Emerging material: Graphene

- Single atomic layer graphite

Vol 438|10 November 2005|doi:10.1038/nature04233

natur

LETTERS

Two-dimensional gas of massless Dirac fermions in graphene

K. S. Novoselov¹, A. K. Geim¹, S. V. Morozov², D. Jiang¹, M. I. Katsnelson³, I. V. Grigorieva¹, S. V. Dubonos² & A. A. Firsov²

- ISI citation number : 972 (since 2005)
- Graphene focus session in APS March meeting 2007!

Nature podcast

Basics of graphene

Honeycomb structure

- Condensed-matter systems usually described accurately by the Schrödinger equation.
- Electron transport in graphene is governed by Dirac's (relativistic) equation.
- Charge carriers in graphene mimic relativistic particles with zero rest mass and effective speed of light $v_F \approx 10^6 \text{m/s}$.
- Variety of unusual phenomena associated with massless Dirac fermions.

Dispersion relation

Dirac's (relativistic) Hamiltonian

$$\mathbf{H} = \hbar \upsilon_{\mathbf{F}} \mathbf{\sigma} \cdot \mathbf{k} = \hbar \upsilon_{\mathbf{F}} \begin{pmatrix} 0 & k_{x} - ik_{y} \\ k_{x} + ik_{y} & 0 \end{pmatrix}, \quad \mathbf{H} \begin{pmatrix} \psi_{\mathbf{A}} \\ \psi_{\mathbf{B}} \end{pmatrix} = \mathbf{E} \begin{pmatrix} \psi_{\mathbf{A}} \\ \psi_{\mathbf{B}} \end{pmatrix}$$

Pauli matrices for the sublattice index (A,B)

"Pseudospin" state

$$E(\vec{k}) = \pm \upsilon_F \hbar |\vec{k}|, \ \upsilon_F \approx 10^6 \, ms^{-1}$$
 Massless quasiparticle

Angle-resolved photoemission spectroscopy (ARPES)

$$\mathbf{K} = \mathbf{p}/\hbar = \sqrt{2mE_{kin}}/\hbar$$

$$K_x = \frac{1}{\hbar} \sqrt{2mE_{kin}} \sin \vartheta \cos \varphi$$

$$K_y = \frac{1}{\hbar} \sqrt{2mE_{kin}} \sin \vartheta \sin \varphi$$

$$K_z = \frac{1}{\hbar} \sqrt{2mE_{kin}} \cos \vartheta$$

- E_{kin}, K can be measured in UHV
- Conservation law : E_{kin} = $hv \phi E_{B}$ k_{f} - k_{i} = k_{v}
- E_B and k in solid can be determined
 ⇒ direct probe for dispersion relation in solids

Angle-resolved photoemission spectroscopy (ARPES)

- State-of-art apparatus :
 2meV energy resolution and 0.2 degree angular resolution
- Surface sensitive : only surface electrons carry inherent information without suffering complicated scattering

ARPES at Shen's group at Stanford Univ.

Direct observation of Dirac Fermions

Electron-electron interactions

How effective the screening of interactions in graphene?

In normal metal (Thomas-Fermi theroy),

Potential
$$\sim \frac{1}{r}e^{-k_0r}$$
 (Yukawa potential)

In graphene, $DOS(E_F)=0 \Rightarrow Interactions imperfectly screened$

Marginal Fermi Liquid behavior

At T=0 K, the quasiparticle lifetime at low energies scales as

$$\tau_E \sim (E - E_F)^{-1}$$

Confirmed experimentally (ARPES): S. Xu et al., PRL 76, 483 (1996)

[Usual Fermi Liquid scales as $\tau_E \sim (E-E_F)^{-2}$]

Disorder effect

- * Long-range carbon order in graphene only possible at T=0K (Hohenberg-Mermin-Wagner theorem). At finite T: topological defects always present.
- * Defects cannot be annealed away in 2D honeycomb lattice ("Kinetically constrained system": remnant disorder scales logarithmically with annealing time.)
- * Still long electronic mean free paths (mobility $\mu > 10^4$ cm²/V-sec)

So, what is the role of disorder?

