Plasmon resonance

1. What is plasmon ?

Plasmons are explained in the classical picture using the Drude model of
metals. The metal is treated as a three dimensional crystal of positively
charged ions, and a delocalized electron gas is moving in a periodic
potential of this ion grid.
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and, consequently, x must be expressed as a tensor. We shall find that
the x tensor of a crystal summarizes most of its optical properties.

6.3 The General Wave Equation

In our study of solid-state optics we shall be concerned only with
nonmagnetic, electrically neutral media. Hence M and p are both
zero. Maxwell’s equations, in the form expressed by Equations (6.1)
to (6.4), then reduce to the following:

-_, 9H

VXE=—p ", ©6.10)
—¢ 9E 9P

VXH=e o +77+] 6.11)
_ 1

V-E=-_V-P )

. i
V-H=0 ©6.13)

The general wave equation for the E field is obtained by taking the
curl of Equation (6.10) and the time derivative of Equation (6.11) and
eliminating H. The result is

1 9%E %P i)
VX(VXE)-}'?W:—#OW—M’&_‘I} 6.14)

The two terms on the right-hand side of the above equation are
called source terms. They stem from the presence of polarization
charges and conduction charges, respectively, within the medium.
The way in which the propagation of light is affected by the sources is
revealed by the solution of the wave equation when the source terms
are included. In the case of nonconducting media the polarization
term —u, 3%P/3¢ is of importance. It turns out that this term leads to
an explanation of many optical effects, including dispersion, absorp-
tion, double refraction, and optical activity to mention only a few. In
the case of metals it is the conduction term —u, 3J/3¢ that is impor-
tant, and the resulting solutions of the wave equation explain the large
opacity and high reflectance of metals. Both source terms must be
taken into account in the case of semiconductors. The result is a
rather complicated wave equation and the solutions are somewhat dif-
ficult to interpret. Nevertheless, a qualitative description of many of
the optical properties of semiconductors is furnished by classical
theory. A rigorous treatment of semiconductor optics must await the
application of quantum theory.

———

6.4 + PROPAGATION OF LIGHT IN ISOTROPIC DIELECTRICS

6.4 Propagation of Light in
Isotropic Dielectrics. Dispersion

In a nonconducting, isotropic medium, the electrons are permanently
bound to the atoms comprising the medium and there is no preferen-
tial direction. This is what is meant by a simple isotropic dielectric
such as glass. Suppose that each electron, of charge —e, in a dielectric
is displaced a distance r from its equilibrium position. The resulting
macroscopic polarization P of the medium is given by

P =—Ner : o 615)

where N is the number of electrons per u;it volume. If the displace-
ment of the electron is the result of the application of a static electric
field E, and if the electron is elastically bound to its equilibrium posi-
tion with a force constant K, then the force equation is

—eE = Kr (6.16)
The static polarization is therefore given by

_ Ne?
K

P E ‘ 6.17)
However, if the impressed field E varies with time, the above equa-
tion is incorrect. In order to find the true polarization in this case, we
must take the actual motion of the electrons into account. To do this
we consider the bound electrons as classical damped harmonic os-
cillators. The differential equation of motion is
d*r dr
—_ = =— 6.18
mAdtZ-i-m'y dt+Kr eE (6.18)
The term my (dr/dt) represents a frictional damping force that is
proportional to the velocity of the electron, the proportionality con-
stant being written as my.!
Now suppose that the applied electric field varies harmonically

with time according to the usual factor e ™. Assuming that the mo- .

tion of the electron has the same harmonic time dependence, we find
that Equation (6.18) becomes

(—mw?—iomy + K)r =—¢E (6.19)
Consequently, the polarization, from Equation (6.15), is given by
2
P= i E (6.20)

—mo?®—iomy* K

! The magnetic force evXB is neglected here. For electromagnetic waves, this
force is normally much smaller than the electric force eE.

5
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It reduces to the static value, Equation (6.17), when o = 0. Thus for a
given amplitude of the impressed electric field, the amount of polar-
ization varies with frequency. The phase of P, relative tc¢ that of the
electric field, also depends on the’frequency. This is shown by the
presence of the imaginary term in the denominator.
A more significant way of writing Equation (6.20) is
Ne?lm

P= =y E o 6.21)

in which we have introduced the abbreviation w, given by

Wy = 4 f% (6.22)

This is the effective resonance frequency of the bound electrons.
The polarization formula (6.21) is similar to the amplitude formula
for a driven harmonic oscillator, as indeed it should be, since it is the
displacement of the elastically bound electrons that actually consti-
tutes the polarization. We should therefore expect to find an optical

resonance phenomenon of some kind occurring for light frequencies

in the neighborhood of the resonance frequency w,. As we shall
presently see, this resonance phenomenon is manifest as a large
change in the index of refraction of the medium and also by a strong
absorption of light at or near the resonance frequency.

