One-electron Atom

The atomic orbitals of hydrogen-like atoms are solutions to the Schrödinger equation in a spherically symmetric potential. In this case, the potential term is the potential given by Coulomb's law:

$$V(r) = -\frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r}$$

where

- ε_0 is the permittivity of the vacuum,
- •Z is the atomic number (number of protons in the nucleus),
- •e is the elementary charge (charge of an electron),
- *r* is the distance of the electron from the nucleus. After writing the wave function as a product of functions:

$$\psi(r, \theta, \phi) = R(r)Y_{lm}(\theta, \phi)$$

(in <u>spherical coordinates</u>), where Y_{lm} are spherical harmonics, we arrive at the following Schrödinger equation:

$$\left[-\frac{\hbar^2}{2\mu} \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial R(r)}{\partial r} \right) - \frac{l(l+1)R(r)}{r^2} \right) + V(r)R(r) \right] = ER(r),$$

where μ is, approximately, the mass of the electron. More accurately, it is the reduced mass of the system consisting of the electron and the nucleus.

$$\mu = \frac{m_N m_e}{m_N + m_e} \qquad \mu \approx m_e$$

Different values of l give solutions with different angular momentum, where l (a non-negative integer) is the quantum number of the orbital angular momentum. The magnetic quantum number m (satisfying $-l \le m \le l$) is the (quantized) projection of the orbital angular momentum on the z-axis.

Wave function

In addition to I and m, a third integer n > 0, emerges from the boundary conditions placed on R. The functions R and Y that solve the equations above depend on the values of these integers, called *quantum numbers*. It is customary to subscript the wave functions with the values of the quantum numbers they depend on. The final expression for the normalized wave function is:

$$\psi_{nlm} = R_{nl}(r) Y_{lm}(\theta, \phi)$$

$$R_{nl}(r) = \sqrt{\left(\frac{2Z}{na_{\mu}}\right)^{3} \frac{(n-l-1)!}{2n[(n+l)!]}} e^{-Zr/na_{\mu}} \left(\frac{2Zr}{na_{\mu}}\right)^{l} L_{n-l-1}^{2l+1} \left(\frac{2Zr}{na_{\mu}}\right)$$

where:

• L_{n-l-1}^{2l+1} are the generalized Laguerre polynomials in the definition given here.

$$\bullet \quad a_{\mu} = \frac{4\pi\varepsilon_0\hbar^2}{\mu e^2} = \frac{m_e}{\mu}a_0$$

Here, $\,\mu$ is the reduced mass of the nucleus-electron system, where m_N is the mass of the nucleus. Typically, the nucleus is much more massive than the electron, so $\mu \approx m_e$.

• $Y_{lm}(\theta, \phi)$ function is a <u>spherical harmonic</u>.

It is customary to multiply the $\Phi(\phi)$ and $\Theta(\theta)$ functions to form the so-called *spherical harmonic functions* which can be written as:

$$\mathbf{Y}_{\ell}^{m\ell}(\theta,\phi) = \mathbf{\Theta}_{\ell m\ell}(\theta) \, \mathbf{\Phi}_{m\ell}(\phi)$$

The first few spherical harmonics are given below:

$$Y_0^0 = 1$$

$$Y_1^0 = \cos\theta$$

$$Y^{\pm 1}_{1} = (1-\cos^{2}\theta)^{1/2} e^{\pm i\phi}$$

$$Y_{2}^{0} = 1-3\cos^{2}\theta$$

$$Y_{2}^{\pm 1} = (1-\cos^{2}\theta)^{1/2}\cos\theta e^{\pm i\phi}$$

$$Y^{\pm 2}_2 = (1-\cos^2\theta) e^{\pm i\phi}$$

Table 7-2	Some	Eigenfunctions	for	the	One-Electron	Atom
-----------	------	----------------	-----	-----	--------------	------

