Carbon nanostructures

-TIGP course Dec. 2007

Course agenda

-TIGP course on carbon nanostructure

Dec. 15th - Lecture I: 0D system, carbon-based buckyballs (fullerene)

Dec. 22st - **Lecture** II : 2D system, emerging material : graphene

Dec. 29th - **Lecture** III: 1D system, carbon nanotube

Jan. 5th at 3 pm: Study group oral presentation

Jan. 12th - Final exam

Guideline

-TIGP course on carbon nanostructure

Lecture - Monday 2pm - 5pm

20 minutes break from 3:20pm to 3:40 pm

Study group – 2-3 people a group

each person, 15 minutes oral presentation, 5 for questions

4 topics:

0D system: Practical application of fullerene

1D system: Recent progress of carbon nanotube composites as a space elevator

2 D system : Graphene electronics : advantage and disadvantage

3D system: Quantum information using diamond nanocrystals

Reference Books:

Introduction to Nanotechnology by Poole and Owens

Science of Fullerenes and carbon nanotubes by Dresselhaus and Eklund

Solid state Physics by Ashcroft/ Mermin

Welcome to Carbon World!!

Wilkenson Microwave Anisotropy Probe

WMAP image of CMB (3 Kelvin)

"for their discovery of cosmic microwave background radiation"

DISCOVERY OF COSMIC BACKGROUND

Microwave Receiver

Arno Penzias

Dave Wilkinson

James Peebles

MAP990045

Robert Wilson

Carbon Bond: hybridized orbitals

• Carbon : atomic number 6, 1s² [2s² 2px¹2py¹]

Molecular orbital:

$$\psi_{j} = \sum_{i} C_{ij} X_{i}$$

X_i: atomic orbitals

	Orbitals used for bond	Shape & bond angle	Examples:	
Sp	s, px	Digonal 180°	C ₂ H ₂ Acetylene	н–с≡с–н
Sp ²	s, px, py	Trigonal 120°	Graphite, C ₂ H ₄ Ethylene	r
sp ³	s, px, py, pz	Tetrahedra 109°28'	Diamond, CH ₄ Methane	H ÇH

Allotropic forms in solid carbon

Many stable and known forms at R.T.

Examples: diamond, graphite, amorphous carbon, fullerene, carbon nanotube and nanobud...etc

- **Two main structures**: one with sp³ hybrid bonds (diamond) and the other with sp² hybrid bonds (graphite, fullerene, nanotube and nanobud)
- Dramatic different properties between diamond and graphite

	Diamond	Graphite
Electric	Insulator	Conductive
Hardness	10 (Mohs scale)	1-2
Appearance	Transparent	Opaque (black)
Value	Expensive	cheap

Structure of C₆₀

- European Football like molecule containing 60 carbons
 - 12 pentagonal and 20 hexagonal faces
 - Double bond length 1.4 Å and single bond 1.46 Å
- Named after architect R. Buckminster Fuller (1895-1983)

Geodesic dome

- Geometrically-allowed fullerene C_{20+h*2}
 12 pentagonal faces + arbitrary number of hexagonal faces (h)
- Smallest Fullerene C₂₀
- Smallest isolated (stable) Fullerene C₆₀

Discovery of Fullerene C₆₀

- "An idea from outer space" : 5.6 eV optical extinction
- Robert Kurl, Harold Kroto and Richard Smalley
 - -- Nobel Prize laureates in Chemistry 1996

Development of Fullerene

- Carbon ball with a metal core
- Mass production of Fullerene by astrophysicists D.
- R. Huffmann and W. Krätschmer
- Carbon nanotube special electric and mechanical properties
- New superconducting crystals M₃C₆₀

Effect of size and dimensionality on electronic property

			Dimensions	
Туре	Number of Electrons $N(E)$	Density of States $D(E)$	Delocalized	Confined
Dot	$N(E) = K_0 \sum d_i \Theta(E - E_{DW})$	$D(E) = K_0 \sum_i d_i \delta(E - E_{DM})^2$	0	3
Wire	$N(E) = K_1 \sum_{i=1}^{N} d_i (E - E_{iW})^{1/2}$	$D(E) = \frac{1}{2}K_1 \sum d_i(E - E_{iW})^{-1/2}$	1	2
Well	$N(E) = K_2 \sum_i d_i (E - E_{iW})$ $N(E) = K_3 (E)^{3/2}$		2	1
Bulk	$N(E) = K_3(E)^{3/2}$	$D(E) = K_2 \sum_i d_i$ $D(E) = \frac{3}{2} K_3(E)^{1/2}$	3	0

^aThe degeneracies d_i of the confined (square or parabolic well) energy levels depend on the particular level. The Heaviside step function $\Theta(x)$ is zero for x < 0 and one for x > 0; the delta function $\delta(x)$ is zero for $x \neq 0$, infinity for x = 0, and integrates to a unit area. The values of the constants K_1 , K_2 , and K_3 are given in Table A.3 of Appendix A.

