6

Subbands

In Chapter 5 we saw that the energy levels E,,(l-c.) in a periodic solid can labeled in terms
of k, with the number of branches b equal to the number of basis functions per unit
cell. Strictly speaking, this requires us to assume periodic boundary conditions in all
directions so that the periodicity is preserved everywhere even at the “‘ends.” Real solids
usually have “ends” where periodicity is lost, but this is commonly ignored as a surface
effect that has no influence on bulk properties. The finite size of actual solids normally
leads to no observable effects, but as we scale down the size of device structures, the
discreteness of energy levels becomes comparable to the thermal energy kg T’ leading
to experimentally observable effects. Our objective in this chapter is to describe the
concept of subbands which is very useful in describing such “size quantization” effects.
In Section 6.1 we will describe the effect of size quantization on the E (l'c.) relation
using specific examples. We will then look at its effect on experimentally observable
quantities, like the density of states (DOS), D(E) in Section 6.2 and the number of
subbands or modes, M(E). In Section 6.3 we will see that the maximum conductance
of a wire is proportional to the number of modes around the Fermi energy (E = u),
the maximum conductance per mode being equal to the fundamental constant Gy =
g*/ h (Eq. (1.1)) as discussed in the introductory chapter. Finally in Section 6.4, I will
discuss the matter of the appropriate velocity for an electron in a periodic solid. For
free electrons, the wavefunction has the form of plane waves ~ exp(+ ikx) and the
corresponding velocity is #k/m. Electrons in a periodic solid also have wavefunctions
that can be labeled with a k, but they are not plane waves. So what is the quantity (if
there is one!) that replaces 1k/m and how do we obtain it from our knowledge of the

bandstructure Eb(E)?

6.1

Quantum wells, wires, dots, and “nanotubes”

129

We saw in Chapter 5 that a good way to catalog the energy levels of a homogeneous
periodic solid is in terms of the wavevector k. How do we catalog the energy levels
of a nanostructured device? As an example, consider the transistor structure discussed
in Chapter 1, modified for convenience to include two gate electrodes symmetrically
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Fig. 6.1.1 Sketch of a dual-gate nanoscale field effect transistor (FET). The top gate is held at the
same potential, Vg, as the bottom gate.

on either side of the channel (Fig. 6.1.1). The x-dimension (L) is getting quite short
but since electrons can flow in and out at the contacts, one needs to enforce “open
boundary conditions” which we will discuss in Chapter 8. But it is not too wrong to
treat it as a closed system assuming periodic boundary conditions, at least in the absence
of bias (Vp = 0). In the z-direction we have tight confinement leading to observable
effects beyond what one might expect on the basis of periodic boundary conditions. The
y-dimension (perpendicular to the plane of the paper) is typically a few microns and
could be considered large enough to ignore surface effects, but as devices get smaller
this may not be possible. So how do we label the energy levels of a structure like
this?

In a homogeneous solid, electrons are free to move in all three directions and the
energy levels can be classified as E,(k;, ky, k), where the subscript b refers to different
bands. By contrast, the transistor structure shown in Fig. 6.1.1 represents a quantum
well where the electrons are free to move only in the x~y plane. We could estimate the
energy levels in this structure from our knowledge of the energy levels Ej(k,, ky, k)
of the homogeneous solid, by modeling the z-confinement as a ring of circumference
L., so that the resulting periodic boundary conditions restrict the allowed values of k.
to a coarse lattice given by k. = p2x/L,:

Eb.p(kx, ky) ~ Ep(k;, ky, k: = p27l'/LZ)

where the additional subscript p can be called a subband index. This works quite
well for ring-shaped structures like carbon nanotubes, but most low-dimensional struc-
tures involve more complicated confinement geometries and in general it takes con-
siderably more work to compute the subband energy levels of a low-dimensional
solid from the bulk bandstructure. For the transistor structure shown in Fig. 6.1.1
the insulator layers act like infinite potential walls (see Fig. 2.1.3b) and we can obtain
fairly accurate estimates by assuming that the resulting box restricts the allowed val-
ues of k, to a coarse lattice given by k, = px/L,. The energy levels can then be
classified as

