Scanning Tunneling Microscopy
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Ultra-High Vacuum Scanning Tunneling Microscope
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STM Images of Si(111)
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Atomic Model of Si(111)-(7x7)
Top view
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Atomic Structure of the Pt(001) Surface

Surface Science 306, 10 (1994).



Fig. 1. In-plane structure of
the Au(111) surface with a
22 x V3 reconstruction. The
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Large-scale image of the Au(111)-22X \/3 rei?]structiﬂn. The Au(lll)
3

surface reconstructs at room temperature to form a 22X structure, which has a
two-fold symmetry. On a large scale, three equivalent orientations for this recon-
struction coexist on the surface. Furthermore, on an intermediate scale, a herring-bone
pattern is formed.

Science 258, 1763 (1992).



Theory of STM
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Tunneling current
|T%3=27”92f( E, N1 f(E, +ev)[M,
y72%

where f(E) is Fermi function

5, -E, —ev)

E, IS the energy of state « ,where x« and y run over all the states of the
tip and surface , respectively.

M, Istunneling matrix element
M., = —jd S(l//ﬂ Vv, -y Vy, *)

where ¥, is the wave function, and the integral is over any plane in the barrier
region.

=1 s —1s ¢

- [pr(E)ps(E+eV M (EN[1(E)- 1(E+ev

where Os and O are the densities of states in the sample and the tip, respectively.



Tunngling current
|EA'_jpT(E)pS(E+ev] (EN[f(E)-f(E+eV)dE

Transmission probability of the electron
1
M (E )= exp {— A¢ZS}

Usually, we assume #r is featureless (ie. or =const. ) and the sample
electronics states dominate the tunnel spectra.
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Tip Sample

However, the tips might have effect on the tunnel spectra, if
1. we have atomically sharp tips ,or
2. the tip has picked up a foreign atom.



Case [ ----- metals

In the low-voltage limit

| OCVPs(ﬁ; EF) t(EF)

where ps (ﬁ; EF) Is the surface density of states of the sample at the center of the

tip(r; ),

PS(F; E)E Z

\%4

,Ot(EF ) IS the density of states of the tip at the Fermi level and is often

w,(F) S(E, —E)

regarded as a constant.
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Electronic Structures at Surfaces
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Scanning Tunneling Spectroscopy

STM provides atomic-scale topographic information, and atomic-scale electronic
information. However, the mixture of geometric and electronic structure information
often complicates interpretation of observed feature.

Several spectroscopic modes:

1. Voltage-dependent STM imaging.

2. Tunneling I-V curves, current-imaging-tunneling spectroscopy (CITYS).

3. Scanning tunneling spectroscopy (STS): dI/dV and topograph.
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STS of Si(111)-(7x7)
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STS of Si(111)-(7x7)
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1. Science 234, 304-309 (1986).
2. Phys. Rev. Lett. 56, 1972-1975 (1986).



Surface States at Cu(111)

Nature 363, 524 (1993).




Single-Wall Carbon Nanotubes
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Electronic Structure of Single-Wall Nanotubes

1. Armchair nanotubes (n,n) — metallic

2. Zigzag nanotubes (n,0) — metallic, when n=3q

— semiconducting, otherwise
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Electronic Structure of Single-wall Nanotubes
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Atomic Manipulation with STM

Nature 344,524 (1990)




Positioning Atoms with an STM

D.M. Eigler & E.K. Schweizer Nature 344 524 (1990)

The STM tip is brought down neat the atom, until the attraction
is enough to hold it as the atom is dragged across the surface to.
a new position.



Quantum Corral

M.F. Crommie et al., Science 262, 218 (1993).












Quantum Mirage

H. C. Manoharan et al., Nature 403, 512 (2000).



FIG. 1. Schematic illustration of the STM tip-induced synthe-
sis steps of a biphenyl molecule. (a),(b) Electron-induced selec-
tive abstraction of iodine from iodobenzene. (c) Removal of the
iodine atom to a terrace site by lateral manipulation. (d) Bring-
ing together two phenyls by lateral manipulation. (e) Electron-
induced chemical association of the phenyl couple to biphenyl.
(f) Pulling the synthesized molecule by its front end with the
STM tip to confirm the association.

