Biosensors - Biosensing principles and figure of merits - Optical biosensors - 1. DNA/protein microarrays - 2. Surface plasmon resonance (SPR) - 3. Surface-enhanced Raman scattering (SERS) - 4. Zero-mode waveguide - Electrical biosensors - 1. Electrochemical (ECM) sensors - 2. Field-effect transistor (FET) sensors - 3. Nanopore sensors - Mechanical biosensors - 1. Cantilever sensors # Fundamental Design and Operational Considerations for Affinity-Based Biosensors | Structural and design considerations | Operational considerations | |--------------------------------------|---| | Bioaffinity element properties | Sensitivity, selectivity, kinetic parameters, stability | | Assay format | Homogeneous vs heterogeneous reversible, regenerable, disposable continuous, remote, in situ operation assay time | | Sensor material | Immobilization method | | Transducer type | Mechanism of signal transduction | ### **Bioaffinity Elements for Affinity-Based Biosensors** | Bioaffinity
element | Types of analyte | Examples | |--|---|--| | Antibodies | Low mol-wt compounds | Drugs, hormones, environmental pollutants (pesticides, explosives, and so forth) | | | Proteins | Antipathogen antibodies Toxins, insulin, serum proteins | | | Microorganisms | Candida albicans, Escherichia coil,
Salmonella typhimurium,
Salmonella dysenteria, Yersinia pestis | | Biological receptors -Interleukin-6 receptor -Acetylcholine receptor | Physiological ligands Pharmacological ligands Toxicological ligands | Nicotine, carbamyl choline
Bungarotoxin | | Nucleic acids | Identification of specific sequences, Detection of intercalators | Legionella pneumophila Ethidium, PAHs | | CI
CI
Characteristics | Detection of intercalators | Editididiti, i At is | ### **Signal Transducers for Affinity-Based Biosensors** | Transducer type | Assay format | |---|--| | Optical Fluorescence energy transfer Bioluminescence TIRFa SPRb Grating coupler | Direct Indirect Direct Direct Direct | | Electrochemical Potentiometric Amperometric Conductimetric | Indirect, direct
Indirect
Indirect | | Thermal | Indirect | | Acoustic
QCM ^c | Direct | ^aTotal internal reflectance fluorescence ^bSurface plasmon resonance $^{{}^}cQuartz\ crystal\ microbalance$ # Basic components of an affinity-based biosensor? - Analyte - Biorecognition (sensing) element - Transducer (reporting element) # Types of Applications - Medical diagnostics (pathogens, diseases) - Drug target discovery - Forensics - Food and environmental - Genomic/Proteomic research - DNA analysis - mRNA analysis - Protein analysis - Disease-Gene association - Pharmacogenomics /pharmacogenetics ### Monitor molecular interactions **Protein interactions** **Small molecules** **Membrane proteins** **Nucleic acids** **Cell and viruses** **Carbohydrates** ### Direct assay format of biosensors ### Indirect assay format with competitive binding ### Indirect assay format with non-competitive binding # Enzyme-linked immunosorbent assay (ELISA) a biochemical technique used mainly in immunology to detect the presence of an antibody or an antigen in a sample. A 96-well microtiter plate being used for ELISA (1) (2) (3) (4) (5) ### **Sandwich ELISA** # A cytokine ELISA assay ### A Cytokine ELISA Assay Coat microwell with anti-cytokine capture antibody Animation provided by: www.immunospot.com vww.elispot-analyzers.de www.elispot.cn www.elispot.co.jp # Principles of DNA Hybridization & Sensing ### **Different DNA hybridization array formats** | | Probe generations method | Array size | Labeling and detection method | Hybridization
method | Commercial suppliers | |--------------------------------|--|---|---|-------------------------|--| | Microarrays [5] | Robotic printing
or piezoelectric
inkjet printing
of PCR products | 2.5 cm by 7.5 cm slide
with approximately
10000 genes | Fluorescent tag
labeling prior to
hybridization;
fluorophore added
after hybridization
and washing | Passive | Agilent Technologies,
Genometrix, Operon
Technologies,
Stratagene | | Oligonucleotide
arrays [6] | In-situ on the surface of the matrix | 1 cm by 1 cm slide with
approximately 40 000
genes; Affymetrix's
GeneChip can contain
up to 400 000 different
oligonucleotides and