To show how the polarization affects the propagation of light, we
return to the general wave equation (6.14). For a dielectric there is no
conduction term. The polarization is given by Equation (6.21). Hence
we have

1 3%E _ —poNe?

VX(VXE)-{-?W_ m <

2
1 ) ki (6.23)

we? — w? — iyw/ 9t*

Also, from the linear relationship between P and E, it follows from

(6.12) that V- E=0. Consequently, VX (VX E)=—V2E, and the )

above wave equation reduces to the somewhat simpler one

1 Ne? 1 I’E
2R — EEATA R
VE= (1 + me;, el — w?— iym) at? €24
after rearranging terms and using the relation 1/c? = pqe,.
Let us seek a solution of the form
E =E, eit¥z¢) (6.25)

This trial solution represents what are called homogeneous plane har-
monic waves. Direct substitution shows that this is a possible solution
provided that

ﬁ/z:‘é’_:<l+Nez .—__1 ) (6.26)

me, we:— w:—iyw,
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The presence of the imaginary term in the denominator implies that
the wavenuraber & must be a complex number. Let us inquire as to
the physical significance of this. We express % in terms-of its real and
imaginary parts as

K =k+ia 6.21)
This amounts to the same thing as introducing a complex index of
refraction

N =n+ix " (6.28)

where
X = —“Ci N 6.29)

Our solution in Equation (6.25) can then be written as
E - Eoe—az ei(kz—wt) (6.30)

The factor e—2* indicates that the amplitude of the wave decreases ex-
ponentially with distance. This means that as the wave progresses,
the energy of the wave is absorbed by the medium. Since the energy
in the wave at a given point is proportional to |E|2, then the energy
varies with distance as e~2**. Hence 2« is the coefficient of absorption
of the medium. The imaginary part  of the complex index of refrac-
tion is known as the extinction index. The two numbers « and « are
related by the equation

o= = K (6.31)
c

The phase factor ei*2~“" indicates that we have a harmonic wave
in which the phase velocity is

w _ €
=2_°¢ 6.32
u= m (6.32)
From Equations (6.26) and (6.29) we have
2
Hr=(n+in)=1+D8 (——2 R ) ©39
me, \wy?> — w? —iyw
Equating real and imaginary parts yields the following equations:
Ne? wy? — w?
2 _k2=1+ o = 6.34)
" K me, ((ﬁ)oz —w??+ ')'2‘-02>
2K ey ((mo2 — )+ vy’ (639

from which the optical parameters n and x may be found.
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Figure 6.1 shows the general way in which n and « depend on
frequency. The absorption is strongest at the resonance frequency w,.
The index of refraction is greater than unity for small frequencies and
increases with frequency as the resonance frequency is approached.
This is the case of “normal” dispersion, which is exhibited by most
transparent substances over the visible region of the spectrum, the
principal resonance frequencies being in the ultraviolet region. At or
near the resonance frequency, however, the dispersion becomes
“anomalous” in the sense that the index of refraction decreases
with increasing frequency.

Anomalous dispersion can be observed experimentally if the sub-
stance is not too opaque at the resonance frequency. For instance,
certain dyes have absorption bands in the visible region of the spec-
trum and exhibit anomalous dispersion in the region of these bands.
Prisms made of these dyes produce a spectrum that is reversed; that
is, the longer wavelengths are refracted more than the shorter
wavelengths.

Now, in the above discussion it has been tacitly assumed that all
of the electrons were identically bound, and hence all had the same
resonance frequencies. In order to take into account the fact that dif-
ferent electrons may be bound differently, we may assume that a cer-
tain fraction f; has an associated resonance frequency w,, a fraction f,
has the resonance frequency w,, and so on. The resulting formula for
the square of the complex index of refraction is of the form

Figure 6.2. Index of refraction and extinction index for a hypothetical sub-
stance with absorption bands in the infrared, visible, and ultravi-
olet regions of the spectrum.

eral dependence of the real and imaginary parts of 4" as determined
by Equation (6.36). This graph is intended to show qualitatively the
case for a substance, such as glass, which is transparent in the visible
region and has absorption bands in the infrared and ultraviolet regions
of the spectrum. In the limit of zero frequency, the square of the
index approaches the value 1+ (Ne¥/me,) 2filw? This is just the
static dielectric constant of the medium.

In the high-frequency region, the theory predicts that the index
should dip below unity and then approach unity from below as
becomes infinite. This effect is actually seen experimentally. The case
of quartz is shown in Figure 6.3. Here the measured index of refrac-
tion of quartz is plotted as a function of wavelength for the appro-
priate region of the spectrum (x-ray region).

If the damping constants y; are vv‘sufﬁciently small so that the terms
v,0 can be neglected in comparison‘to the quantities ,? — »? in Equa-
tion (6.36), then the index of refraction is essentially real and its
square is given by

Sl (L) .
m_1+me“})‘{(@,_(ﬂ2 637
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Figure 6.3. Measured index of refraction of quartz in the x-ray region.