Eb.p(kxs k_v) & Ep(ky, kys kz = P”/Lz)
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Fig. 6.1.2 Solid curves show the full bandstructure obtained from the sp*s* model described in
Chapter 5. The dashed curve shows the dispersion obtained from a one-band effective mass model
(Eq. (6.1.1)) with parameters adjusted for best fit: E. = 1.55 eV and m; = 0.12m (m is the free
electron mass). Actually the accepted value for the effective mass for GaAs is 0.07m, but the sps*
model parameters that we use are optimized to give the best fit over the entire band, and are not
necessarily very accurate near the band edge.

As we have explained, this is only approximate, but the main point I am trying to
make is that quantum wells have 1D subbands, each having a 2D dispersion relation,
E(ky, ky).

How small does the dimension L. have to be in order for the structure to qual-
ify as a quantum well? Answer: when it leads to experimentally observable effects.
This requires that the discrete energy levels corresponding to the quantized values of
k, = pm/L. be less than or comparable to the thermal energy kg7, since all observ-
able effects tend to be smoothed out on this energy scale by the Fermi function. To
obtain a “back-of-an-envelope” estimate, let us assume that the dispersion relation
E, (k) in the energy range of interest is described by a parabolic relation with an effect-

ive mass, mc:
n? (k2 + k2 +Kk2)
2m.

E(k)~ E. + Bulk solid (6.1.1)
where E. and m. are constants that can be determined to obtain the best fit (see
Fig. 6.1.2). These parameters are referred to as the conduction band edge and the
conduction band effective mass respectively and are well-known for all common semi-
conductors.
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The z-confinement then gives rise to subbands (labeled p) such that
R (k2 + k2)

~ 2
Ep(ke, ky) = Ec + p°e, + .

Quantum well

_ hx? _m (10nm
T Imel? T me ( L,
A layer 10 nm thick would give rise to subband energies ~4 meV if the effective mass
m. were equal to the free electron mass m. Materials with a smaller effective mass (like
GaAs with m. = 0.07m) lead to a larger energy separation and hence more observable
effects of size quantization.

We could take this a step further and consider structures where electrons are free
to move only in the x-direction and are confined in both y- and z-directions, as shown
below.

2
) X 3.8 meV (6.1.2)

F4

A y
—
This would be the case if, for example, the width of the FET in Fig. 6.1.1 in the direction
perpendicular to the plane of the paper were made really small, say less than 100 nm.
Such quantum wires have 2D subbands, each having a 1D dispersion relation that can
be estimated by quantizing both the y- and z-components of the wavevector k:

2 k2
E, p(ks) = E. + n%e, + p*s. + ?m—" Quantum wire

C

where ¢, is related to the y-dimension L y by a relation similar to Eq. (6.1.2). Finally,
one could consider structures that confine electrons in all three dimensions (as shown
below) leading to discrete levels like atoms that can be estimated from
m2h27r2 n2h2n2 p2h2n.2
2me L | 2mlZ | omcLE

Epnp=~E.+

Quantum dot

Such quantum dot structures are often referred to as artificial atoms.

Carbon nanotubes: Carbon nanotubes provide a very good example for illustrating
the concept of subbands (Fig. 6.1.3). We saw in Section 5.2 that the energy levels of a
sheet of graphite can be found by diagonalizing the (2 x 2) matrix

h(k) = [2 g‘)] (6.1.3)
0
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(a) Direct lattice (b) Reciprocal lattice

Fig. 6.1.3 (a) Arrangement of carbon atoms on the surface of graphite. (b) Reciprocal lattice
showing Brillouin zone (shaded).

where
ho = —t(l +eil§-&; +eii-az) — —t(l + 2¢ikia coskyb)

The eigenvalues are given by

E =%|ho| = :i:t\/l + 4 coskybcoska + 4cos® kyb (6.1.4)

Since each unit cell has two basis functions, the total number of states is equal to
2N, N being the number of unit cells. Each carbon atom contributes one electron to
the n-band, giving a total of 2N electrons that fill up exactly half the states. Since the
energy levels are symmetrically disposed about E = 0, this means that all states with
E < 0 are occupied while all states with £ > 0 are empty, or equivalently one could
say that the Fermi energy is located at £ = 0.

