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Basic principles

® Molarity : Number of moles of the substances in 1
dm?3 of solution.

B One mole: equal to molecular mass of the substance

B Molecular mass:
Da: daltons
kDa: Kilodaltons =1000 Da
M. no unit
Relative molecular mass

= the molecular mass of a substance relative to
1/12 of the atomic mass of the 12C .



Units for Different Concentrations

Interconversion of mol, mmol and pmol in different volumes to
give different concentrations

Molar (M) Millimolar {mM) Micromolar (M)
Imoldm~3 1 moll® 1mmoldm-3 1 pmol dm 3

1 mmol cm—3 1 pmol cm ™3 lnmolcm™

1 pmol mm~? I nmolmm~? 1 pmol mm ™3

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Biological substances are most frequently found at relatively low concentra-
tions and in in vitro model systems the volumes of stock solutions regularly used
for experimental purposes are also small. The consequence is that experimental
solutions are usually in the mmoldm~3, pmoldm™ and nmol dm™? range rather
than molar. Table 1.5 shows the interconversion of these units.



lon Strengths

Reason of deviation:

Presence of electrolytes will result in
electrostatic interaction with other ions and

solvents

Total ion charge In solution
— 2 2 2
M_1/2 *(Clzl + Clzl +....+ ann )

Cy, Cy, ...C,: CONcentrations of each ion in molarity
Z,, Z,, ...Z,: Charge on the individual ion



Example 2 CALCULATION OF IONIC STRENGTHS

Calculate the ionic strength of (i) 0. 1M NaCl, (i1) 0. 1 M NaCl + 0.05 M KNO; +
001M Nag 804

. . : 1
Answer | Jonicstrength can be calculated using the equation p = -2-2 cz.

(1) Calculating cz? for each ion:
Nat=01X(+1R=0.1M

Cl-=01X(—12=0.1M

Hence
%Eczz =02/2=0.1M

(ii) Na* =0.1xX(+12+0.02X(+1)?=0.12M
Cl- =0.1x(-1)2 . =0.10M
K+  =0.05x(+1)2 = 0.05 M
NOs; = 0.05 X (—~1)2 =0.05M
SO~ =0.01 X (—2)? =0.04M

Hence

1 1
EEczz = 5(0.36) = 0.18 M



Activity and Activity Coefficients

Activity : the effective concentration in solution
A, = [Concentration ] 7,

7 - Activity coefficient

® The coefficient establish the relationship between activity
and concentration.

B It will decrease when the ionic strength increases
(include concentration, charge and ion mobility)

e.g. 0.001 M Mg2* 0.872
Fe3* 0.738

Except for very diluted solution, the effective concentrations

are usually less than the actual concentration
6



Relative rate of reaction

Preparation of Buffer Solution

so  Optimal enzyme activity pH 8

4.0 a
3.0
20—
e . a -Chymotrypsin:
catalyzed cleavage of the
. C-N bond

50 6.0 7.0 8.0 9.0 10.0
pH



Henderson-Hasselbalch Equation

For a weak acid, which dissociates
HA — HY+ A

equlibrium constant =K, = K, =

log10Ka = log10[H+] + log10[A- ]
-log10[H+] = -log10Ka + log10[A-]

A

pH = pK, +logy, (m

)

as follows:

H <A
HA]

- log10[HA]
- log10[HA]

pH=pE_ + lﬂgm[[cc}njugate base]} —pK_ +1log,, ([pmtt}n an:u:&pl:c-r]}

[confugate acid |

[proton denaor ]



Why is pKa useful?

pH =pE, +log [[[;%]J

Perhaps it is useful to look at this in another way: if
we consider the situation where the acid is one
half dissociated, in other words where [A-] is
equal to [HA], then, substituting in the
Henderson-Hasselbalch Equation

This means that an acid is half
dissociated when the pH of the

pH =pKa + 0 solution is numerically equal to the
pH = pKa pKa of the acid.

pH = pKa + log10(1)




N -
pH = pK, +log, HA — H*+ A
|HA|
fﬁ'dhl — K130_1 s EK; Acids with the lowest pKa
onorare LAl i values are able to
Dichloroacetic 5x102 |=1013|1.3 . : : :
; dissociate in solutions of
Monochloroacetic | 1.6 x103 | =1028| 2.8 .
Formic > 151041210371 3.7 low pH, .e. even where t_he
Borzoic 8105 =101 4.1 hydrogen ion concentration
Acetic 19x105|=1047| 47| IShigh.
H,CO, >ox107=1065 65  Acids with higher pKa
H,S 5.8 x108 | =1072| 7.2 values dissociate only in
HCN 13x10°| =109| 8.9 solutions of high (more

alkaline) pH.
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Example 3 CALCULATION OF pH AND THE EXTENT OF IONISATION
OF A WEAK ELECTROLYTE

Calculate the pH of a 0.01 M solution of acetic acid and its fractional ionisation
given that its K15 1.75 X 1075

To calculate the pH we can write:

tate—}[{H™*
K, = acetateTIHY] L o105
[acetic acid]

Since acetate and hydrogen ions are produced in equal quantities, if x = the
concentration of each then the concentration of unionised acetic acid remaining
will be 0.01 — x. Hence:

1€.3(63)
001 — x
1.75 > 1077 — 1.75 > 107 °x = x?