0-D quantum dot: an artificial atom

• quasi-0D system : $d < \ell_{mfp}$

Discrete energy level resembles the atomic level of a free atom
 ex: 3-D infinite rectangular square well

$$E_n = (\frac{\pi^2 \hbar^2}{2ma})(n_x^2 + n_y^2 + n_z^2) = E_0 n^2$$
Quantum number = 0,1,2...

6 degeneracy (including spin) at ground state level E₀

Molecular orbital levels of a "free" C₆₀

- Shell model in a free fullerene : symmetry-based model
- 60 πelectrons filling the molecular level

ℓ	Symmetry	$Model^a$	Ab initio
0	a_z	-7.41	-7.41
1	$f_{1\alpha}$	-6.87	-6.87
2	h_{e}	-5.87	-5.82
3	1 f24	-4.40	-4.52
3	g _u	-4.13	-3.99
	l hg	-2.21	-2.44
4	g _E	-2.12	-2.37
	h_u	-0.20	-1.27
5	$f_{1\mu}$	0.88	0.62
	fzu	1.82	2.71
	f_{1g}	3.38	1.59
6	h _z	3.43	2.78
	g_{R}	4.92	4.60
		:	:

π energy states (in eV) of the C₆₀ phe-

• Free C60 molecule should be a good insulator

Band structure of solid C₆₀

- Molecular crystal : BCC stacking structure
- Grown by slow evaporation from benzene solution filled with C60 molecules
- Band calculation :
 LDA + Gaussian orbital basis set
- Useful information :
 - ➤ Insulator with direct band gap ~ 1.5 eV band width ~ 0.4 eV
 - charge density map suggest weak coupling b/w fullerene molecule

Symmetry consideration and Merohedral disorder in C₆₀

Two standard orientations of fullerene molecule

Two fold sym. axis

Two standard orientations

- Merohedral disorder: random choice b/w one of the two possible standard orientations (lack of four fold symmetry point)
 - > relative orientation b/w adjacent C₆₀ can affect its physical properties.

Doping Buckyball solid: M_xC₆₀

- OCTAHEDRAL SITE

 TETRAHEDRAL SITE
- Transport charges from doping alkali metal element M
- Two competing process due to doping effect:
 - decrease of C₆₀ wave func. overlap
 - increase of the D.O.S
- Best conductivity occurs at $x \sim 3$ (half filled band)
- -available sites (octahedral and tetrahedral) all filled
- undoped fullerene ρ_{300K} ~ 10⁸ Ω cm
- Single crystal K₃C₆₀ ρ_{300K} ~ 5 mΩcm
- Strongly correlated electronics system
 - $k_F \ell$ <1 , one electron model may fail
 - from photo emission, large Hubbard U (1-2 eV)

Table 14.1 $Physical \ constants \ for \ M_3C_{60} \ (M = K, \ Rb).$

Quantity	K ₃ C ₆₀	Rb ₃ C ₆₀	Reference
Space group	Fm3 <u>3</u>	Fm33	[14.10]
C ₆₀ —C ₆₀ distance (Å)	10.06	10.20	[14.10]
M-C ₆₀ closest distance (Å)	3.27	3.33	[14.10]
Volume per C ₆₀ (cm ³)	7.22×10^{-22}	7.50×10^{-22}	[14.10]
fcc lattice constant a (Å)	14.253	14.436	[14.11]
$(-d \ln a/dP)$ (GPa ⁻¹)	1.20×10^{-2}	1.52×10^{-2}	[14.12]
Bulk modulus (GPa)	28	22	[14.13]
Thermal expansion coefficient (Å/K)	2×10^{-5}		[14.10]
Cohesive energy (eV)	24.2	_	[14.13]
Heat of formation (eV)	4.9	_	[14.13]
Density of states ^a [states/(eV/C ₆₀)]	25	35	[14.14]
Carrier density ^a (10 ²¹ /cm ³)	4.155	4.200	[14.10]
Electron effective mass (m_e)	1.3	_	[14.13]
Hole effective mass (m_e)	1.5, 3.4	_	[14.13]

^aAssumes 3 electrons per C₆₀.

Superconductivity in M C 60

- Discovered in K_3C_{60} by Hebard (Bell lab, 1991) $T_c \sim 19.8 \text{ K}$
- Highest Tc ~ 33K in Cs₂RbC₆₀
- The larger the radius of the dopant alkali atom the higher the T_c

Bardeen-Cooper-Schrieffer Theory

• In weak-coupling limit (λ <<1)

$$k_B T_c = 1.13 \hbar \omega_D \exp[-1/\lambda], \lambda \equiv N(E_F)V$$

 λ : dimentionless e - phonon coupling parameter

- Increase in lattice spacing reduced overlap of molecular orbital
- ⇒ reduced band width and increased D.O.S. N(E_F)

Pressure dependence of Tc

Fig. 15.3. Dependence of T_c on the density of states at the Fermi level for K_3C_{60} (closed circles) and Rb_3C_{60} (open circles) [15.22] using pressure-dependent measurements of T_c on these compounds [15.17, 23].

