
what the equation describes

No magnetic charges

Charges produce electric field

Changing magnetic flux 
produces electric field

Electric current and 
changing electric flux 
produce magnetic field

Maxwell’s equations



Maxwell’s equations

Charge neutrality, ρ = 0
No direct current, j = 0
Nonmagnetic materials, µr = 1 (µ = µ0) 



Boundary conditions

In inhomogeneous media consisting of 
several dielectrics, the field lines of E, H
will experience discontinuity or bending 
at the boundary
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The boundary conditions for E, H can be derived from Maxwell equations

tangential components:
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normal components:



Electromagnetic waves

Maxwell’s 
wave 
equations:
(in vacuum) 2
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The electromagnetic spectrum
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Electromagnetic waves in matter
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The dependence of the wave speed v and index of refraction n on the wavelength 
λ is called dispersion

What is the wavelength of light in a medium with the refractive index n?
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POLARIZATION 

Illustrating vertical and horizontal 

polarized waves.

Plane Polarized Electromagnetic Waves 



p-polarization:
E-field is parallel to the plane 
of incidence

s-polarization:
E-field is perpendicular to the 
plane of incidence 
(German senkrecht = perpedicular)
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Any linearly polarized radiation can be represented as a superposition of 
p- and s-polarization.
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p-polarized incident radiation will 
create polarization charges at 
the interface. We will show that 
these charges give rise to a 
surface plasmon modes
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creation of the polarization charges

if one of the materials is metal, the electrons 
will respond to this polarization. This will 
give rise to surface plasmon modes

Boundary condition:
(a) transverse component of E is conserved,

(b) normal component of D is conserved



Polarization charges are created at the 
interface between two material. 

The electrons in metal will respond to this 
polarization giving rise to surface plasmon 
modes
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s-polarized incident radiation 
does not create polarization 
charges at the interface. It thus 
can not excite surface plasmon 
modes
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no polarization charges are created →
no surface plasmon modes are excited!
In what follows we shall consider the 
case of p-polarization only

Boundary condition
(note that E-field has a transverse 
component only):

transverse component of E is conserved,

compare with p-polarization:



More detailed theory

Let us check whether p-polarized incident radiation can excite a surface mode
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in x-direction
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we are looking for a localized 
surface mode, decaying into 
both materials

components of E-, H-fields:       E = (Ex, 0, Ez);   H = (0, Hy, 0) 

Thus, the solution can be written as
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solution for a surface plasmon mode:

Let us see whether this solution satisfies Maxwell equation and the boundary conditions:

+
condition imposed on k-vector



ελλ == n
n
vac

mat ;

vacλ vacλmatλ

)1(~ txkie ω−

dielectric n1

knnk 1
1

1
1

22
===

λ
π

λ
π

wave vector in vacuum



dielectric ε1

metall ε2

n1 k

k1x

k1z
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we are looking for a localized surface 
mode, decaying into both materials →
kz has to be imaginary
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The plasmonic dispersion curve lies beyond the 
light cone, therefore the direct coupling of propa-
gating light to plasmonic states is difficult! 
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dielectric εr1

metall εr2

n1 k
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sign of kz:
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k1z and k2z are 
of opposite signs!

recall the condition 
imposed on k-vector:

because k1z and k2z are of opposite signs, 
this condition will be satisfied only if εr1 and 
ε r2 are of opposite signs. This is the case 
when one material is dielectric εr1 >0, and 
the second material is metal, εr1 < 0.

also, recall the condition

( ) 2
2

2
2

2
2 kknk rx ε=>

this condition is always satisfied for metals,
where εr2 < 0
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localized surface mode, 
decaying into both materials

Thus, we have established that on the surface between a metal and dielectric 
one can excite a localized surface mode. This localized mode is called a 
surface plasmon



What is the wavelength of the surface plasmon                ?
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The surface plasmone mode always 
lies beyond the light line, that is it 
has greater momentum than a free 
photon of the same frequency ω



Ideal case: εr1 and εr2 are real (no imaginary components = no losses) 

Dielectric: εr1 >0

Metal: εr2 < 0, |εr2| >> εr1

k

resonant width = 0 →
lifetime = ∞
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Realistic case: εr1 is real, and εr2 is complex,  
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surface plasmon length scales:

dielectric ε1

metall ε2

z

decay into metal

decay into

dielectric propagation length



How to excite a surface plasmon?

dielectric ε1

metall ε2

is it possible to excite a plasmon mode by shining light on a dielectric/metal interface?
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The surface plasmone mode always 
lie beyond the light line, that is it has 
greater momentum than a free 
photon of the same frequency ω.

This makes a direct excitation of a 
surface plasmon mode impossible!



Total internal reflection

Snell’s law of refraction: 1122 sinsin θθ nn =
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dielectric n1

metall 

dielectric n2

θ
n1 k

k1x

k1z

Otto geometry

x-component k1x = n1ksinθ

x-component k2x = n1ksinθ
(x-component is conserved)

to excite a plasmon mode in the region 2: 
k2x > n2k
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Grating

Utilization of a grating to excite a plasmon mode

The grooves in the grating surface break the translation invariance and allow 
kx of the outgoing wave to be different from that of the incoming wave

kx (outgoing) = kx (incoming) ± NG, where G = 2π/d

nk sinθkplasmon reciprocal lattice vectors







Correc tions due to surface scattering  for particles with at 
least one dimension smaller  than the electron mean free path
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