Quan	tum N	lumbers	
n	1	mı	Eigenfunctions
1	0	0	$\psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$
2	0	0	$\psi_{200} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$
2	1	0	$\psi_{210} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \cos \theta$
2	1	±1	$\psi_{21\pm 1} = \frac{1}{8\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \sin \theta \ e^{\pm i\varphi}$
3	0	0	$\psi_{300} = \frac{1}{81\sqrt{3\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(27 - 18\frac{Zr}{a_0} + 2\frac{Z^2r^2}{a_0^2}\right) e^{-Zr/3a_0}$
3	1	0	$\psi_{310} = \frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(6 - \frac{Zr}{a_0}\right) \frac{Zr}{a_0} e^{-Zr/3a_0} \cos \theta$
3	1	±1	$\psi_{31\pm 1} = \frac{1}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(6 - \frac{Zr}{a_0}\right) \frac{Zr}{a_0} e^{-Zr/3a_0} \sin\theta \ e^{\pm i\varphi}$
3	2	0	$\psi_{320} = \frac{1}{81\sqrt{6\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Z^2 r^2}{a_0^2} e^{-Zr/3a_0} (3\cos^2\theta - 1)$
3	2	±1	$\psi_{32\pm 1} = \frac{1}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Z^2 r^2}{a_0^2} e^{-Zr/3a_0} \sin\theta \cos\theta e^{\pm i\varphi}$
3	2	±2	$\psi_{32\pm2} = \frac{1}{162\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Z^2 r^2}{a_0^2} e^{-Zr/3a_0} \sin^2\theta \ e^{\pm 2i\varphi}$

Energy

$$E_n = -\left(\frac{Z^2 \mu e^4}{32\pi^2 \epsilon_0^2 \hbar^2}\right) \frac{1}{n^2} = -\left(\frac{Z^2 \hbar^2}{2\mu a_\mu^2}\right) \frac{1}{n^2}$$

For Hydrogen atom

$$E_n = -13.6 \text{ eV/}n^2$$

Quantum numbers

The quantum numbers n, l and m are integers and can have the following values:

$$n = 1, 2, 3, 4, \dots$$
 $l = 0, 1, 2, \dots, n-1$ $l < n$ $m = -l, -l + 1, \dots, 0, \dots, l-1, l$ $-l \le m \le l$

n	1		2	3		
I	0	0	1	0	1	2
m	0	0	-1, 0, 1	0	-1, 0, 1	-2, -1, 0, 1, 2
# of degeneracy for I	1	1	3	1	3	5
# of degeneracy for <i>n</i>	1		4	9		

Angular momentum

Each atomic orbital is associated with an angular momentum I. It is a <u>vector</u> operator, and the eigenvalues of its square $I = I_x^2 + I_y^2 + I_z^2$ are given by:

$$l^2 Y_{lm} = \hbar^2 l(l+1) Y_{lm}$$

The projection of this vector onto an arbitrary direction is quantized. If the arbitrary direction is called *z*, the quantization is given by:

$$l_z Y_{lm} = \hbar m Y_{lm}$$

where m is restricted as described above. Note that ℓ and ℓ_z commute and have a common eigenstate, which is in accordance with Heisenberg's uncertainty principle. Since ℓ_x and ℓ_y do not commute with ℓ_z , it is not possible to find a state which is an eigenstate of all three components simultaneously. Hence the values of the ℓ_z and ℓ_z components are not sharp, but are given by a probability function of finite width. The fact that the ℓ_z and ℓ_z components are not well-determined, implies that the direction of the angular momentum vector is not well determined either, although its component along the ℓ_z -axis is sharp.

SUMMARY

The energy eigenfunction for the state described by the quantum numbers (n, ℓ, m_{ℓ}) is of the form:

$$\Psi_{n\ell_{m\ell}}(r,\theta,\phi) = A_{n\ell_{m\ell}} R_{n\ell}(r) \Upsilon_{\ell}^{m\ell}(\theta,\phi)$$

Table 7-2 in the book (pg. 243) lists the first ten eigenfunctions. The table is reproduced below.

There are three quantum numbers:

$$n=1,2,3,...$$
 (Principal quantum no.)
$$\ell=0,1,2,...,n-1$$
 (Azimuthal quantum no.)
$$m_{\ell}=-\ell,-\ell+1,...,0,...,\ell-1,\ell$$
 (Magnetic quantum no.)

The energy of any state only depends on the principal quantum number (for now!) and is given by:

$$E_n = -\frac{Z^2}{n^2} (13.6 \text{ eV})$$

Homework#2 (Oct. 12, 2009):

- 1.(a) Evaluate, in electron volts, the energies of the three levels of the hydrogen atom in the states for n = 1, 2, 3.
- (b) Then calculate the frequency in hertz, and the wavelength in angstroms, of all the photons that can be emitted by the atom in transitions between these levels.
- 2. Verify by substitution that the ground state eigenfunction ψ_{310} , and the ground state eigenvalue E_3 , satisfy the time-independent Schroedinger equation for the hydrogen atom.