1.75 X103 =

This can now be solved either by use of the guadratic formula or, more easily, by
neglecting the xterm since it is so small. Adopting the latter alternative gives:
xt=1.75>< 107

hence

x =418 X 10~*M

hence

pH = 3.38

Note that this solution has ignored the activity coefficients of the acetate and
hydrogen ions. They are 0.90 and 0.91 respectively at 0.01 M and 25 °C. Inserting
these values into the above expression and assuming that the activity coefficient of
acetic acid is unity gives:

(>0.90¢x0.91
001 — x ,
Solving this equation for x gives a value of 4.61 > 107*M, and hence a pH of
3.33. This illustrates the relatively small influence of activity coefficients in
this case.
The fractional ionisation (&) of the acetic acid is defined as the fraction of the 11
acetic acid thatis in the form of acetate and is therefore given by the equation:

1.75 1075 =

[acetatel



Quantitative Biochemical

Measurements
® What to study? Model
B How to study Method
M |s the results correct? Performance

@ How to interpret results? Report

12



Quantitative Biochemical
Measurements

B Analytical Considerations:
(I) Test Model :
IN VIVO V.S. In Vitro
Material: urine, serum/plasma/blood
Matrix v.s Analyte
Sampling v.s population

13



IN VIVO V.S. IN VItro

Invivo: In aliving cell or organism

Invitro:  Biological or chemical work
(in glass) done In the test tube

14



Sampling v.s Population

Population: Representative portion of analyte
Heterogeneous v.s Homogeneous

S

Extraction Methods:

M Liquid extraction

B Solid-phase extraction
B |Laser microdisection
(cancer cell)

15




Quantitative Biochemical Measurements

(Il) Selection of Analytical Methods

B Qualitative v.s Quantitative analysis

® Chemical and physical properties of
analyte

M Precision, accuracy and detection limit
M Interference from matrix

W Cost and value

M Possible hazard and risk




Precision v.s. Accuracy for
Quantitative or Numerical data

Accuracy— a measure of rightness.

Accuracy can be defined how closely a measured
value agrees with the correct value.

Accuracy is determined by comparing a number to a
known or accepted value.

Precision — a measure of exactness.

Precision can be defined how closely individual
measurements agree with each other.

It is sometimes defined as reproducibility .



Accuracy

Precision

Accuracy

Precision

X

Accuracy

Precision

X

\/

The average is close
to the center but the
Individual values are

not similar
Accuracy | Precision
X X
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Physical Basis of Analytical Methods

Physical properties that
can be measured with
some degree of precision

Examples of properties used in the

Protein

Lead

Oxygen

Extensive

Mass
Volume
Mechanical

+

+

Specific aravity
Viscosity

Surface tension
Spectral

Absorption
Emission
Fluorescence
Turbidity

Rotation
Electrical

|+ HH

+

Conductivity
Cuurent/voltage

Half-cell potential
Nuclear

Radioactivity

+




Major manipulative steps in a generalized
method of analysis

Purification of the test substance
I
Development of a physical characteristic by the formation of a

derivative
|

Detection of an inherent or induced physical characteristic
l
Signal amplification
l

Signal measurement
I

Computation
l

Presentation of result

20




Quantitative Biochemical
Measurements

(1) Experimental Errors
= Systematic error

= Random error @

Standard Operation Procedures
(SOP)

21



Systematic Error

W Constant or proportional (Bias)
M Also called
Overestimation /underestimation

(1) Analyst error: pipette, calibration, solution
preparation, method design

(2) Instrumental error: contamination of
Instrument, power fluctuation, variation in T,
PH, electronic noise

(3) Method error: side reaction, incomplete
reaction

22



ldentification of Systematic Errors

® Blank sample

® Standard reference sample

m Alternative methods

B External quality assessment sample

23



Random Error
W Variable, either positive or negative
B also called
Indeterminate error

(1) Instrumental error: random electric noise

24



Standard Operating Procedures
(SOP)

Detailed, written instructions to achieve uniformity
of the performance of a specific process,;

Include:

® Quantity/quality of reagent

M Preparation of standard solution
M Calibration of instrument

® Methodology of actual analytical
procedures

25



Assessment of Performance of
Analytical Method

The NEW ENGLAND JOURNAL of MEDICINE

Question:
1.What is the correlation of the memory of
Immune cell and cancer metastasis?

