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Properties of Individual Nanoparticles
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1. Very small (~1 nm to ~100

nm)-- difficult to image
individual nanoparticles.

. Unique physical and/or

chemical properties (different
from those of bulk material,
electronic structure,
conductivity, reactivity,
melting temperature,
mechanical properties, etc.) —
Size dependent.

. Enhanced surface effects.



Quantum Size Effects
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Figure 4.5. A comparison of the energy levels of the hydrogen atom and those of the jellium charged spheres filled with
model of a clusier. The electronic magic numbers of the aloms are 2, 10, 18, and 36 for He, Ne, EIECtronS.

Ar, and Kr, respectively (the Kr energy levels are not shown on the figure) and 2, 18, and 40 for

ihe clusters. [Adapted from B. K. Rao et al., J. Cluster Sci. 10, 477 (1938).]
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5 Sj Nanowires ®
Science 299, 1874

(2003)

Fig. 1. STM image and schematic view of a SINW with a Si (111) facet. Crystallographic directions
are shown. (A) Constant-current STM image of a SINW on a HOPG substrate. The wire's axis is
along the [112] direction. (B) Schematic view of SiH; on Si (111) viewed along the [111] direction.
Red and large blue circles represent the H atoms and Si atoms in the SiH; radical, respectively.
Small blue circles represent Si (111) atoms in the layer below.

Fig. 2. STM image and schematic view
of a SINW with a Si (001) facet. Crys-
tallographic directions are shown. (A)
Constant-current STM image of a
SINW on a HOPG substrate. The
wire's axis is along the [110] direction.
(B) Schematic view of the dihydride
phase on Si (001). Red and large blue
circles represent H and Si atoms in the
dihydride phase, respectively. Small
blue circles correspond to Si atoms on
the layers below. (C) Schematic view
of a Si nanowire bounded by four
(111)-type facets and two (001)-type
facets. The wire's axis is along the
[110] direction.
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Quantum Confinement

One dimensional size effect
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Optical Properties

1. The color of a material is determined by the wavelength of light that is absorbed by it.

2. The absorption occurs because electrons are induced by the photons of the incident
light to make transitions between the lower-lying occupied levels and higher

unoccupied energy levels of the materials.
3. Clusters of different sizes will have different electronic structures and different

energy-level separations
Optical absorption spectrum of CdSe lor two nanoparticies having sizes 20A and
40 A, respectively. [Adapted from D. M. Mittleman, Phys. Aav. B49, 14435 (1994)
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Quantum Corral 48 Fe adatoms on Cu(111) surface
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Wave Nature of Electrons

de Broglie’s proposal: For electrons:
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Schematic diagram of conventional RFA-type LEED optics

Electron diffraction patterns



Noble Metal/W(111) Pyramidal Single-Atom Tips
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Melting Temperature of Nanoparticles
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Room temperature




Stability of Nanoparticles

Traditional Picture of Nucleation and Growth
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J. A. Venables et al., Rep. Prog. Phys. 47, 399 (1984).




1.

Magic Clusters

Magic clusters exhibit enhanced stability relative to clusters either slightly
larger or smaller than the magic size. Thus, it is energetically unfavorable for
magic clusters to grow in size by adding one or a few atoms.

Traditional nucleation theories: The cluster with a size of i*+1 is *““stable” in a
sense that they tend to grow larger by incorporating more atoms. That also
means they have a higher free energy than that of clusters of larger sizes.
They are not really stable!

AG 4

» Cluster size, n
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Figure 4.2, Apparatus o make metal nanoparicles by laser induced evapomation of aloms

from the surface ol a metal. Various gases such as oxygen can be introduced o study the
chemical interaction of the nanoparticles and the gases. (With permission from F. J. Owens
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Figure 4.3. Mass spectrum of Pb clusters. [Adapted from M. A. Duncan and D. H. Rouvray, Sci.
Am. 110 (Dec. 1989).] Heldcherg, 1566

Laser evaporation

Metal atoms are swept away
by a burst of He and passed
through an orifice into a
vacuum where the expansion
of the gas causes cooling and
formation of clusters of the
metal atoms.

