
- Single atomic layer graphite

• ISI citation number : 972 
(since  2005)
• Graphene focus session             
in APS March meeting 2007!

Nature podcast



• Condensed-matter systems y
usually described accurately by the 
Schrödinger equation.

B
• Electron transport in graphene is 
governed by Dirac’s (relativistic) 
equation.

a=1 42 ÅA

• Charge carriers in graphene mimic 
relativistic particles with zero rest 

d ff ti d f li ht

a=1.42 Å

Unit cell mass and effective speed of light 
vF≈106m/s.

• Variety of unusual phenomena
Honeycomb structure

Unit cell

• Variety of unusual phenomena 
associated with massless Dirac 
fermions.



Dirac’s (relativistic) Hamiltonian
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Pauli matrices for the sublattice index (A B) “Pseudospin” state

Massless quasiparticle

Pauli matrices for the sublattice index (A,B) Pseudospin  state 
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Bandstructure of Graphene
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Dirac points
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In a perfect graphene

Dirac points
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• Ekin, K can be measured in UHV kin,
• Conservation law : Ekin=hν – ϕ – EB

kf-ki=kν
• EB and k in solid can be determined B

direct probe for dispersion relation in solids 



• State-of-art apparatus : 
2meV energy resolution and 0.2 degree angular resolution  gy g g

• Surface sensitive : only surface electrons carry inherent information 
without suffering complicated scattering

ARPES at Shen’s group at Stanford Univ.
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J. Gonzalez, F. Guinea, M.A.H. Vozmediano, PRB 59, R2474 (1999)

• How effective the screening of interactions in graphene?
In normal metal ( Thomas-Fermi theroy), 

potential) (Yukawa  
r
1 ~Potential 0rke−

• Marginal Fermi Liquid behavior

In graphene, DOS(EF)=0  ⇒ Interactions imperfectly screened
r

• Marginal Fermi Liquid behavior

At T=0 K, the quasiparticle lifetime at low energies scales as

Confirmed experimentally (ARPES): S. Xu et al., PRL 76, 483 (1996)
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[Usual Fermi Liquid scales as τE∼(E-EF)-2]



Peres, Guinea, Castro-Neto, PRB 73, 125411 (2006)

Long-range carbon order in graphene only possible at T=0K (Hohenberg-Mermin-
Wagner theorem). At finite T: topological defects always present.

Defects cannot be annealed away in 2D honeycomb lattice (“Kinetically 
constrained system”: remnant disorder scales logarithmically with annealing time.) 

Still long electronic mean free paths ( mobility μ > 104 cm^2/V-sec)Still long electronic mean free paths ( mobility μ  10 cm 2/V sec)

So, what is the role of disorder?
A finite density of local defects give rise to a impurity band around EFy g p y F

ni : impurity density
• Disorder modelled by long range (Coulomb) y g g ( )
screened scatterers leads to:
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M. I. Katnelson, K. S. Novoselov, and A. K. Geim, cond-mat/0604323

Klein paradox: unimpeded penetration ofKlein paradox: unimpeded penetration of 
relativistic particles through high and 
wide potential barriers - 1930

Monolayer Bilayer

Barrier always
transparent for 
angles close to 

Massive fermions are 
reflected close to 
normal incidence!

normal incidence !!
normal incidence!

Impurity scattering in the bulk of graphene is strongly suppressed !!!p y g g p g y pp



Novoselov, et al., Science 04’, Nature 05’

Electric field effect in graphene
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• Chemical potential tuned by Vg~ nc

• Ambi-polar field effect

• Robust minimal conductivity ?• Robust minimal conductivity ?       

σmin = 4e2/h, at Dirac point 



Novoselov, et al., Nat. Phy. 06’

2-DEG
free-Fermion

Bilayer graphene 
Berry’s phase 2π

Single-layer graphene 
Berry’s Phase πy p y

• For a given B, D.O.S. at each Landau level = gB/Φ0

• Anomaly at lowest Landau level in graphene

• Internal field (Berry’s phase) non-zero QHE in zero external field*

* Haldane, et al., PRL 88’



Berry, PRSLA‘84
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“ ….. is essentially that of the holonomy 

which is becoming quite familiar to 

theoretical physicists “
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Constrain v in local tangent plane; 
no rotation about e3
[e1, e2] : local tangent plane

e1
e2

e x dv = 0
Parallel transport

v acquires geometric e3 x dv = 0 g
angle α relative to local e1

complex vectors 2/w)(vψ̂ i+= 221 /)e(en̂ i+=
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Change Hamiltonian H (R) by evolving R(t) adiabaticallyChange Hamiltonian H (R) by evolving R(t) adiabatically
Constrain particle to remain in one state |n(R)>

|n(R)> defines surface
i Hilb t

Simon, PRL ‘83

Ong and Lee, cond-matt ‘05
in Hilbert space

|n,R)

γ

γψ ie (R)n=

| , )

wavefcn, evolving on surface |n R), acquires Berry phase γ

∫ X(R)Rd (holonom )∫ ⋅= X(R)Rdγ (holonomy)
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Solid angle that C subtends at origin
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Solid angle that C subtends at origin 



Massless Dirac Fermion and π Berry’s phase
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 associated  spacek  in    Ccontour   Closed   
k along  eigenstate   Pseudospin   
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Quantum Hall effect at room temperature !
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Heersche, et al., Nature 07’

R≠0

R=0

Ti/Al Shapiro steps

• S electrodes spaced by graphene R≠0

• DC and AC Josephson effect

• Phase coherent transport at Dirac point R=0
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• Gap opening due to quasi-1D confinement of the carriers 
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Massless Dirac Fermion and insensitive to impurity scattering

Marginal Fermi-liquid behaviour

Unavoidable defects and disorder in 2-D graphene  

Exhibit robust minimal conductivity and shifted IQHE

Phase coherent transport at the Dirac point

Appear of band gap in graphene nanoribbon 