2.Will it affect the survival rate?
(5% 5 %)
Franck Pagés, M.D., Ph.D., Anne Berger, M.D., Ph.D., Matthieu Camus,”M.Sc,,
Fatima Sanchez-Cabo, Ph.D., Anne Costes, B.S., Robert Molidor, Ph.D.,
Bernhard Mlecnik, M.Sc., Amos Kirilovsky, M.Sc., Malin Nilsson, B.S,,
Diane Damotte, M.D., Ph.D., Tchao Meatchi, M.D., Patrick Bruneval, M.D., Ph.D.,
Paul-Henri Cugnenc, M.D., Ph.D., Zlatko Trajanoski, Ph.D.,
Wolf-Herman Fridman, M.D., Ph.D., and Jéréme Galon, Ph.D

NEJM, 353, 2654-2666, 2005 26



Background

The role of tumor-infiltrating (7% /&) immune cells in
the early metastatic invasion (#& #% 4 1% J=) of
colorectal cancer ( E % & ) is unknown.

Methods

We studied pathological signs of early metastatic
invasion (venous emboli # %4> % and lymphatic #
= and perineural invasion(#? &% B [4.) in 959
specimens of resected colorectal cancer. The local
Immune response within the tumor was studied by
flow cytometry (39 tumors), low density-array real-
time polymerase-chain-reaction assay (75 tumors),
and tissue microarrays (415 tumors).

27



Table 1. Disease-free and Overall Survival among 959 Patients with Calaractal Canear.

Characteristic Neo. of Patien
5 yr Median P 5 yr Median P Value®
% mo value % mo
Tumar (T) staget =0.001 <0.001
pTis 39 48.7 55.7 48.7 55.7
pT1 54 42.6 52.2 44.4 53.8
pT2 156 40.4 43.6 44.2 49.1
pT3 502 23.7 16.5 26.7 25.8
pT4 208 16.8 1.6 17.8 16.8
Modal (N) status <0.001 <0.001
MNegative 568 35.4 34.6 38.6 43.1
Positive 384 15.1 4.3 16.7 16.5
Mx T 7

B Disease-free survival (DFS) denotes the chances
of staying free of disease after a particular treatment for a
group of individuals suffering from a cancer.

m Overall survival is a term that denotes the chances
of staying alive for a group of individuals suffering from a
cancer.

Disease-free survival ~ Overall survival




. 1 ] ] -
300-
VELIPI (5 #p3& 4 )———early steps of the .
metastatic processes, which include vascular emboli, ol
lymphatic 1invasion, and perineural invasion. 3
Status - -
Tm—VELR s e - X
s Pelapse + - -
Rel apsSc TGF-B Interleukin-10 B7-H3 D32t
S 2% 400 400 300+ 300+
1:5 5? TF 3004 300- ] ]
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s x . . ]
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Interpretation of Quantitative Data

Table I
Levels of LDE In the CSF of Administrators and Controls
Group Number Mean SD
Administrators 25 25.83 5.72
Controls 25 17.25 4.36

Is the difference of measured mean values
from the two groups significantly different ?




How do we evaluate the data ?
Are the two groups different?

Normal control (fg5)| 52 54 |Cancer Patient (/")




Normal v.s Patient?

A. Discrimination - Comparison of Data
Groups
1. 2 groups with equal variances
2. 2 groups with unique variances

B. Receiving Operating Characteristic (ROC)
curve
1. 2 X 2 contingency table
2. sensitivity & specificity
3. plotting ROC curve
4. uses of ROC curve 32



When the two study groups do have

statistically significant difference, how

do we evaluate the correlation of any
new data with the two groups?

33



Receiver Operating Characteristics Curve
(ROC curve analysis)
The diagnostic performance of a test, or the accuracy of a test to

discriminate diseased cases from normal cases is evaluated
using Receiver Operating Characteristic (ROC) curve analysis

Criteri | :
PP i Y TN: true negative

FN: false negative
| TP: true positive

With FP: false positive
disease

Without
disease

FN |pp

Testresult




2 X 2 Contingency Table

Healthy

Disease

f
A
A R

Diagnosis threshold

Healthy

A

—

Disease

[\

“‘—.

Diagnosis threshold

Result Disease (true) |  Total
Absent | Present
Normal (negative) a b a+b
Disease (positive) C d c+d
total at+c | b+d | at+b+c+d

Correct

Wrong

35



Distribution of internal
responses when no Distribution when
turmor is present. tumaor is present,

N~

criterion response

I

Frobability

0 & 10 16 20 25
Internal responssa

Frobability

internal response

correct reject

false alarm

Frobability

Intemal response



NO

Tumor _
tumor Hits = 97.5%

False alarms = 8455

Hits = 8455
False alarms = 50%

Hits = 5055
False alarms = 16%

37



Recelver Operating Characteristics (ROC) Curve

d' =1 (lots of overlap) d' = 3 (not much overdap)

High noise, Low noise,
Lots of overlap Not much overlap

1.0

ROC curves

0o 05 1.0
Falza alarms



Sensitivity & Specificity
B Sensitivity

« probability that a test result will be positive when the
disease Is present (true positive rate, expressed as a
percentage).