Where in the k,—k, plane are these regions with E = 0 located? Answer: wherever
ho(E) = 0. It is easy to see that this occurs at the six corners of the Brillouin zone:

e« coskyb = —1/2 kra=0, kb= *2m/3
kea=m, kb=xn/3

These six points are special as they provide the states right around the Fermi energy
and thus determine the electronic properties. They can be put into two groups of three:

(kea, kyb) = (0, —27/3), (—m, +n/3), (4w, +7/3) (6.1.52)
(kea, kyb) = (0, +27/3), (=m, —n/3), (7, —7/3) (6.1.5b)

All three within a group are equivalent points since they differ by a reciprocal lat-
tice vector. Each of the six points has one-third of a valley around it within the first
Brillouin zone (shaded area in Fig. 6.1.3b). But we can translate these by appropriate
reciprocal lattice vectors to form two full valleys around two of these points, one from
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Fig. 6.1.4 Reciprocal lattice of graphite showing straight lines k. |c| = 2w v representing the
constraint imposed by the nanotube periodic boundary conditions.

each group:
(kza, kyb) = (0, £27/3)

Once a sheet of graphite is rolled up into a nanotube, the allowed values of k are
constrained by the imposition of periodic boundary conditions along the circumfer-
ential direction. Note that this periodic boundary condition is a real one imposed by
the physical structure, rather than a conceptual one used to facilitate the counting of
states in a large structure whose exact boundary conditions are unimportant. Defining
a circumferential vector

¢ =maj +na; = £(m + n)a + y(m — n)b (6.1.6)

that joins two equivalent points on the x-y plane that connect to each other on being
rolled up, we can express the requirement of periodic boundary condition as

k-Z = kclc| = kea(m + n) + kyb(m — n) = 27y (6.1.7)

which defines a series of parallel lines, each corresponding to a different integer value
for v (Fig. 6.1.4). We can draw a one-dimensional dispersion relation along any of these
lines, giving us a set of dispersion relations E,(k), one for each subband v.

Whether the resulting subband dispersion relations will show an energy gap or not
depends on whether one of the lines defined by Eq. (6.1.7) passes through the center of
one of the valleys

(kxa, kyb) = (0, £27/3)
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Fig. 6.1.5

where the energy levels lie at E = 0. It is easy to see from Eq. (6.1.7) that in order for
a line to pass through k.a = 0, k,b = 27/3 we must have

(m—-n)/3=v

Since v is an integer this can only happen if (m —n) is a multiple of three: nanotubes
satisfying this condition are metallic.

Zigzag and armchair nanotubes: Consider a specific example: a nanotube with a
circumferential vector along the y-direction, ¢ = $2bm, which is called a zigzag nano-
tube because the edge (after rolling) looks zigzag (Fig. 6.1.5). The periodic boundary
condition then requires the allowed values of k to lie parallel to the k,-axis described
by (the circumference is 2bm)

27 3v

ky2bm = 27y = ky = T (6.1.8)
m

as shown in Fig. 6.1.6a.

Figure 6.1.7 shows the two “lowest” subbands corresponding to values of the subband
index v that give rise to the smallest gaps around E=0.1f m = 66 (i.e. a multiple of three),
one of the subbands will pass through (k.a, k,b) = (0, +27/3) and the dispersion
relation for the lowest subbands look as shown in Fig. 6.1.7a, with no gap in the
energy spectrum. But if m = 65 (not a multiple of three), then no subband will pass
through (k. a, k,b) = (0, £27/3) giving rise to a gap in the energy spectrum as shown in
Fig. 6.1.7b.

