Classical Thermodynamics and Statistics

Thermodynamic Potentials

Internal Energy E(S,V)
Enthalpy or Total Heat H(S,P)= E(S,V)+ PV
(=G(T,P)+1T5)
Free Energy F(T,V)=E(S,V)-TS
Free Enthalpy or G(T,P)=FE(S,V)-TS + P\
Gibbs Function (= F(T,V)+ PV)
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Internal Energy

(a) E(S,V): We have from the second law of thermodynamics

dE =TdS — PdV
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and hence the first Maxwell relation:
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Enthalpy or Total Heat

(b) H(S,P): We obtain from the definition of H:
dH(S,P) =dE + PdV + VdP =TdS + VdP,

and (recall also that H(S,P) = E(S,V) + PV)
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and hence the second Maxwell relation:
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Free Energy

(c) F(T,P): We obtain from the definition of F":

dF(T,V)=dE - TdS — SdT = -SdT — PdV,
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and hence the third Mazwell relation:
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Free Enthalpy or Gibbs Function

(d) G(T', P): We obtain from the definition of G:
dG(T,P) =dE —TdS — SdT + PdV + VdP =VdP — SdT,
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and hence the fourth Mazwell relation:
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The Boltzmann Law

n = n, exp(-E/KT)

Maxwell Velocity Distribution

f(v)dv = C exp(-mvZ/2KkT) dv
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The exponential atmosphere

dP = Ppygn- Py =-nmgah 4y 0)

P = nkT
l L h+dh T = Const
— -
P 1] -.dP = kTdn = -nmgah

Jg dn/n = -mgadh/kT

= n =n, exp(-mgh/KT)
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1.

The Boltzmann Law
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The elements are considered distinguishable
In the way they can rearrange themselves
among various energy states with equal
probability.

The presence of one entity in a particular state
IS assumed in no way to inhibit or enhance the
entrance of another identical entity.

3. Applied to classical gases.
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Quantum Statistics

There are two main differences between quantum
statistics and classical statistics:

1.In quantum statistics the energy levels are nearly always
discrete. In classical statistics they are assumed to be
continuous.

2. The counting of the number of arrangements of the
elements is different in the two types of statistics. A
dominant reason for this is the indistinguishability of the
elements in quantum mechanics (resulting directly from
the uncertainty relation). This is by far the most important
effect.
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When counting the number of arrangements of N
elements in quantum statistics, we assume:

1.The elements are indistinguishable.

2. For Bose—Einstein statistics, any number of
elements in the same state are allowed. For Fermi—
Dirac statistics, at most 1 element in each state is
allowed.
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Bose—-Einstein distribution

9i
elei—p)/kT _ 1

n; —

l

(E) = -
fo‘ ( ’ ‘4 pxp(lf‘,{kﬁ—j.) =

1. The elements are indistinguishable, not obeying
exclusion principle.

2. Applied to photon and phonon gases.
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Fermi-Dirac (F-D) distribution
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The elements are indistinguishable, obeying
exclusion principle.

2. Applied to electron gas.
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http://upload.wikimedia.org/wikipedia/commons/1/15/FD_e_mu.jpg
http://upload.wikimedia.org/wikipedia/commons/1/15/FD_e_mu.jpg
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Homework#9 (Nov. 15, 2010):

(a)Determine the order of magnitude of the fraction of hydrogen atoms in a state
with principle quantum number n = 2 to those in state n = 1 in a gas at 300 K.
(b)Take into account the degeneracy of the states corresponding to quantum
numbers n = 1 and 2 of atomic hydrogen and determine at what temperature
approximately one atom in a hundred is in a state with n = 2.
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