Sensitivity = P(disease positive | disease)
=d/ (b+d)

— True Positive

(1-sensitivity) : False Negative

39



Sensitivity & Specificity

M Specificity
« probability that a test result will be negative

when the disease is not present (true negative
rate, expressed as a percentage)
« Specificity = P(disease negative | noraml)
. =a/ (a+c)
— True negative
(1-specificity) . False positive

40



Sensitivity and Specificity versus
Criterion Value

Specificity
True Megative rate

True Positive rate
Sensitivity

Criterionvalue

When you select a higher criterion value, the false positive fraction
will decrease with increased specificity but on the other hand the true
positive fraction and sensitivity will decrease.

When you select a lower criterion value, then the true positive fraction
and sensitivity will increase. On the other hand the false positive
fraction will also increase, and therefore the true negative fraction ,,
and specificity will decrease.



Plotting ROC Curve
Recelver Operating Characteristics Curve

W Yih o Sensitivity (true positive)
B X#h (1-specificity ) (false positive)
(normal, but wrong diagnosis)

Cutpoint

True
Positives

False
Positives

0.56

0.01

0.78

0.19

0.91

0.58

True positive rate [sensitivity]

1

0.5 |
0.5 J

8 ey el

0.e

0.5 -

0.4

0.3 |
0.2 ]

0.1

7

¥,

|

I 1 1 I I 1 1 I I
o 041 0.2 03 04 05 06 07 O5 0.9 A

Falze positive rate [1-specificity]



Comparing ROC Curves

1
09 -
g -
0.7 -
Ub -

05 -
U4 -

@ 03 -
= 02 -

0.1 - Excallent

U | | 1 | | | | | |
o 0102 02049 05056 07 02 09 1

Dptimum cut point

N

X

— WMarthless

nie positive

_ t3ood

pos False positive rate

False Alarm Rate




J Clin Epidemiol, Jul 1997;50(7):837-43

100« BMI 20

and 164 cm, 53 kg BMI :
a0 Th.l_' J'".l.l[]]liJ].'.'- .L']JI:J'.EL' Weight (Kg)/Height (mz)
A% sensitivity &

0 0% specificity

- The ROC curve shows the trade-offs
. between Sensitivity and Specificity.
il This article‘s Authors believed that a
'gm BMI of 20.5 was the optimum threshold
A I think that to define obesity, with a Sensitivity of

- 48% sensitivity & 84% and Specificity of 60%. Can you

20 speclien s pelieve it? A BMI of 20.5 to define

10 ople senenlly ODESIty (F1TE) 2 What were they

. | ' thinking?

1 1 20 30 40 50 60D YO 80 80 100 44
100% - Specificity



Assessment of the Performance of a Method
(BMB 1.6.2)

Summary Statistics

B Measures of Central Tendency
- Mean, Median, Mode

B Spread

—Range

—Variance
—Standard deviation
—Stander error

BmShape

45



Data Follows Normal Distribution
/\ 1 X—u

f(X)= 2

\N2mo

AN
*The x-axis represents the values of

a particular variable

AREAS UNDER THE THEORETICAL NORMAL CURVE

*The y-axis represents the
proportion of members of the
population that have each value of
the variable

*The area under the curve
represents probability — i.e. area
under the curve between two values
on the x-axis represents the
ry o P 0 i1 1% .3s  Probability of an individual having a
| value in that range
» 05.44% -

5 %0.72% N
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Real-World Quantification
<&—— Confidence Interval or —>

Zone of Uncertainty

1 T R RS
. Accuracy
|:|3 ....................................................................................................................
|:|2 ................................................................................................................................
S Y AU M W
&.. Precision
0 e
-5 4 =

True mean Value
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'Student's' t Test

The t-test compares the
actual difference
between two means In
relation to the variation

_ control treatment
INn the data group group
mean mean

http://www.socialresearchmethods.net/kb/stat_t.htm
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'Student's' t Test

B One-sample t-test: know the mean difference
between the sample and the known value of the
population mean.

W Unpaired t-test: compare two population means

W Paired t-test: compare the values of means
from two related samples, for example in a
‘before and after’ scenario.