is the densest array | Fluorescent tag labeling; fluorophore detector is added after hybridization | | Affymetrix | | Macroarrays [7] | Probes are spotted
onto nylon, plastic
or nitrocellulose
solid matrix | 8 cm by 12 cm with
approximately 200 to
5000 genes | Radioactivity tag
labeling;
phosphorimager
detector | Passive | Clontech
Laboratories,
Research Genetics | | Microelectronics
arrays [8] | Probes are drawn
by electric current
to chip surface | Number of genes is
dependent on the
number of electrodes
that can be made onto
the surface of the array | Fluorescent tag
labeling and
fluorescent detection | Active | Nanogen | ### Different array generation approaches | | Spatial resolution | Cost | Probe length | Ease of use | |-----------------------|--|---|----------------------------|--| | Robotic microprinting | Poorest | Most cost effective | Not restricted | Requires cloning and PCR steps | | Photolithography | Highest | Highest as expensive equipments and particular expertise are required | Limited to 25-mers or less | Photolithography method is protected by patent and currently only Affymetrix has the rights to use this method | | Inkjet printing | In between robotic printing and photolithography | In between robotic printing and photolithography | 5–75-mers | Equipments need strict maintenance and experiment must be performed in a clean and uncontaminated environment | ### The first GeneChip (late 1980's) #### **Revolutionary idea:** Semiconductor manufacturing techniques could be united with advances in combinatorial chemistry to build vast amounts of biological data on a small glass chip. Source: www.affymetrix.com By Stephen P.A. Fodor, Ph.D., Affymetrix Founder, Chairman and CEO ### The first GeneChip (late 1980's) ### Photolithographic synthesis of oligonucleotide probe arrays Source: www.affymetrix.com # Affymatrix GeneChip GeneChip® Probe Array **Hybridized Probe Feature** Single stranded, fluorescently labeled DNA target Oligonucleotide probe Each probe feature contains millions of copies of a specific oligonucleotide probe Over 200,000 different probes complementary to genetic information of interest 1.28 cm Image of Hybridized Probe Array Source: www.affymetrix.com Ideal microarray spots ### Printhead with a series of pins (robotic microprinting) Source: http://cmgm.stanford.edu/pbrown/ ### **Biochip Fabrication by inkjet/piezoelectric methods** Orifice plate with 40 µm diameter orifices #### Data from inkjet printing method | Dispense volume | Spot sizes | Spot densities | Delivery speed | | |-----------------|------------|--------------------------------|-----------------|--| | 50 pL | 125–175 μm | 500-2500 spots/cm ² | 100–500 spots/s | | # Detection limits of various techniques for DNA hybridization | D () (1 1 | D () 1' 1' | 0 1 | D: 1: :/ | D. C | |-----------------------------|--------------------|----------|-------------------------------|------------------------| | Detection method | Detection limit | Sample | Detection limit | Refs | | | (concentration of | volume | (no. of hybridized | | | | target molecules) | | target molecules) | | | | | | | | | Flourescence | 5 pM | 10–50 μl | 10 ³ per 100 x 100 | Taton et al., 2000; | | | | | μm spot | Duggan et al., 1999 | | "Scanometric" | 50 fM | | | Taton et al., 2000 | | (nanoparticle-based) | | | | , | | | 10. M | | (108 500 | N. 1 . 2001 | | Surface plasmon resonance | 10 nM | | 6 x 10 ⁸ per 500 x | Nelson et al., 2001 | | (label-free) | | | 500 μm spot | | | Surface plasmon resonance | 10 pM | | | He et al., 2000 | | (Au-amplified) | 1 | | | , | | | | | | | | Dye-containing liposomes | 220 pM | | 6×10^8 | Rule et al., 1996 | | BARC sensor (magnetic | 100 fM (using | | | Edelstein et al., 2000 | | beads) | optical detection) | | | | | Microcantilever deflection | 400 nM | | 10 ¹⁰ | Fritz et al., 2000 | | Wherecantile ver deflection | 400 IIIvi | | 10 | 11112 Ct al., 2000 | | Molecular beacons | 100 pM | 10 μl | | Steemers et al., 2000 | | electrochemical | 100pM-100 fM | 500 μ1 | 10 ⁸ per 100 μm | Umek et al., 2001 | | | | | pad | Motorola Life | | | | | | sciences data | | | | | | sciciices uata | | Optical interference | 10 fM | 10–25 μl | | Jenison et al., 2001 | | • | | • | | | ## Nano Optical Biosensors - Manipulation and confining of light at sub-wavelength