Phys. Rev. Lett. 85, 2777 (2000)




Atomic Force Microscopy (AFM)
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Interaction between the probe and sample
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Three scanning modes of AFM
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V-shaped

Materials: Si, SiO,, Si;N,
Ideal Tips: hard, small radius of curvature, high
aspect ratio
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Effects of the Tip Shape
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AFM Tip + Carbon Nanotube
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AFM Images
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Lateral Force Microscopy
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Force-Distance Curve
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Nanolithography of Tapping-Mode AFM
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Image of polycarbonate film on silicon surface



Nano-Lithography with an AFM tip

AFM conductive tip

/ Water bridge

Tip induced E-field |

“Absorbed water

anode(+) Silicon substrate

T~

Physics Department

Tip-induced SiO, National Tsing Hua University



_+ AFM tip

I um

(112

*---- Ni substrate

(a)
(a) g
(4) Oxide Height Profila
30+
20
10 [
ot ' 416 830
. Distance (nm)
(b) *------- Sisuobstrate (b)

F.S.-S. Chien et al., APL 75, 2429 (1999)



-

A Al A4 )
DI E
daddaqaaa
dadedaaaa

dadaeaad

A
A

S

QOO I
d4dddea

/_PJ

[110]

111 == e L
W/ \

[111]
) 35.26

i

[

LY
LY
5

!

[ool
&
(b)

AFM oxide pattern

(c)

, Physics Dept., National Tsing Hua University



Magnetic Force Microscopy (MFM)

F=(meV)H

The tip is scanned several tens or hundreds of nanometers above the sample, avoiding
contact. Magnetic field gradients exert a force on the tip's magnetic moment, and
monitoring the tip/cantilever response gives a magnetic force image. To enhance
sensitivity, most MFM instruments oscillate the cantilever near its resonant frequency
with a piezoelectric element. Gradients in the magnetic forces on the tip shift the
resonant frequency of the cantilever. Monitoring this shift, or related changes in
oscillation amplitude or phase, produces a magnetic force image.

Tips: silicon probes are magnetically sensitized by sputter coating with a ferromagnetic
material.

Resolution 10~25 nm.

Applications: hard disks, magnetic thin film materials, micromagnetism.
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Magnetic Force Microscopy
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Scanning Thermal Microscopy (SThM)
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Sacnning Capacitance Microscopy (SCM)

Operational principle of the SCM
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1. Most SCMs are based on contact-mode AFM with a conducting tip.

2. In SCM, the sample (or the metallic tip) is covered with a thin
dielectric layer, such that the tip-sample contact forms a MIS
capacitor, whose C-V behavior is determined by the local carrier
concentration of the semiconductor sample.

3. By monitoring the capacitance variations as the probe scans across the
sample surface, one can measure a 2D carrier concentration profile.

4. One usually measures the capacitance variations (dC/dV), not the
absolute capacitance values.

5. Nosignal is measured if the probe is positioned over a dielectric or
metallic region since these regions cannot be depleted.
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Scanning Capacitance Microscopy
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Fig. 2a—c. 3D simulations of SCM on homog,eneoua]y doped samples. The
tip (ry =25 nm, r; =25 nm, & = 20°) is modelled in cylindrical coordinates:
dox = 10nm. a C(V) curves on p- and n-doped silicon with dopant con-
centrations of 10'®em™* and 10'® em™3, respectively. b The corresponding
dC/dV(V) curves are calculated an.llyncally ¢ The calibration curve is cal-
culated from C(V)-curve simulations. The SCM output is calculated as
AC/AV(V) at Vs =0V taking Vyoq = £0.1V and Vprob = 1V into
account

=

_ pn-junction

e =7

Fig. 3a,b. Failure analysis of an industrial device by means of SCM. To-
pography (lefi-hand side) and SCM image (right-hand side) are taken
simultaneously. a Well-operating device with the pn junction implanted in
the middle between the poly-silicon contacts. b Defective device with the
pn junction shifted to the left-hand contacts. Both devices were measured
at the same Vs corresponding to the “zero voltage” (see text)

J. Isenbart et al., Appl. Phys. A 72,
S243 (2001).



The SCM has proven its potential for the analysis of 2D dopant
profiles on a scale down to less than 50 nm.

The quantification of a measured dopant profile is still difficult due
to the influence of parameters of the sample, the tip shape, and the
capacitance sensor including the applied voltages.

The properties of the sample, e.g. the roughness of the surface
(fluctuation of the oxide thickness), the density of charged impurities
and traps in the oxide layer and mobile surface charges, are mainly
determined by the sample-preparation procedure.

The most important influence on the measurements is due to the
probing voltage of the capacitance sensor and the applied bias
voltage.

In SCM, not the dopant concentration, but rather the local charge-
carrier concentration is measured because only the mobile carriers
can contribute to C(V) and thus only the local charge-carrier
distribution can be detected.