It is possible, by an impirical curve-fitting procedure, to make a
formula of the above type match the experimental data quite well for
many transparent substances. When expressed in terms of wavelength
instead of frequency, the equation is known as Sellmeier’s formula.

6.5 Propagation of Light in Conducting Media

The effects of conduction on the propagation of light through a me-
dium can be treated in much the same manner as the effects of polar-
ization were treated in the preceding section. The difference is that
we are now interested in the conduction term in the general wave
equation, not the poiarization term. Again, owing to the inertia of the
conduction electrons, we cannot merely put J = oE for the current
density where o is the static conductivity. We must consider actual
motion of the electrons under the action of the alternating electric
field of the light wave.

Since the conduction electrons are not bound, there is no elastic
restoring force as there was in the case of polarization. The differen-
tial equation of motion of the electron is therefore of the form

" % +mr7lv=—¢E (6.38)

where v is the velocity of the electron. The frictional dissipation con-
stant is expressed in the form mr~!. This constant is related to the

static conductivity as we shall presently see. Since the current density
is

J=—Nev 6.39)

where N is now the number of conduction electrons per unit volume,
then Equation (6.38) can be expressed in terms of J as follows:

day | __ Ne?
G t7I==,E (6.40)

The decay of a transient current iS gOVEINEQ DY WIS adsuvia~=— -
mogeneous equation

4 ~-1J=0 (6.41)
a1 + 771
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son is J = Joe~'". Thus a transient current will decay
whose solution is J = Joe™™" @ transient current Wi7 “ecay
&1 of its initial value in a time 7. TTuS 1S Cauda wis Feresm -
Now for a static electric field, Equation (6.40) becomes

= Eri—z 6.42)

The static conductivity o is therefore given by
S 643)
o= =T

Let us now assume a harmonic time dependence e” fwt for b(?th
electric field E and the resulting current J in our differential Equation

(6.40). Tt follows that
(—iw + 7)) = lmei E=r7"!¢E (6.44)

Solving for J, we find
J= Tjaiw—‘r E (6.45)
When o = 0, the above equation reduces to J = oE, which is the cor-

rect equation for the static case.
Using the dynamic expression for J, we find that the general

wave Equation (6.14) reduces to

o L PE o OE (6.45)
VE=13%7 T T—iwr ot

For a trial solution we take a simple homogeneous plane-wave solu-
tion of the type
E=E, eix**) (6.47)

where, as in Equation (6.26), Fis assum.ed to be comp
found that % must then satisfy the relation

x? =&2 +¢iwm0 (6.48)
z

For very low frequencies the above formula reduces to the approx-
imate formula

K2 = lopeo (6.49)
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Similarly the real and imaginary parts of /" = n + i« are equal and are

given by
VZmeo 6.51)

. "1;2e so-called “skin depth” § of a metal is that distance at which the
plitude of an electromagnetic wave drops to e~ of its value at the

surface. Thus
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Here we have introduced plasma Jrequency for the metal. It is de-

fined by the relations
Net [igoc?
W, = st p (6.54)

By equating real and imaginary parts in Equation (6.53), we find

(1)2
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frorp .which thc': optical “constants” n and « may be obtained. An
;xphcnt algebraic solution of the above pairs of equations is very cum-
e:isome, henc_e the equations are usually solved numerically for n
gr; ) }‘:e l.;};:cordlfng to the above theory, these are determined entirely
sma frequency w,, the relaxation ti .
e » me 7, and the frequency

Typical relaxation times for metals, as deduced from conductivity
measurements, are of the order of 1013 s, which corresponds to
frequencies in the infrared region of the spectrum. On the other hand
plasma frequencies of metals are typically around 10'* s7', corre-

sponding to the visible and near ultraviolet regions. Figure 6.4 shows
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Figure 6.4. Index of refraction and extinction index versus frequency for a

metal.

the behavior of n and « plotted as functions of e-from Equations
(6.55) and (6.56). As seen from the figure, the index of refraction n is
less than unity for a wide range of frequencies in the region of the
The extinction coefficient « is very large
at low frequencies (long wavelengths). It decreases monotonically
with increasing frequency, becoming very small for frequencies
greater than the plasma frequency. The metal thus becomes transpar-
ent at high frequencies. Qualitative agreement with these predictions
of classical theory is obtained in the case of the alkali metals and
some of the better conductors such as silver, gold, and copper.

For poor conductors and semiconductors, both free electrons and
bound electrons can contribute to the optical properties. Classical’
theory would, accordingly, yield an equation of the type

plasma frequency.

2 2
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for the complex index of refraction. It turns out that quantum theory
gives a similar relation and, in addition, ¢an predict the values of the
various parameters f;, v;, and so forth. The theoretical calculations
are difficult, however, as are also the experimental measurements.
The optics of semiconductors is one of the most active areas of cur-
rent experimental and theoretical research.
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Plasma resonances for various geometries
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