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Interaction between light and matter

THE ELECTROMAGNETIC SPECTRUM
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Scattering and absorption/emission of light
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We can use light scattering and absorption to probe the
dynamics of atoms and molecules in a matter because:

* Light is an electromagnetic wave consisting of oscillating electric
and magnetic fields.

» Electrons and nuclei are charged particles, and their motions in
atoms, molecules, and lattices generate oscillating electric fields.

« A matter can absorb energy from light if the frequency of the light
oscillation and the frequency of the electron or lattice "transition
motion" match. Unless these frequencies match, light absorption
cannot occur. The "transition motion" frequency is related to the
frequencies of motion in the higher and lower energy states.

* By measuring the frequencies of light absorbed by a matter, we
can determine the frequencies of the various transition motions
within the matter.
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Phenomena due to light scattering

(a) Reflection : Light scattered in the opposite direction of incident light.
(b) Refraction : Light scattered in the forward direction combines with
the incident beam to give rise to the phenomenon of refraction. The
physical effect of this combination is to make the transmitted light
appear as though it has travelled more slowly through the sample than
through a vacuum.

velocity of light in vacuum

index of refraction n = velocity of light in substance

(c) Diffraction : Superposition of scattered waves from individual atoms
or molecules in the sample. If the sample is highly ordered, diffraction
pattern periodicity in the distribution of atoms and molecules in the
sample can be used to deduce or infer the relative positions of atoms in
a sample.
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Rayleigh scattering

Rayleigh scattering is the elastic scattering of light (electromagnetic radiation)
by particles much smaller than the wavelength of the light, which may be
individual atoms or molecules. It can occur when light travels in transparent
solids and liquids, but is most prominently seen in gases.

Rayleigh scattering is a function of the electric polarizability (o)
of the particles:
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giving us the blue sky
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Brillouin scattering

Brillouin scattering occurs when light in a medium (such as water or a crystal)
interacts with time dependent optical density variations and changes its
energy (frequency) and path. The density variations may be due to acoustic
modes, such as phonons, magnetic modes, such as magnons. As described
in classical physics, when the medium is compressed, its index (n) of
refraction changes and the light's path necessarily bends.

nq’ q is small in the Brillouin zone

nq )/ ] k = (2nwic) sin(6/2)
\% c.(k) = Aw Ik = (Aw/20)(c/n) csc(6/2)
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Vibrational Spectroscopy
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Fluorescence and phosphorescence
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Interaction of electron beam with solid
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Energy distribution of detected electrons
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Interaction of high energy (~kV) electrons with
(solid) materials-l, cont.
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Penetration power of e-beam
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TIGP Introduction technology (1) November 17, 2006

Properties of individual nanoparticles
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Particle nature of photons

Einstein’s proposal:

E=hv = P=hh /vm‘fV

VL L

Compton Scattering
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Wave nature of electrons

de Broglie's proposal: For electrons.
=h/P — =h/E N (nm) = 1.22/E">(eV)
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Fundamentals of quantum mechanics
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Fundamentals of quantum mechanics

1. Quantization @ F-----
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Fundamentals of quantum mechanics

1. Quantization @ F-----

2. Tunneling
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Fundamentals of quantum mechanics

1. Quantization @ F-----

2. Tunneling
P
3. Statistics %
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Critical Length scale

Hydrodynamic

Diffusive E A

F
3. ¥
N =
Solle-|IL T

-~ g -
E_'-, - Weak Y: 9
=) Ballistic localization /

" ____SWCNT A

A‘_.J -

//'. ‘
l/,
Atom T
contact A o

log [L (nm))
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One dimensional size effect
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Size effect

CHANGE IN VALENCE ENERGY BAND LEVELS
WITH SIZE
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Ratio of surface atoms
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Enhanced catalyvtic effect

Clusters Containing
10-50 Atoms

Reaction Cell Containing CO, O,, D,, N,, NO,
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— 10nm

Au nanoparticle as an example

E- = (h?/2m) (3r?n)?3

a(Eg) = (3/2) (n/E)

0 = 2/[g(Eg)V] = (4/3) (EE/N)
Number of valence electrons (N) contained

in the particles is roughly 40,000. Assume
the Fermi energy (Eg) is about 7 eV for Au,

then

0~0.22meV~25K
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Ultraviolet photoemission
spectra of ionized copper
clusters Cu,,™ ranging in
size from N of 1 to 410
show the energy
distribution versus binding
energy of photoemitted
electrons. These
photoemission patterns
show the evolution of the
3d band of Cu as a function
of cluster size. As the
cluster size increases, the
electron affinity approaches
the value of the bulk metal
work function. (Adapted
from ref. 10.) Figure 5
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Electronic Structure of Single-wall Nanotubes
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Optical properties of nanoparticles
(in the infrared range)
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Optical properties of nanoparticles
(in the visible light range)
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(1) Blue shift:
Due mainly to the energy-gap widening
because of the size effect.

(2) Red shift:
Bond shortening resulted from surface
tension causes more overlap between
neighboring electron wavefunctions.
Valence bands will be broadened and the
gap becomes narrower.

(3) Enhanced exciton absorption:
Due mainly to the increased probability of
exciton formation because of the
confining effect.
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Plasma oscillation of free electron gas

Drude Model (free electron gas model)

1. Electronic equation of motion 2. Ohm’s law
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Optical properties
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Figure 4.19. Optical absorption spectrum of hydrogen-like transitions of excitons in Cu,0.
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4.20. Optical aDsOmcn spectium of CaSe 1or two "aroparicies haveyg ses 20 A ang
respectively. (Adapted from D. M. Mitterman, Phys. Sev. 849, 14435 (1994) )
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Semiconductor quantum dots

(Reproduced from Quantum Dot Co.)
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STS of Si(111)-(7x7)
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1. Science 234, 304-309 (1986).
2. Phys. Rev. Lett. 56, 1972-1975 (1986).
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Inelastic Tunneling

Elastic vs. Inelastic Tunneling
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Single Molecule Vibrational Spectroscopy and Microscopy

Side %

Top

B.C. Stipe, M.A. Rezaei, and W. Ho,
Science 280, 1732-1735 (1998).
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D.M. Eigler, IBM, Amaden
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D.M. Eigler, IBM, Amaden
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Artificial atom
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Homework#16 (Jan. 3, 2011):

(a) When the electronic properties of a nanoparticle are measured by optical
spectroscopy, both blue and red shifts, comparing to its bulk counterpart,
can occur. Please explain the causes of the blue and red shifts,
respectively.

(b) The vibrational properties of a nanoparticle, when measured by optical
spectroscopy, can result in a blue shift in reference to its bulk counterpart.
Please explain the cause.
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