When t_,.
the same (within the confidence intervals)

>t.he ° the two value are not



Measures of Central Tendency

2.5
—Mode ,0 . -
—Median 15
—Mean lod — o _ -
0.5 -
0.0 :
0 5 10 15 20 25 30

eg. 2,557,911, 13,22

mode =5 (greatest frequency) Median=50%,
median= (7+9)/2=8 Odd : Y TR .
mean=(2+5+5+7+9+11+13+22)/g FVe" * fIFFlrg™



Spread -----Variance
- : S EED
Variance (@E/E) ¢ (_DZO“X)

B Standard Deviation, S.D. (f¥&=)=

gives the dispersion of numerical data around
the mean value :

T ((n 5209 ]y

N-1: degree of freedom
= [Number of observation — 1]

o1



Q: Why do we divide by (n-1) and not by (n)?

W Use of n as a divisor will give a sample
standard deviation which tends to
underestimate the population standard
deviation, whereas the use of (n-1) gives
what is known as an"unbiased estimator”

W Score deviates less from their own mean than
from any other number. So, the calculation
subtracting each score from the sample mean
will be smaller than subtracting form the
population mean------ underestimate the SD

(n-1)

52
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Spread ----- Coefficient of Variance

Coefficient of Variation (i&&! [;7:g)
Relative standard deviation

S
CV =>x100%
X
e.g. A: 2.00x)0.10 mM, | |CV=5.0%
B: 8.00x|0.41 mM, | CV=5.0%
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Spread ----- Coefficient of Variance

W Possibility of occurrence

80% Rainy \
98% Rainy, Cloudy, Sunny

M p-value

P=0.05 (=95% confidence) ‘o

----- Statistically significant



Define the spread or distribution of

the data B
68.3% data will be within the range of X +1S.D.

The possiblility of a data point within the range of
X £1S.D. is 68.3%.

|£1S.D.|

Frequency of
occurrence of a
measurement

r—99.7% I
-3SD -2SD -ISD X +ISD +2SD +3SD

Gaussian Distribution/Normal Distribution™




ASSESSMENT OF THE PRECISION |OF AN ANALYTICAL DATA SET

Five measurements of the fasting serum glucose concentration were made on the
same sample taken from a diabetic patient. The values obtained were 2.3, 2.5, 2.2,
2.6 and 2.5 mM. Calculate the precision of the data set.

Precision is normally expressed either as one standard deviation of the mean oras
the coefficient of variation of the mean. These statistical parameters therefore

need to be calculated.
Mean

24+23+25+254+ 2.6
)—<=2 £ SS 2 = 2,42 mh

Standard deviation
Using both equations 1.12 and 1.13 to calculate the value of s:

2.2 —0.22 0.0484 4.84
23 —01z2 0.0144 5.29
2.5 +0.08 0.0064 6.25
2.5 +0.08 0.0064 6.25
2.6 +0.18 0.0324 6.75
=Zx; 12,1 Z0.00 01080 Z29.39

Using equation 1.12

s=N(¢0.108 /4> = 0.164 miM

Using equation 1.13

9.30 — (12.1)? 39 —29.2
o \/2 39 —¢12.1)» /52\/29 392928 _ oo
4 e 4
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Accuracy ( Bias, Inaccuracy)

Differences between “mean” and “true” value

@® When the number of sampling approaches infinity,
“mean” Is equal to the “population mean”

@ If the “uncertainty” (SD) is close to 0O,
Then > n much approach infinity
(Eg : when SD is 1/2—n has to increase to 4-fold)

1 N b
s:[(n_l)Z(xi—x) j

1=1




How do we evaluate the difference
of measured “mean” and “true
mean” of the population?

n practical experimental design, it is not
nossible to sample EVERY analyte from the
population.

Animal model, cancer vs healthy group....etc

58



Standard Error (of the mean, S.E.)

@ S.D variability of original data

The absolute value of S.D.
can not tell the difference of

mean and popuation mean

S.E S_D variability of mean

JN

..... Why does the denominator read N2 instead of just N?
Because we are really dividing the variance, which is SD?,
by N, but we end up again with squared units, so we take

the square root of everything.......

i 59
Can J Psychiatry, Vol 41, October 1996



Table I

Levels of LDE in the CSF of Administrators and Controls

Group Number Mean SD
Administrators 25 25.83 5.72
Controls 25 17.25 4.36
SD VS SE 35 +1SD + 1.96 SE
30 1
1 L % 25
= Z (X —X) i a
(n-1) = Z 20
% 15.
SE= 2 T .
A/ N 5 / /

o




Spread--Confidence Interval

Gives a range of values about the sample mean
within a given probability

e for normal distribution

P(~1.96< 7<1.96) =0.95,and z = =——*

G/\/ﬁ

) = 0.95

O O
=P(X-196—=< u<X+1.96—
( =< 4 n
A confidence interval gives an estimated range
of values which is likely to include an unknown
population parameter, the estimated range
being calculated from a given set of sample data



Spread---Confidence Interval

The lower and upper boundaries / values of a confidence
Interval, that is, the values which define the range of a

confidence E)t(e_rz/fl \5/%} <M < {x +(t) \S/%}

Confidence Limit

t : student's factor (Table 1.9)
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Example 6

ASSESSMENT OF THE ACCURACY OF AN ANALYTICAL DATA SET

Calculate the confidence intervals at the 50%, 95% and 99% confidence levels of
the fasting serum glucose concentrations given in Example 5.