A nanotube with a circumferential vector along the x-direction, ¢ = %2am, is called
an armchair nanotube because the edge (after rolling) looks like an armchair as shown
in Fig. 6.1.8 (this requires some imagination!). The periodic boundary condition then
requires the allowed values of k to lie parallel to the k,-axis described by (the circum-
ference is again 2bm)

2
k. 2am = 2wy — ky = —— (6.1.9)
2ma
as shown in Fig. 6.1.6b. The subband with v = 0 will always pass through the special
point (kca, k,b) = (0, +27/3) giving rise to dispersion relations that look metallic

(Fig. 6.1.7a) regardless of the value of m.

A useful approximation: Electrical conduction is determined by the states around
the Fermi energy and so it is useful to develop an approximate relation that
describes the regions of the E—k plot around E = 0. This can be done by replacing
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Fig.6.1.6 (a) A zigzag nanotube obtained by rolling a sheet of graphite along the y-axis with

¢ = $2bm has its allowed k-values constrained to lie along a set of lines parallel to the k,-axis as
shown. One of the lines will pass through (0, 27/3b) only if m is a multiple of three. (b) An
armchair nanotube obtained by rolling a graphite sheet along the x-axis with & = £2am has its
k-values constrained to lie along lines parallel to the k,-axis as shown. One of the lines will always
pass through (0, 25 /3b) regardless of the value of m.
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Fig.8.1.7 Dispersion relation for the two “lowest” subbands of a zigzag nanotube
with (a) D = 5.09 nom, m = 66 showing metallic character (no gap in energy spectrum)
and (b) D = 5.02 nm, m = 65 showing semiconducting character (gap in energy
spectrum).

the expression for hg(k) = ~1(1 4 2e*% cos k,b) with a Taylor expansion around
(kxa, kyb) = (0, £27/3) where the energy gap is zero (note that sy = O at these
points):

ahg 2 aho
0 [ ] = = ( 3b) I:ak ] = =
* akx kya=0, kyb==2r/3 g Y dk,a=0, kyb=+2n/3
y
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Fig. 6.1.9 Energy dispersion relation plotted as a function of kb along the line k,a = 0. The solid
curve is obtained from Eq. (6.1.11), while the crosses are obtained from Eq. (6.1.4).

It is straightforward to evaluate the partial derivatives:

dho e o

ol [—2iar €% cos kybl, 4 i pmsrnss = 161 = i3a01/2

ok .

S = (261 €42 sin kbl g g pmsans = +b1+/3 = +3agt /2
) :

so that we can write

3apt .
2° (ke FiBy)

ho(k) =~ i
where
By =k, ¥ 27/3b) (6.1.10)

The corresponding energy dispersion relation (cf. Eq. (6.1.4)) can be written as

> 3t
E®) = %lhol = =2,/ + 2 (6.1.11)

This simplified approximate relation (obtained from a Taylor expansion of Eq. (6.1.4)
around one of the two valleys) agrees with the exact relation fairly well over a
wide range of energies, as is evident from Fig. 6.1.9. Within this approximation the
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constant-energy contours are circles isotropically disposed around the center of each
valley, (0, +2m/3b) or (0, —27/3b).

How large is the energy gap of a semiconducting nanotube? The answer is indepen-
dent of the specific type of nanotube, as long as (m — n) is not a multiple of three so
that the gap is non-zero. But it is easiest to derive an expression for the energy gap if
we consider a zigzag nanotube. From Egs. (6.1.8), (6.1.10), and (6.1.11) we can write

3tag ) 3y 2
E(k)—i— k? [3b (ﬁ_l)] 6.1.12)

so that the energy gap for subband v can be written as the difference in the energies
between the + and — branches at k, = 0:

2 2m
Eg\ = 3ta02mb (v - T)

This has a minimum value of zero corresponding to v = 2m/3. But if m is not a multiple
of three then the minimum value of (v — 2m/3) is equal to 1/3. This means that the
minimum energy gap is then given by

2 2tao 0.8eV
= = 6.1.1
Eg=taosp =3 d (6.1.13)

where d is the diameter of the nanotube in nanometers, so that nd is equal to the
circumference 2mb.