length scale by engineering surface plasmons - Biomolecular signal amplifications - Unique opportunities for interfacing with biomolecules especially proteins and drug molecules at extremely small spatial scales, for practical applications such as biosensing, single molecule kinetics, and drug safety and efficacy studies - a. NanoPair DNA sensor - b. NanoBurger— Engineered Hotspots for Protein SERS - c. Nanopore sensors ### Surface Plasmon Resonance (SPR) Enhanced Raman Signals (SERS) $$k = \frac{\omega}{c} \sqrt{\frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2}}$$ #### **Advantages of SERS:** - 1. Direct molecular fingerprints - 2. Multiplexed detection - 3. Single-molecule sensitivity - 4. No photobleaching #### State-of-the-art of SERS substrates: - 1. Colloid particles, not compatible with microfabrication processes - 2. Unrepeatable enhancement factor # **SPR-Kretschmann configuration** ### An SPR apparatus and its schematic representation A Rasooly and K E Herold (eds.), Methods in Molecular Biology: Biosensors and Biodetection, Vol. 503 DOI: 10.1007/978-1-60327-567-5_1 ### SPR sensor - (a) Relationship between incident angle θ and intensity of reflected light before (solid line) and after (dashed line) protein adsorption. For real-time monitoring, the intensity of reflected light is monitored at a fixed angle throughout the measurement (arrow). - (b) Schematic representation of SPR-based sandwich-type immunoassay. # Signal amplification methods for detection of a minute amount of tumor marker Secondary antibody Tumor marker — Primary antibody Primary antibody Secondary antibody — Primary antibody — Primary antibody ### SPR-adsorption-data SPR data measured during layer-by-layer self-assembly of PDDACl and Na-montmorillonite clay on gold nanofilm (ca. 38 nm thick). Measurement data from Tamas Haraszti (at that time Department of Colloid Chemistry, University of Szeged, 1997) ### Biocore SPR sensor platform ### Biocore SPR sensor platform # Biocore SPR sensor platform-Kinetics # The Sensorgram ### Raman Spectroscopy (SERS) ### Why SERS Sensitive, signals as molecular fingerprints, no photo-bleaching ### Current method Ag/Au colloidal particles, core-shell colloids, roughened Ag films (SERGen) ### **Open Questions** No compatibility with microfabrication, No integration with microfluidic Devices, un-repeatable enhancement factor Raman Spectroscopy ### **ECM SNP Detection** #### **Electrochemical detection** Use of 2 probes = double specificity # ECM SNP Detection Umek, R. M.; et al. Electronic Detection of Nucleic Acids: A Versatile Platform for Molecular Diagnostics. *J. Mol. Diagn.* 2001, 3, 74. ### ACV detection of DNA hybridization events Umek, R. M.; et al. Electronic Detection of Nucleic Acids: A Versatile Platform for Molecular Diagnostics. *J. Mol. Diagn.* 2001, 3, 74. NS Swami, CF Chou, and R Terberueggen. Two-Potential Electrochemical Probe for Study of DNA Immobilization. *Langmuir 2005*, *21*, 1937-1941. #### Cross section of an n-type MOSFET (metal oxide semiconductor field effect transistor) # Field effect transistors (FETs) as transducers in electrochemical sensors http://csrg.ch.pw.edu.pl/tutorials/isfet/ # Nanowire sensor array Zheng GF, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. NAT BIOTECH 23, 1294-1301 (2005). #### **Biosensors Based on Cantilevers** #### Cantilever surface functionalization in real time (A) Example of a cantilever surface functionalization in real time. Each one of the layers formed over the surface produce a cantilever bending. (B) Real-time monitoring of an antibody direct detection and a competitive immunoassay. The number of antibodies free in solution able to binding the cantilever surface is reduced due to the binding with the DDT free in solution. The cantilever surface was regenerated with 100 mM HCl (100 ml) to break the hapten/antibody complex; (M. Alvarez et al. (2003) Development of nanomechanical biosensors for detection of the pesticide DDT. *Biosen. Bioelectron.