SD | Confidence interval =242 (0741)0.18)
{i'(t).S_D}gMS{YJF(t)._} a0
. vn =240+ 005

Forthe 95% confidence evel and the same number of degrees offeedom, t= 2,776
hence the confidence interval for the population meanis givenby;

t

(2776)0.16)
Vs
=14+020mM

For the 99% contidence level and the same number of degrees offreedom, 1= 4,604
hence the confidence intervalfor the population meanis given by:

A800.L8)
Vs

=2412033mM

Confidence interval =247 +

Confidence interval =242 +



Outlier

Rejection of outlier experimental data

®
outlier

<« 95% outliers

outliers

Q exp (Dixon’s Q-test)
Experimental rejection quotient

The data point closest to analyte

X -X a ]
Qexp — n n-1 g p

Xn-Xlzrange / \'

rejechion acceptance

rej@4tian



Outlier— Q values

Table.1.1 Values of Q for the rejection of outliers
Number of observations Q (95% conflidence)
4 0.83
5 0.72
6 0.62
7 0.57
8 0.52
Qexp < Q Taple 110~ Accept the datapoint

Qexp > Q Table 110~ Reject the datapoint
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Example 7

IDENTIFICATION OF AN OUTLIER EXPERIMENMTAL RESULT

If the data set in Example 6 contained an addition value of 3.0 mM, could this value
be regarded as an outlier point at the 95% confidence level?

From equation 1.16

0 30-26 04
F30-22 08

0.5

Using Table 111 for six data points, Qe = 0.62.

Since Qeyp 15 smaller than Qe the point should not be rejected as there isa more
‘than 5% chance that it is part of the same data set as the other five values. Itis £asy
to show that an additional data point of 3.3 rather than 3.0 mM would give a Qu, of
0.64 and could be rejected. |



‘'Student’'s’ t Test— Test of Difference

(e LRl = R R

The t-test compares the actual |
difference between two means K
relative to the variation in the :
data —

sample mean v.s.true mean ERne treatment

group group
mean mean

Determine whether a significant
difference exist between two
mean or whether the two
population means are equal.

67
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t value:

calculated by integrating the distribution
between confident limits

signal difference between group means

noise K vaniability of groups

Fnr-T B ic
SE(X; - X.)

standard error of
the difference

= t-value
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The t-distribution

* In fact we have many t-distributions, each one is
calculated in reference to the number of degrees of
freedom (d.f.) also know as variables (v)

~

if=3
/ l— 68% of data -'\
/ 95% of data \

+ 99.7% of data N i | ! I
L . L 318 196 196 318
E T T T 245 ‘L 245

It
Normal t-distribution

distribution



Student’s t Values (Table 1.9)

Table 1.9
MBM, p38

Degree of
Freedom
N-1

O Olh WN

50

0.816
0.765
0.741
0.727
0.718

Confidence Level (%)

90

2.92
2.353
2.132
2.015
1.943

Values for Student's t

95

4.303
3.182
2.776
2.571
2.447

98

6.965
4.541
3.747
3.365
3.143

99

9.925
5.841
4.604
4.032
3.707

99.9
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t-test Interpretation

li'l, 103 In:'| 5 ln 025

_ 1 3078 6314  12.706
Reject H Reject H 2 1.886 2920 4303
p — 3 1638 2353  3.182
4 1533 2032 2776

025 .025 (p) 5 1476 2.015 2.571
6 1.440 1943 2.447

7 1415 1.895 2.365

8 1397 1.860 2.306

-2.0154 0 2.0154 9 1383 1.833 2262
10 1372 1.812 2.228

oA 1282 1645 1.960

Note as t increases, p decreases

1-|'J (1]

31.821
6.963
4.541
3.747
3.365

3.143
2.998
2.896
2.821
2.764
2.326

| )

63.657
9.925
5.841
4.604
4.032

3.707
3.499
3.355
3.250
3.169
2.576

t (value) must > t (critical on table) by P level



Flﬂdlﬂg a CrItICa| t The table provides the t values

(t.) for which P(t, > t,) = A

A=.05
4 N\

Degrees of Freedom 100 {0 J t oo o L oos
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.92 4.303 6.965 9.925
ML 10 1.372 1.812} 2.228 2.764 3.169
200 1.286 1.653 1.972 2.345 2.601
Q0 1282 | 1.645 ) 1.96 2.326 2576




One-Sample t-test

B Compare the result with the known value of the solution

often test whether the mean of a variable is less than,
greater than, or equal to a specific value.