A finite density of local defects give rise to a impurity band around E_F

• Disorder modelled by long range (Coulomb) screened scatterers leads to:

$$\sigma_{\min} \approx c \cdot \left[\frac{e^2}{h} \right],$$

from experiment, $c \approx 4$.

n_i: impurity density

Klein paradox in graphene

Klein paradox: unimpeded penetration of relativistic particles through high and wide potential barriers - 1930

Barrier always transparent for angles close to normal incidence!!

Massive fermions are reflected close to normal incidence!

Impurity scattering in the bulk of graphene is strongly suppressed !!!

Transport in Graphene

- Chemical potential tuned by V_g~ n_c
- Ambi-polar field effect
- Robust minimal conductivity ?

 σ_{min} = 4e²/h, at Dirac point

Novoselov, et al., Science 04', Nature 05'

Electric field effect in graphene

Integer QHE in Graphene

Novoselov, et al., Nat. Phy. 06'

2-DEG free-Fermion

Bilayer graphene Berry's phase 2π

Single-layer graphene Berry's Phase π

- For a given B, D.O.S. at each Landau level = gB/Φ_0
- Anomaly at lowest Landau level in graphene
- Internal field (Berry's phase) ⇒ non-zero QHE in zero external field*

* Haldane, et al., PRL 88'

Basic formalism of Berry's phase

Berry, PRSLA'84

Hamiltonian $H(\vec{R})$

$$H\left|n(\vec{R})\right\rangle = E_n\left|n(\vec{R})\right\rangle$$

Adiabatic change in \vec{R} ,

$$|\psi(t)\rangle = e^{i\gamma_n} \left[e^{-i\int_0^t E_n dt'} |n(\vec{R})\rangle \right]$$

 γ_n can be determined by requiring

$$H(\vec{R}) \left| \psi(t) \right\rangle = i\hbar \frac{\partial}{\partial t} \left| \psi(t) \right\rangle$$

Along a closed path C in R space

"remarkable and rather mysterious results"
- Berry 1983

".... is essentially that of the holonomy which is becoming quite familiar to theoretical physicists"

- Simom 1983

$$\gamma_n(C) = \int_C X(\vec{R}) \cdot d\vec{R}, \quad X(\vec{R}) \equiv \left\langle n(\vec{R}) \middle| i \nabla_R \middle| n(\vec{R}) \right\rangle$$

$$\uparrow$$
Berry's phase Berry's vector potential

Parallel transport of vector v on curved surface

Constrain v in local tangent plane; no rotation about e₃ $[e_1, e_2]$: local tangent plane

Parallel transport

$$e_3 x dv = 0$$

v acquires geometric angle α relative to local e_1

complex vectors

$$\hat{\mathbf{\psi}} = (\mathbf{v} + i \, \mathbf{w}) / \sqrt{2}$$

$$\hat{\mathbf{v}} = (\mathbf{v} + i \, \mathbf{w}) / \sqrt{2}$$
 $\hat{\mathbf{n}} = (\mathbf{e}_1 + i \, \mathbf{e}_2) / \sqrt{2}$

angular rotation is a phase

$$\mathbf{\hat{\psi}} = \mathbf{\hat{n}} \, e^{i\alpha}$$

$$d\alpha = -\hat{\mathbf{n}} \cdot id \,\hat{\mathbf{n}}$$

cf.
$$X(\vec{R}) \equiv \langle n(\vec{R}) | i \nabla_R | n(\vec{R}) \rangle$$

Berry's phase and Geometry

Change Hamiltonian $H(\mathbf{R})$ by evolving $\mathbf{R}(t)$ adiabatically

Constrain particle to remain in one state $|n(\mathbf{R})\rangle$

Simon, PRL '83

Ong and Lee, cond-matt '05

$$|\psi\rangle = |n(R)\rangle e^{i\gamma}$$

wavefcn, *evolving on* surface |n R), acquires Berry phase γ

$$\gamma = \int d \mathbf{R} \cdot \mathbf{X}(\mathbf{R})$$

$$\mathbf{X}(\mathbf{R}) \equiv \langle n(\mathbf{R}) | i \nabla_{\mathbf{R}} | n(\mathbf{R}) \rangle$$