* 18, 649–653). ### Integrated Genetic Analysis System ### Integrated Genetic Analysis System RH Liu et al. ANAL. CHEM. 76, 1824 (2004) #### **Real-time Single Molecule Sequencing** #### **Helicos platform** http://www.helicosbio.com/ #### Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations M. J. Levene, J. Korlach, W. W. Turner, M. Foquet, H. G. Craighead, W. W. Webb Optical approaches for observing the dynamics of single molecules have required pico- to nanomolar concentrations of fluorophore in order to isolate individual molecules. However, many biologically relevant processes occur at micromolar ligand concentrations, necessitating a reduction in the conventional observation volume by three orders of magnitude. We show that arrays of Metal zero-mode waveguides consisting of subwavelength holes in a metal film provide a simple and highly parallel means for studying single-molecule dynamics at micromolar concentrations with microsecond temporal resolution. Fused effectiveness of zero-mode waveguides for performing single-molecule experiments at high concentrations. Science 299, 682-686, 2003 An apparatus for single-molecule enzymology using zero-mode waveguides. #### **Real-time Single Molecule Sequencing** http://www.pacificbiosciences.com/ Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13770–13773, November 1996 Biophysics #### **Nanopore DNA Sequencing** ### Characterization of individual polynucleotide molecules using a membrane channel JOHN J. KASIANOWICZ*, ERIC BRANDIN†, DANIEL BRANTON†‡, AND DAVID W. DEAMER§ *Biotechnology Division, National Institute of Science and Technology, 222/A353, Gaithersburg, MD 20899; †Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138; and *Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064 A single α -hemolysin channel (Ø =1.5 nm) embedded in a lipid bilayer ## Solid State Nanopore Dekker group, Nat. Mater. 2003 D. Branton, J. Golovchenko, Harvard # The Nobel Prize in Physics 2010 Andre Geim, Konstantin Novoselov The Nobel Prize in Physics 2010 was awarded jointly to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene" Title: Electric field effect in atomically thin carbon films Author(s): Novoselov KS, Geim AK, Morozov SV, et al. Source: SCIENCE Volume: 306 Issue: 5296 Pages: 666-669 Published: OCT 22 2004 Times Cited: 3,429 ### Graphene C60 fullerene molecules, carbon nanotubes, and graphite can all be thought of as being formed from graphene sheets, *i.e. single layers of carbon atoms arranged in a honeycomb lattice.*A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007). # Detection of Nucleic Acids with Graphene Nanopores Tammie Nelson, Bo Zhang and Oleg V. Prezhdo, Nano Lett., 2010, 10 (9), pp 3237–3242 # Graphene as a subnanometre trans-electrode membrane S Garaj et al. Nature 467, 190-193 (09 September 2010), doi:10.1038/nature09379 #### Trans-electrode *I–V* curves Results for an as-grown graphene membrane (dashed line) and a membrane with an 8-nm pore (solid line). The ionic conductance of the pore is quantitatively in agreement with the modelling presented in the text. Applying bias voltages in excess of ~250 mV gradually degraded the insulating properties of the membranes. Insets, TEM images: top, a mounted graphene membrane; bottom, the 8-nm pore. # Average nanopore current blockades versus blockade duration during DNA translocation DNA (16 µg ml⁻¹) was electrophoretically driven through a 5-nm-diameter graphene pore by an applied voltage bias of 160 mV. The graphene membrane separated two fluid cells containing unbuffered 3 M KCI solutions, pH 10.4. Insets, typical current–time traces for two translocation events sampled from among those pointed to by the arrows. The hyperbolic curve corresponds to freely translocating events at a fixed e.c.d. (electronic charge deficit) Encircled events are delayed by graphene–DNA interactions. #### References: - I. Biosensors and biodetection: methods and protocols / edited by Avraham Rasooly, Keith E. Herold. New York: Humana Press, c2009. - 2. Electrochemical sensors, biosensors, and their biomedical applications/ edited by Xueji Zhang, Huangxian Ju, Joseph Wang Imprint Amsterdam; Boston: Academic Press, 2008. - 3. Biosensors: a practical approach / edited by Jonathan M. Cooper, Anthony E.G. Cass Imprint New York: Oxford University Press, 2004. - 4. Single-Molecule Detection in Solution Methods and Applications / edited by Christoph Zander, Jörg Enderlein, and Richard A. Keller: Wiley-VCH, 2002.