o 1s C(M-XNn
MR e

Known value

When tcalc > ttable(1.9) —>if S.E is not in the range Of Y + XX
The result is not within the range of population

{ calc < -table(1.9)

The result is consistent with the population 73



Example 8

VALIDATING AN ANALYTICAL METHOD

A standard solution of glucose is known to be 5.05 mM. Samples of it were
analysed by the glucose oxidase method (for details see Section 15.2.5) that was

being used in the laboratorv for the first time. A calibration curve obtained usine

- -—-.—-D - e e e R v-—-'-\-r‘-J L -~ i ¥ A e oy sy ™ - e e et e e A e N A.Ll.b

least mean square linear regression was used to calculate the concentration of
glucose in the test sample. The following experimental values were obtained: 5.12,

4.96,5.21,5.18,5.26 mM. Does the experimental data set for the glucose solution
agree with the known value within experimental error?
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It is first necessary to calculate the mean and standard deviation for the set and
then to use it to calculate a value for Student’s &.

Applying equations 1.12and 1.13 to the dataset givesX = 5.15mMand s =
0.1 mM.
Now applying equation 1.17 to give f.ac:

(5.05 — 5.15)\/5
0.1

2.236

Leaale —

Note that the negative difference between the two mean values in this calculation
isignored. From Table 1.9 at the 95% confidence level with 4 degrees of freedom,
table = 2.776. L1018 therefore less than ¢, and the conclusion can be drawn that
measured mean value does agree with the known value. Using equation 1.14, the
coefficient of variation for the measured values can be calculated to be 1.96%.
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Unpaired Statistical Experiments  conditon Condition

Group 1 Group 2
members member
S

 Overall setting: 2 groups of 4 individuals each
— Groupl: TIGP students
— Group2: NTU students

« Experiment 1:
— We measure the height of all students

— We want to establish if members of one group are consistently (or on
average) taller than members of the other, and if the measured
difference is significant

« Experiment 2:
— We measure the weight of all students

— We want to establish if members of one group are consistently (or on
average) heavier than the other, and if the measured difference is
significant

« Experiment 3:




Unpaired Statistical Experiments

* In unpaired experiments, you typically have two groups of
people that are not related to one another, and measure

some property for each member of each group

¢ e.g. you want to test whether a new drug Is effective or not,
you divide similar patients in two groups:

— One groups takes the drug

— Another groups takes a placebo

— IYou measure (quantify) effect of both groups some time
ater

* You want to establish whether there is a significant
difference between both groups at that later point



Unpaired Statistical
Experiments

How do we address the
problem?

Compare two sets of results
(alternatively calculate mean
for each group and compare
means)

Graphically:
1. Scatter Plots
2. Boxplots, etc

Compare Statistically
1. Use unpaired t-test

RRRRR

@000

Are these two series
significantly different?

o000

Are these two series
significantly different?



Unpaired t-test: Are two data sets different ?27?

Mapplied to two independent groups

e.g. diabetic patients versus non-

diabetics

H
msample size from the two groups ’ Populatio
may or may not be equal Populatior

Hmin addition to the assumption that

the data is from a normal distribution,

there is also the assumption that the
standard deviation (SD)s is Population 1Population

approximately the same in both 79



BALILE2D iR L (Similar ? Different?)
2 largest variation
S 9

"N/
N/

> o
S, smallest variation

F-test F

[ : Group Amean : 50mg/l > n=5 > S=2.0mg/l
Bmean:45mg/l > n=6 > S=1.5mg/l

2
F= 2452 =1.78 Degree of freedom at 95%:
(n-1)+(n2-1)=(5-1)+(6-1)=9

Table1.1 Fore =7.39)F . =1.78

alc

— the variance values are the same

— the mean really differs »



Similar S (With Equal Variances)

- equation 1.18 ~1.19

t _ Y1_X2 \/ n1nz
calc
ﬂ1 ~+ n2

S

standard deviation of the two
samples:

pooled
i 2 2
an estimator of the common B \/Sl (nl _1) + 52 (n2 _]_)
pooled ~

n+n,—2

degree of freedom=n, +n,-2



Different S (With Unequal Variances)

This test Is used only when the two sample
sizes are unequal and the variance is assumed
to be different.