$$\mathbf{\Omega}(\mathbf{R}) \equiv \nabla_{\mathbf{R}} \times \mathbf{X}(\mathbf{R})$$

(holonomy)

- ⇒ Berry vector potential
- **⇒** Berry curvature

A particle with spin s in magnetic field

Hamiltonian

$$H(\vec{B}) = -g\mu_B \vec{s} \cdot \vec{B}$$
, with eigenvalues $E_n = g\mu_B Bn$ $(n = -s, -s + 1, ... + s)$
 $H(\vec{B}) | n(\vec{B}) \rangle = E_n | n(\vec{B}) \rangle$,

Berry's curvature

$$\mathbf{\Omega}_{n}(\vec{B}) = \nabla_{\vec{B}} \times \left\langle n(\vec{B}) \middle| i \nabla_{\vec{B}} \middle| n(\vec{B}) \right\rangle = \operatorname{Im} \sum_{m \neq n} \frac{\left\langle n(\vec{B}) \middle| \nabla_{\vec{B}} H \middle| m(\vec{B}) \right\rangle \times \left\langle m(\vec{B}) \middle| \nabla_{\vec{B}} H \middle| n(\vec{B}) \right\rangle}{(E_{n} - E_{m})^{2}}$$

With $\nabla_{\vec{B}}H = g\mu_B\vec{s}$,

$$\mathbf{\Omega}_n(\vec{B}) = n \; \vec{B} / B^3$$

Gauge field results from a monopole n at the origin of **B** space

Berry's phase with adiabatic variation of \vec{B} around a loop C

$$\gamma_n(C) = -\iint_C \mathbf{\Omega}_n(\vec{B}) \cdot d\vec{S} = -n \ \Omega(C)$$

Gauge flux through the loop C

Solid angle that C subtends at origin

Massless Dirac Fermion and π Berry's phase

- Pseudospin eigenstate along \bar{k}
- Closed contourC in k space associated with cycltron path
- Berry's phase acquired along path C

$$\gamma(C) = -\iint_{C} \mathbf{\Omega} \cdot d\vec{S} = -\frac{1}{2} \Omega(C) = -\pi$$
Solid angle

Quantum Hall effect at room temperature!

For B = 29 Tesla,
$$E_1 - E_0 = 0.196 \text{eV} = 2271 \text{K}!!$$

cf:
$$E_n = (n + \frac{1}{2})\hbar\omega_C$$
, $\Delta E = \hbar\omega_C = 3.36 meV = 39K$

S/Graphene/S Josephson Junction

Heersche, et al., Nature 07'

Shapiro steps

- S electrodes spaced by graphene
- DC and AC Josephson effect
- Phase coherent transport at Dirac point

DC Josephson:

$$I_C \propto \frac{\sin(\pi\Phi/\Phi_0)}{\pi\Phi/\Phi_0}$$
, $\Phi = \text{total magnetic flux}$

Graphene nano-ribbon: Energy gap engineering

• Gap opening due to quasi-1D confinement of the carriers

$$E_g = \frac{\alpha}{(W - W^*)}$$

$$\alpha \sim 0.2 \, eV \cdot nm, W^* = 16 nm$$

Concluding Remarks

- Massless Dirac Fermion and insensitive to impurity scattering
- Marginal Fermi-liquid behaviour
- Unavoidable defects and disorder in 2-D graphene
- Exhibit robust minimal conductivity and shifted IQHE
- Phase coherent transport at the Dirac point
- Appear of band gap in graphene nanoribbon