6.2

Density of states

In the last section we discussed how size quantization effects modify the E(l:) relation-
ship leading to the formation of subbands. However, it should be noted that such effects
do not appear suddenly as the dimensions of a solid are reduced. It is not as if a bulk
solid abruptly changes into a quantum well. The effect of reduced dimensions shows
up gradually in experimental measurements and this can be appreciated by looking at
the density of states (DOS), D(E), which is reflected in conductance measurements.

The DOS tells us the number of energy eigenstates per unit energy range and it
clearly depends on the E(k) relationship. To be specific, let us assume for the moment
that we are near one of the valleys in the conduction band where the energy levels can
be described by a parabolic relation with some effective mass m:

h2k2

me

E(k) = E. +

6.2.1)

What is the corresponding DOS if the vector k is constrained to one dimension (a
quantum wire), two dimensions (a quantum well), or three dimensions (bulk solid)?
The standard procedure for counting states is to assume a rectangular box of size
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L,L,L, with periodic boundary conditions (see Fig. 2.1 .4) in all three dimensions (cf.
Eq. (2.1.17)):

[\

2 2
ﬂvJr ky=—£vy kzz—nv-

ke = —
L. L, L. -

(6.2.2)
where v,, vy, and v, are integers. We then assume that the box is so large that the
allowed k-values are effectively continuous and we can replace any summations over
these indices with integrals:

T dk Tk Tk
x v z
2~ [z 2= )=mn X [mm o2

In other words, the allowed states in k-space are distributed with a density of (L/2m)
per unit & in each k-dimension. Hence the total number of allowed states N(k), up to a
certain maximum value %, is given by

L

=k = kL ID with L = L,
21 b 4

L.L k2

___yn'kz = ——S 2D with S = LxL\'

472 4 '

L.L,L; 4mk? _ K

8r3 3 6m2
Using the dispersion relation Eq. (6.2.1) we can convert N(k) into N(E), which tells us
the total number of states having an energy less than E. The derivative of this function

3D with Q@ = L,L,L.

gives us the density of states (DOS):

d
D(E) = EN(E) (6.2.4)

The results for one, two, and three dimensions are summarized in Table 6.2.1. It can
be seen that a parabolic E (I?) relation (Eq. (6.2.1)) gives rise to a DOS that varies as
E-'2in 1D, E° (i.e. constant) in 2D, and E'/? in 3D. Note, however, that the 1D or
2D results do not give us the total DOS for a quantum wire or a quantum well. They
give us the DOS only for one subband of a quantum wire or a quantum well. We have
to sum over all subbands to obtain the full DOS. For example, if a quantum well has

subbands p given by (see Eq. (6.1.1))
B2 (k2 + k2
Ep(ke, ky) = Ec + pe. + _(_2";__5’_)

then the DOS would look like a superposition of many 2D DOS:

m.S
D(E) = — ME — E. — p’e. 6.2.5)
(E) mz; ( pe:) (
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Table 6.2.1 Summary of DOS calculation in 1D, 2D, and 3D for parabolic isotropic dispersion
relation (Eq. (6.2.1)). Plots assume m. = m (free electron mass) and results are for one spin

