you need about 5 kcal/mol of for reaction to occur

How to quantify Barrier?

 At the barrier the first derivative is zero and the second derivative is negative for one degree of freedom and the rest are always positive. In Gaussian you can use the freq keyword to check if there is imaginary frequency

Harmonic Oscillator approximation at barrier

$$F = m \frac{d^2x}{dt^2} = -kx \qquad k: \text{ force constant} \qquad \omega = \sqrt{\frac{k}{m}}$$

In the case of barrier the force constant k is negative so omega is imaginary

Find the potential Barrier

- Input a geometry that is close to the barrier and use the keyword Opt=(ts)
- Check if the optimized structure is a barrier by calculating the frequency by the freq keyword
- Use the IRC keyword to follow the reaction to the reactant and product keyword IRC(forward), IRC(backward)

Transition State Theory

 Once you have the barrier you can estimate the thermal rate constant of the reaction from the calculation results! (Assuming that the reaction proceeds along the IRC)

$$A + B \rightarrow (AB)^{+} \rightarrow \text{product}$$

Activated Complex (Geomtry at Potential Barrier)
$$-\left(\frac{d[A]}{dt}\right) = \frac{k_{B}T}{h}K^{+}[A][B]$$

 K^{+} is the thermal rate constant that depends on temperature

Things Needed To Calculate Rate Constant

$$K^{+} = \frac{Q[(AB)^{+}]}{Q[A]Q[B]} \exp\left[-\frac{\Delta E}{k_{B}T}\right]$$

Q is the partition function of the respective molecules ΔE is the energy difference from the reactant to the barrier

Partition Function 1

$$Q_{trans} = \left(\frac{2\pi m k_B T}{h^2}\right)^{3/2} V = \left(\frac{2\pi m k_B T}{h^2}\right)^{3/2} \frac{k_B T}{P}$$

Usually you consider 1atm pressure

$$Q_{electronic} = D_0 \exp\left[-\varepsilon_0 / k_B T\right] + D_1 \exp\left[-\varepsilon_1 / k_B T\right] + D_2 \exp\left[-\varepsilon_2 / k_B T\right] + \dots$$
$$= D_0$$

D is the degeneracy of the electronic state, usually only consider ground electronic state

Partition Function 2

$$Q_{rot} = \frac{\pi^{1/2}}{\sigma_r} \left(\frac{T^{3/2}}{(\theta_A \theta_B \theta_C)^{1/2}} \right) \qquad \theta_{A,B,C} = \frac{h^2}{8\pi^2 I_{A,B,C} k_B}$$

I is the moment of inertia around the respective axis

$$Q_{vib} = \prod_{i}^{Nvib} \frac{1}{1 - \exp\left[-\frac{h v_i}{k_B T}\right]}$$

 v_i is the vibrational frequency of the i-th vibrational mode

Methanediol Dehydration

Output of TS Optimization

```
140.109.112.238:22 - Tera Term VT
<u>File Edit Setup Control Window Resize Help</u>
                                    0.00000 -0.00001 -0.00001
                                                                    0.04646
   D15
              0.04647
                         0.00000
   D16
              2.12133
                         0.00000
                                    0.00000 - 0.00001 - 0.00001
                                                                    2.12132
                                        Threshold
                                                    Converged?
         Item
                             Value
Maximum Force
                         0.000000
                                         0.000450
                                                       YES
 RMS
         Force
                          0.000000
                                         0.000300
                                                       YES
 Maximum Displacement
                           0.000017
                                                       YES
                                         0.001800
 RMS
         Displacement
                           0.000007
                                         0.001200
                                                       YES
 Predicted change in Energy=-3.389145D-12
 Optimization completed.
    -- Stationary point found.
                                 Optimized Parameters
                               (Angstroms and Degrees)
        Definition
                                   Value
                                                   Derivative Info.
 ! Name
 ! R1
         R(1.2)
                                   1.2942
                                                   -DE/DX =
                                                                0.0
   R2
         R(1,3)
                                   1.7415
                                                   -DE/DX =
                                                                0.0
   R3
         R(1,4)
                                   1.0985
                                                   -DE/DX =
                                                                0.0
   R4
         R(1,5)
                                   1.0964
                                                   -DE/DX =
                                                                0.0
   R5
         R(2,9)
                                   1.2826
                                                   -DE/DX =
                                                                0.0
   R6
                                   1.1819
         R(3,6)
                                                   -DE/DX =
                                                                0.0
   R7
         R(3,7)
                                   0.9694
                                                   -DE/DX =
                                                                0.0
   R8
         R(6.8)
                                   1.2546
                                                   -DE/DX =
                                                                0.0
   R9
         R(8.9)
                                   1.1596
                                                   -DE/DX =
                                                                0.0
  R10
         R(8.10)
                                   0.9652
                                                   -DE/DX =
                                                                0.0
   Al
         A(2.1.3)
                                 108.3108
                                                   -DE/DX =
                                                                0.0
   A2
                                 118.899
                                                   -DE/DX =
                                                                0.0
   A3
                                 117.0873
                                                   -DE/DX =
                                                                0.0
              1288-1316/1913 68%
```

