Multi-electron Atom

The atomic orbitals of hydrogen-like atoms are solutions to the Schrödinger equation in a spherically symmetric potential. In this case, the potential term is the potential given by Coulomb's law:

$$V(r) = -\frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r}$$

where

- ε_0 is the permittivity of the vacuum,
- •Z is the atomic number (number of protons in the nucleus),
- •e is the elementary charge (charge of an electron),
- *r* is the distance of the electron from the nucleus. After writing the wave function as a product of functions:

$$\psi(r,\theta,\phi) = R(r)Y_{lm}(\theta,\phi)$$

(in <u>spherical coordinates</u>), where Y_{lm} are spherical harmonics, we arrive at the following Schrödinger equation:

$$\left[-\frac{\hbar^2}{2\mu} \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial R(r)}{\partial r} \right) - \frac{l(l+1)R(r)}{r^2} \right) + V(r)R(r) \right] = ER(r),$$

where μ is, approximately, the mass of the electron. More accurately, it is the reduced mass of the system consisting of the electron and the nucleus.

$$\mu = \frac{m_N m_e}{m_N + m_e} \qquad \mu \approx m_e$$

Different values of l give solutions with different angular momentum, where l (a non-negative integer) is the quantum number of the orbital angular momentum. The magnetic quantum number m (satisfying $-l \le m \le l$) is the (quantized) projection of the orbital angular momentum on the z-axis.

Quantum numbers

The quantum numbers n, l and m are integers and can have the following values:

$$n = 1, 2, 3, 4, \dots$$
 $l = 0, 1, 2, \dots, n-1$ $l < n$ $m = -l, -l + 1, \dots, 0, \dots, l-1, l$ $-l \le m \le l$

n	1	2		3		
I	0	0	1	0	1	2
m	0	0	-1, 0, 1	0	-1, 0, 1	-2, -1, 0, 1, 2
# of degeneracy for I	1	1	3	1	3	5
# of degeneracy for <i>n</i>	1	4		9		

Energy

$$E_n = -\left(\frac{Z^2 \mu e^4}{32\pi^2 \epsilon_0^2 \hbar^2}\right) \frac{1}{n^2} = -\left(\frac{Z^2 \hbar^2}{2\mu a_\mu^2}\right) \frac{1}{n^2}$$

For Hydrogen atom

$$E_n = -13.6 \text{ eV/}n^2$$

Electron Spin

Screening (shielding) Effects

$$E_n = -RZ^2/n^2$$

$$E_n = -RZ_{eff}^2/n^2$$

$$Z_{\text{eff}} = 1.3$$

Aufbau principle

SUMMARY

The energy eigenfunction for the state described by the quantum numbers (n, ℓ, m_{ℓ}) is of the form:

$$\Psi_{n\ell_{m\ell}}(r,\theta,\phi) = A_{n\ell_{m\ell}} R_{n\ell}(r) \Upsilon_{\ell}^{m\ell}(\theta,\phi)$$

Table 7-2 in the book (pg. 243) lists the first ten eigenfunctions. The table is reproduced below.

There are three quantum numbers:

$$n=1,2,3,...$$
 (Principal quantum no.)
$$\ell=0,1,2,...,n-1$$
 (Azimuthal quantum no.)
$$m_{\ell}=-\ell,-\ell+1,...,0,...,\ell-1,\ell$$
 (Magnetic quantum no.)

The energy of any state only depends on the principal quantum number (for now!) and is given by:

$$E_n = -\frac{Z^2}{n^2} (13.6 \text{ eV})$$