These clusters are ionized
and passed into a mass

spectrometer.
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Figure 5.3. Mass spectrum of carbon clusters. The Cgp and Cop fullerene peaks are evident.
{With permission from S, Supano and H. Koizuni, in Microcluster Physics, Springer-Verlag,



Mass Analyzer
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Figure 3.8. Skeich of a mass spectrometer utilizing a 90° magnetic field mass anakyzer,
showing details of the ion source: A—accelerator or extractor plate, E—electron trap,
t—filament, —onization chamber, L—ocusing lenses, F—epeller, 5—slits. The magnetic
field of the mass analyzer is perpendicular to the plane of the page.
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Electronic Magic Numbers

Clusters in which the number of valence electrons closed electronic shell
matches the spherical shell closing numbers are JELLIUM MODEL OF CLUSTERS
produced more abundantly.
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Figure 4.5. A comparison of the energy levels of the hydrogen alom and those of the jellium
model of a cluster. The electronic magic numbers of the aloms are 2, 10, 18, and 36 for He, Me,
Ar, and Kr, respectively (the Kr energy levels are not shown on the figure) and 2, 18, and 40 for
the clusters. [Adapted from B. K. Rao et al., J. Cluster Sci. 10, 477 (1999).)
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Structural Magic Numbers

Mackay lcosahedra

P=1 P=2 P=3

20 fcc(111) faces N=1+3 (10p2 + 2)



Xe Magic Clusters
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Fullerene

Figure 4.8. lllustration of some calculated structures of small boron nanoparticles. (F. J. Owens,
unpublished.)



Reactivity of Nanoclusters
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Figure 4.13. Mass spectrum of Al nanoparticles before (lop) and after (bottom) exposure to
oxygen gas. [Adapted from R. E. Leuchtner et al., J. Chem, Phys., 91, 2753 (1989).]



Catalytic Activities of Au Nanoparticles
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The Structure of Surface

Atoms on a surface of a solid have an environment that differs markedly from that
of atoms in the bulk of the solid. They have fewer neighbors than do bulk atoms.
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Model of a heterogeneous solid surface depicting different surface sites. These
sites are distinguishable by their number of nearest neighbors.

On clean surface, two important structure changes can occur.
1.Bond-length contraction or relaxation

2.Reconstruction



Bond-length Contraction or Relaxation

1. In vacuum, virtually all surfaces relax. The spacing between the first and second
atomic layers is significantly reduced from the spacing characterizing the bulk.

2. For a close-packed metal with a less close-packed surface, the interlayer spacing
between the topmost and the second atomic layer is smaller than the bulk spacing.
The perturbation caused by this surface relaxation propagates a few layers into the
bulk. In fact, there is often a compensating expansion between the second and the
third metal layer (on the order of 1%), accompanied by a small but detectable
change in the next layer.

! l

Schematic representation of the contraction in interlayer spacing usually ob-
served at clean solid surfaces.
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Reconstruction

The surface can assume an atomic structure that differs fundamentally from the
structure one would expect if the bulk structure terminated abruptly at the surface.

For semiconductor surfaces, which are covalently bonded, the dangling bonds created at
the surface cannot easily be satisfied except through more drastic rearrangements of these

Si(001)

Ideal p(2x1) reconstructed

Many metal surfaces also reconstruct. Examples: Ir(100), Pt(100), Au(100)
Hexagonally close-packed surface layer on square lattice.
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GaAs(110)-(1x1)

Top view Side view Sphere model (side view)

Relaxed

Open circles designate Ga atoms and shaded circles As.



Si(111)-(2x1)

Sphere model (side view)

Side view

Top view

Non-

&)
(D]
+—J
(&)
>
| —
)
(7p)
c
o
(&
(«B]
S

7t Chain

model



Lowest Energy Geometries
proposed for the Si, (n<11) @ @ %
neutrals in the literature
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Clusters

Theoretical Model of S
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Phys. Rev. B 57, 3799 (1998)



Theoretical Model for Metal-encapsulated Si, Clusters

Phys. Rev. Lett. 87, 045503 (2001)



Miller Indices of a Plane

Crystal  structure  of  diamond,
showing the tetrahedral bond arrangement.



Face-Centered Cubic (fcc) Crystal Surfaces

foc (110) fec (100) fee (111)



The Five Surface Net
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Notation of Surface Structures

1. If the translation vectors of the surface, a’ and b’, a’ = Ma, b’ = Nb, whereaand b
are the translation vectors of the ideal, unreconstructed surface. The nomenclature
for this structure is (MxN). If, in addition, the surface net is rotated with respect to
the underlying substrate lattice by an angle ¢ degrees, the notation becomes
(MxN)R ¢ . If the surface net is best described using a centered, rather than a
primitive net, this is indicated as ¢(MxN). If the overlayer consists of an adsorbate,
rather than simple reconstructed substrate atoms, this is also usually indicated. An
arrangement of surface atoms identical to that in the bulk unit cell is called the
substrate structure and is designated (1x1) (i.e. unreconstructed).

2. The surface unit-cell vectors a’ and b’ can be expressed in terms of the unit-cell
vectors, a and b, obtained from the bulk projection.

a’ = mlla + m12b’ (mn mlzJ
M2 M2z
b’ =m,a+ m,,b,
A surface structure that has a unit cell different from the bulk-projected substrate
unit cell is often called a “superlattice”.

2 0
(2x2) correspond to the (0 2) matrix notation.
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