
The atomic orbitals of hydrogen-like atoms are solutions to the Schrödinger 
equation in a spherically symmetric potential. In this case, the potential term is 
the potential given by Coulomb's law:

where
•ε0 is the permittivity of the vacuum, 
•Z is the atomic number (number of protons in the nucleus), 
•e is the elementary charge (charge of an electron), 
•r is the distance of the electron from the nucleus. 
After writing the wave function as a product of functions:

(in spherical coordinates), where Ylm are spherical harmonics, we arrive at the 
following Schrödinger equation:
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where μ is, approximately, the mass of the electron. More 
accurately, it is the reduced mass of the system consisting of the 
electron and the nucleus.

Different values of l give solutions with different angular 
momentum, where l (a non-negative integer) is the quantum 
number of the orbital angular momentum. The magnetic 
quantum number m (satisfying ) is the (quantized) 
projection of the orbital angular momentum on the z-axis. 



In addition to l and m, a third integer n > 0, emerges from the boundary 
conditions placed on R. The functions R and Y that solve the equations above 
depend on the values of these integers, called quantum numbers. It is 
customary to subscript the wave functions with the values of the quantum 
numbers they depend on. The final expression for the normalized wave 
function is:

where:
• are the generalized Laguerre polynomials in the definition given here.

•

Here, μ is the reduced mass of the nucleus-electron system, where mN is 
the mass of the nucleus. Typically, the nucleus is much more massive than the 
electron, so . 
• function is a spherical harmonic. 

Wave function



It is customary to multiply the Φ(φ) and Θ(θ) functions to form the so-called 
spherical harmonic functions which can be written as:
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The first few spherical harmonics are given below:

Y 00= 1

Y 0
1= cosθ

Y ±1
1= (1-cos2θ)1/2 e±iφ

Y 0
2= 1-3cos2θ

Y ±1
2= (1-cos2θ)1/2cosθ e±iφ

Y ±2
2= (1-cos2θ) e±iφ
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Energy
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For Hydrogen atom

En = ‐13.6 eV/n2



Quantum numbers

The quantum numbers n, l and m are integers and can have the following 
values:

n 1 2 3

l 0 0 1 0 1 2

m 0 0 ‐1, 0, 1 0 ‐1, 0, 1 ‐2, ‐1, 0, 1, 2

# of degeneracy 
for l 1 1 3 1 3 5

# of degeneracy 
for n 1 4 9



Each atomic orbital is associated with an angular momentum l. It is a vector 
operator, and the eigenvalues of its square l2 ≣ lx2 + ly2 + lz2 are given by:

The projection of this vector onto an arbitrary direction is quantized. If the 
arbitrary direction is called z, the quantization is given by:

where m is restricted as described above. Note that l2 and lz commute and have 
a common eigenstate, which is in accordance with Heisenberg’s uncertainty 
principle. Since lx and ly do not commute with lz, it is not possible to find a state 
which is an eigenstate of all three components simultaneously. Hence the values 
of the x and y components are not sharp, but are given by a probability function 
of finite width. The fact that the x and y components are not well-determined, 
implies that the direction of the angular momentum vector is not well determined 
either, although its component along the z-axis is sharp.

Angular momentum
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SUMMARY

The energy eigenfunction for the state described by the quantum numbers (n,l,ml) is of the form:

Table 7-2 in the book (pg. 243) lists the first ten eigenfunctions.  The table is reproduced below.

There are three quantum numbers:

n = 1, 2 ,3,... (Principal quantum no.)

l = 0, 1, 2,..., n-1 (Azimuthal quantum no.)

ml = -l, -l+1,..., 0,..., l-1, l (Magnetic quantum no.)

The energy of any state only depends on the principal quantum number (for now!) and is given by:



Homework#2 (Oct. 12, 2009):

1.(a) Evaluate, in electron volts, the energies of the three levels of the 
hydrogen atom in the states for n = 1, 2, 3.
(b) Then calculate the frequency in hertz, and the wavelength in
angstroms, of all the photons that can be emitted by the atom in
transitions between these levels.

2. Verify by substitution that the ground state eigenfunction  ψ310, and the 
ground state eigenvalue E3, satisfy the time-independent Schroedinger 
equation for the hydrogen atom. 