- equation 1.20~1.21

X —X,
1:calc: 5 2
V(s Iny)+(s7/n,)

(st /n +s2/n,)’ >
[(s /ny)? /(n, +D)]+[(s; /n,)* I(n, +1)]

degree of freedom = {

B (s2/n,+s>/n,)?
1 ) =D+ [(3 /) /(n, ~D)] "




Condition  Condition

1
Paired statistical experiments  Grow -
members

Overall setting: 1 groups of 4 individuals each
— Groupl: TIGP students
— We make measurements for each student in two situations

Experiment 1:

— We measure the height of all students before Bioinformatics course
and after Bioinformatics course

— We want to establish if Bioinformatics course consistently (or on
average) affects students’ heights

Experiment 2:

— We measure the weight of all students before Bioinformatics course
and after Bioinformatics

— We want to establish if Bioinformatics course consistently (or on
average) affects students’ weights

Experiment 3:



Condition 1 Condition 2

« |n paired experiments, you typically have one group of people, you
typically measure some property for each member before and
after a particular event (so measurement come in pairs of before
and after)

Paired statistical experiments  Grow

members

e e.g.you want to test the effectiveness of a new cream for tanning
— You measure the tan in each individual before the cream is
applied
— You measure the tan in each individual after the cream is
applied

e You want to establish whether the there is a significant difference
between measurements before and after applying the cream for
the group as a whole



Paired statistical experiments

e The WT/KO example is a paired experiment if the rats in the
experiments are the same!

Experiments for Gene 96608 _at

Rat # WT gene | KO gene
expression | expression

Ratl 100 200

Rat2 100 300

Rat3 200 400

Rat4 300 500




Wb

Paired statistical experiments

How do we address the problem?
Calculate difference for each pair
Compare differences to zero

Alternatively (compare average
difference to zero)

2142

Graphically: Are differences close to Zero?
1. Scatter Plot of difference
2. Box plots, etc

Statistically
1. Use unpaired t-test

>rh )




Paired t-test

B Data is derived from study subjects who have been
measured at two time points (so each individual has two
measurements). The two measurements generally are
before and after a treatment intervention

Eg: control versus treated sample
B 95% confidence interval is derived from the difference

between the two sets of paired observations

equation 1.22 ~1.23
A Z(di _CT)Z
1:calc :Si\/ﬁ K :\/ n-1
d
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COMPARISON OF TWO ANALYTICAL METHODS USING

.1n DIFFERENT TEST SAMPLES

Ten fasting serum samples were each analysed by the glucose oxidase and
hexokinase methods. The following results, in mM, were obtained:

Glucose Hexokinase Difference, d; Difference minus  (Difference minus

mean of difference  mean of difference)’

oxidase (mM) (mM)

|||||||||||||||

L1 0.9 0.2 0.08 0.0064

2.0 2.1 -0.1 ~0.22 0.0484
3.2 2.9 0.3 0.18 0.0324
3.7 3.5 0.2 0.08 0.0064
5.1 4.8 0.3 0.18 0.0324
8.6 8.7 —0.1 —0.22 0.0484
10.4 10.6 ~0.2 -0.32 0.1024
15.2 14.9 0.3 0.18 0.0324
18.7 18.7 0.0 -0.12 0.0144
25.3 25.0 0.3 0.18 0.0324
Mean (4)0.12 0.3560

||||||||||||||||||||||||||||

Do the two methods give the same results at the 95% confidence level?
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answer

Before addressing the main question, note that the 10 samples analysed by the two
methods were chosen to cover the whole analytical range for the methods. To
assess whether or not the two methods have given the same result at the chosen -
confidence level, it is necessary to calculate a value for t. and to compare it with
taple fOY the 9 degrees of freedom in the study. To calculate &, 1t is first necessary to
calculate the value of 53 in equation 1.23. The appropriate calculations are shown
in the table above.

sa="V[Zd — d/n— 1)
= V(0356 /9>
= {.199
From equation 1.22
—dVvn
Sa
= (0.12/10)/0.199
= 1.907

feale

Using Table 1.9, fanie at the 95% confidence level and for 9 degrees of freedom is
2.262. Since f.q is smaller than f,pe the two methods do give the same results at the
95% confidence level. Inspection of the two data sets shows that the glucose
oxidase method gave a slightly high value for 7 of the 10 samples analysed.

An alternative approach to the comparison of the two methods isto plot the two
datasetsasan x/yplotandtocarry outaregressionanalysis of the data. If thisis done
using the glucose oxidase dataas the yvariable, the following resultsare obtained:

Slope: 1.0016, intercept: 0.1057, correlation coefficient r: 0.9997

The slope of very nearly 1 confirms the similarity of the two data sets, whilst the
small positive intercept on the p-axis confirms that the glucose oxidase method
gives a slightly higher, but insignificantly different, value from that of the
hexokinase method.



_ (known value — X)v/n (1.17)

tcalc - S
. X,—X, | nn, (1.18)
e Spooled nl + n2
S _ S12 (n -1+ S22 (n,-1) (1.19)
pooled nl n n2 _ 2
tate = sk - (1.20)
V(2 Iny)+(s3/ny)
2 2 2
Degree of freedom = { — (8 /1, +5, /2n2) > }— 2 (1.21)
[(s; /n)/(n, +D)]+[(s; /n,)" /(n, +1)]
d
tcalc = _\/ﬁ (122)

. :\/Z(di —d)’ (1.23)