Output of TS Optimization

```
140.109.112.238:22 - Tera Term VT
File Edit Setup Control Window Resize Help
 - Thermochemistry -
 Temperature 298.150 Kelvin. Pressure
                                          1.00000 Atm.
         l has atomic number 6 and mass
 Atom
                                          12.00000
         2 has atomic number 8 and mass
 Atom
                                          15.99491
 Atom
         3 has atomic number 8 and mass
                                          15.99491
         4 has atomic number 1 and mass
 Atom
                                           1.00783
 Atom
         5 has atomic number 1 and mass
                                           1.00783
 Atom
         6 has atomic number 1 and mass
                                           1.00783
 Atom
         7 has atomic number 1 and mass
                                           1.00783
         8 has atomic number 8 and mass
 Atom
                                          15.99491
        9 has atomic number 1 and mass
 Atom
                                          1.00783
 Atom
        10 has atomic number 1 and mass
                                           1.00783
 Molecular mass:
                   66.03169 amu.
 Principal axes and moments of inertia in atomic units:
    Eigenvalues -- 208.97954 286.92164 456.13868
          X
                      0.69691 -0.60799 0.38035
                                           0.81204
                      -0.56629 -0.14111
                      0.44004 0.78131
                                           0.44264
 This molecule is an asymmetric top.
 Rotational symmetry number 1.
 Rotational temperatures (Kelvin) 0.41446
                                                  0.30187
                                                              0.18988
                                      8.63597
                                                  6.29001
 Rotational constants (GHZ):
                                                              3.95656
    l imaginary frequencies ignored.
 Zero-point vibrational energy
                                  198551.1 (Joules/Mol)
```

Output of TS Optimization

```
140.109.112.238:22 - Tera Term VT
File Edit Setup Control Window Resize Help
 Full mass-weighted force constant matrix:
 Low frequencies ----1369.6748 -12.0457 -3.0710
                                                       0.0008
                                                                 0.0014
                                                                           0.0015
 Low frequencies --- 15.2049
                               164.8661 367.0583
 *****
           l imaginary frequencies (negative Signs) ******
 Diagonal vibrational polarizability:
       68.2855903
                       48.1711286
                                       42.8890866
 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                                                                    3
 Frequencies -- -1369.6747
                                         164.8612
                                                                 367.0574
 Red. masses --
                    1.1492
                                           2.2751
                                                                   4.6712
                    1.2702
                                           0.0364
 Frc consts
                                                                   0.3708
 IR Inten
                  225.1406
                                          15.4534
                                                                  62.1548
  Atom AN
                X
                       Y
                                              Y
                                                     Z
                                                                      Y
               0.07
                      0.00
                            -0.05
                                     -0.02
                                             0.21
                                                    -0.01
                                                             0.07
                                                                     0.04
                                                                           -0.17
     234567
                                                              0.13
               0.02 - 0.02
                             0.03
                                     -0.06 -0.15
                                                    -0.02
                                                                     0.09
                                                                           -0.15
              -0.04
                    0.01
                             0.01
                                     -0.02
                                           -0.10
                                                    -0.03
                                                             -0.29
                                                                     0.04
                                                                            0.17
                                             0.45
             -0.02
                    0.01
                             0.00
                                     -0.29
                                                    -0.26
                                                             -0.18
                                                                     0.06
                                                                           -0.13
              -0.06 -0.02
                             0.05
                                      0.25
                                             0.44
                                                   0.26
                                                             0.02
                                                                     0.02
                                                                           -0.20
                             0.56
               0.08
                     -0.41
                                      0.00
                                            -0.06
                                                   0.05
                                                             -0.16
                                                                    -0.02
                                                                           -0.13
              -0.05
                     0.02
                                      0.13
                                            -0.13
                                                    -0.23
                                                             -0.36
                                                                   0.00
                                                                            0.55
                            -0.02
         8
     8
               0.00
                     0.01
                                      0.09
                                             0.04
                                                    0.06
                                                             0.13
                                                                    -0.16
                                                                            0.10
                            -0.02
     9
              -0.56
                      0.40
                                      0.01
                                            -0.11
                                                   -0.05
                                                             0.27
                                                                    -0.15 -0.03
                            -0.07
    10
               0.06
                      0.04
                            -0.08
                                      0.02
                                             0.33
                                                    0.08
                                                              0.08
                                                                    0.25
                                                                            0.09
                                             5
                                                                    6
ts2.log lines 1508-1536/1913 79%
```

Hartree Fock Projects 2

- Vinyl alcohol H2C=CHOH, CH3CHO isomer energy and barrier energy (IRC check)
- R₁R₂C=O optimization effect of substituent on the C=O vibrational frequency and intensity
- CO2+H2O carbonic acid formation barrier
- R₁R₂R₃C-CR₄R₅R₆ and R₁R₂C=CR₃R₄ torsion barrier and potential curve