Other properties in K C 60

- Hall coefficient : R_H = 1/ne
 - ✓ Sign change at 200K
 - ✓ Both electron and hole like pockets

•Transverse magnetoresistance:

$$\frac{\Delta \rho}{\rho_0} = \frac{\Delta \rho_C}{\rho_0} + \frac{\Delta \rho_{L,I}}{\rho_0}$$

Classical orbital contribution : positive and quadratic in H

Weak localization and e-e interaction:

Negative, H² at low H and H^{1/2} in high H

Weak localization in disordered system

- Appeared In disordered and time reversal symmetric system
- Negative MR: Strongly suppressed by applying magnetic field
- Merohedral disorder and also missing alkali ion at the tetrahedral and octahedral sites

$$\int B \cdot dA = \oint A \cdot d\ell : additional phase change$$

Experimental determination of D.O.S.

(I) Pauli susceptibility

• D.O.S.:

K₃C₆₀: 28 states/eV-C60

Rb₃C₆₀: 38 states/eV-C60

$$n_{\uparrow} = \int d\varepsilon \frac{1}{2} N(\varepsilon + \mu_B H) f(\varepsilon)$$

$$M = \mu_B (n_{\uparrow} - n_{\downarrow})$$

$$\chi_P = \mu_B^2 N(E_F)$$

(II) Specific Heat

In crystals with free electron gas model at low T

$$C = C_e + C_p$$

$$C_e = \left[\frac{\pi^2}{3} k_B^2 N(\varepsilon_F)\right] T, \quad C_p = \frac{12\pi^4}{5} n_i k_B \left(\frac{T}{\theta_D}\right)^3$$

- In amorphous system and also fullerene solids at low T
 - ⇒ Einstein mode (1907) plays an important role

$$C = C_e + C_p + C_E$$

$$C_E = p n_i k_B \frac{(\hbar \omega_E / k_B T)^2 e^{\hbar \omega_E / k_B T}}{(e^{\hbar \omega_E / k_B T} - 1)^2}$$

• From BCS theory:

$$\left[\frac{C_{\text{sup.}} - C_{norm.}}{C_{norm}}\right]_{T_C} = 1.43$$

 $N(E_F) \sim 12 \text{ states /eV-C}_{60}$

⇒ 3 fold smaller than that from Pauli susceptibility measurement

Many-body effect and spin fluctuation enhancement in χ_{pauli} measurement

(II) Specific Heat

E : Einstein term \Rightarrow inter(intra)-molecule vibration modes with $\theta_{\text{F}} \sim 34 \text{K}$

D : Debye term gives $\theta_D \sim 70 \text{K}$

TL: electronic term

(III) Thermopower

• Current density

 $\vec{J}_e=\sigma\,\vec{E}+\vec{\alpha}(-\nabla T)\;,\;\;\alpha\;\text{:peltier cond. tensor,}$ turn on $-\nabla_x T$, and in steady state $J_x=J_y=0\;,\;-\nabla_y T=0,$ assume isotropic,

$$\Rightarrow$$
 Thermopower $S \equiv \frac{E_x}{\nabla_x T} = \frac{\alpha_{xx}}{\sigma}$,

$$e_N = \rho \alpha_{xy} - \rho S \sigma_{xy}$$
, Nernst signal $\mathbf{e}_N \equiv \frac{E_y}{-\nabla_x T}$,

Sign convention of S
 Positive for hole like carrier
 Negative for electron-like

(III) Thermopower

Semiclassical theory

$$S_d = -\frac{\pi^2}{2} \frac{k_B}{e} \left(\frac{k_B T}{\varepsilon_F} \right)$$
, linear in T

Determination of E_F from the slope dS/dT

 K_3C_{60} : $E_F \sim 0.32 \text{ eV} \Rightarrow 5 \text{ states/eV-}C_{60}\text{-spin}$

 Rb_3C_{60} : $E_F \sim 0.2 \text{ eV} \Rightarrow 9 \text{ states/eV-C60-spin}$

• In K_3C_{60} , $S = S_d + S_p$

 S_p : phonon drag effect contribution

Concluding Remarks

- Fullerene structure : C_{20+h*2}
- An example of strongly correlated electronic system
 Insulator undoped C₆₀
 Metallic Alkali-doped C₆₀

Superconductivity – A₃C₆₀ (A=K, Rb,CsK,RbCs)

- T_c increase linearly with lattice constant : BCS theory prediction
- Reduced Hall coefficient and sign change at 200K: both electron and hole pocket
- Weak localization effect associated with Merohedral disorder and missing alkali ions.
- D.O.S. at Fermi Level in K₃C₆₀:

Pauli susceptibility: 28 states/eV-C60(spin fluctuation enhancement

Thermopower S: 11 states/eV-C60

Specific heat: 12 states/eV-C60