only
L kL s K2 Q 4nkd  BQ
= —2k = — -~ 2 _2* 28 R ke
N(k) 212 - 4”2nk o= 533 =
NE) = L2meE— L Sim(E~E)  QU2me(E ~ E))*?
- wh anh? 672k’
meL 1 " Sm, Qm, 1/2
= =3 ——< [2m.(E — E)) Y
D(E) mh (ch (E - Ec)) Zﬂhz 27{2}13 [ C( C)]
0.25 ‘ 025 * 026
0.2 0.2 02
§°-‘5 ons g0t
u?o.i ':? o '? o
“oost “oos “ o0
° [}
-0.08 008 o0
o TR 3 48 o1 %5 v 15 % 28 01 T L —
OO porevperom > DXE) per oV par o )--> DIE) (per oV par o’ 1>
0.25 : 0.25
[ 2[ L;=20nm
02} : ‘ : 0.2
0.15} . 0.15 e
Eq. (6.2.5)
g o s 01
Eo.os : %0.05
& Eq.(6.26) 2
° ’ o Eq. (6.2.6)
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Fig. 6.2.1 Density of states D(E) for a 2D box calculated from Eq. (6.2.5) (2D with quantized
subbands) and compared with that obtained from the 3D relation in Eq. (6.2.6). As the width L. of
the box is increased from 5 to 20 nm, the DOS approaches the 3D result (the conduction band
effective mass m, is assumed equal to the free electron mass m).

Figure 6.2.1 shows the density of states calculated from Eq. (6.2.5) with ¢, =
n2n? /2mcL? as given in Eq. (6.1.2). It is apparent that as the width L, is increased
from 5 to 20 nm, the DOS approaches the result obtained from the 3D DOS with the
volume §2 set equal to SL.:

Sm 12
D3p(E) = e [2mc (E — EQI'? L, (6.2.6)
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Table 6.2.2 Summary of DOS per spin per valley

Graphite Eq. (6.2.7) Zigzag nanotube Eq. (6.2.8)

Nk = ik2 £k,
%4 b4
SE? L
N(E) = P, —_— E2 — E2
(E) 4ma?t? Z.,: wat v
SE L E
D(E)= ——— I,
(E) 2mwat? 2\,: mwat JE?—E2

From graphite to a nanotube : The evolution of the DOS from a sheet of graphite
to a nanotube also provides an instructive example of how size quantization effects
arise as the dimensions are reduced. For a sheet of graphite we can approximate the
E (E) relation for each of the two valleys centered at (k.a, k,b) = (0, £27/3) as (see
Eq. (6.1.11), a = 3ap/2)

E(k) = ﬂ:% k2 + B2 = *talk| (6.2.7)

As we have seen, the energy subbands for a zigzag nanotube are given by (see
Eq. (6.1.12))

E(k,) = tta,/k2 + k2 = £,/ EZ + (tak)? (6.2.8)

where

2w [ 3v
k,=—|—— d v = tak,
3D (2m 1) and E ta

In calculating D(E) the steps are similar to those shown in Table 6.2.1, though the
details are somewhat different because the dispersion relation is different (Egs. (6.2.7),
(6.2.8)), as summarized in Table 6.2.2. Figure 6.2.2 compares the density of states for
a zigzag nanotube of length L and diameter d (note: circumference = wd = 2mb):

2L E 2at 2m
ZnT(E) Z ral JEE-E with  E, = — (u 3 ) (6.2.9)
with the density of states for a graphite sheet of area w Ld:
Ld
Do(E) = = |E| (6.2.10)
a-t

for a nanotube with m = 200 (corresponding to ¢ = 15.4 nm) and a nanotube with
m = 800 (d = 61.7 nm).

It is apparent that the smaller nanotube has a DOS that is distinctly different from
graphite. But the larger nanotube is less distinguishable, especially if we recall that
experimental observations are typically convolved with the thermal broadening function
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m = 200, m = 800,
d=15.4nm d=61.7nm
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Fig. 6.2.2 Density of states D(E) for a zigzag nanotube calculated from Eq. (6.2.9) (solid curves)
compared with that obtained from the result for graphite (Eq. (6.2.10), crosses).

which has a width of ~kgT ~0.026 eV at room temperature (to be discussed later; see

Fig. 7.3.4).
It is easy to see analytically that the DOS for zigzag nanotubes with the summation

index v replaced by an integral (cf. Eq. (6.2.9))

2L |E] 2at
Dzm(E)~f2d _ \/.—EZ%——E-; with dE = 'd—d\)
E
2Ld
/ ] - ]:d |E|
" ra’r? EZ E: a’t?
0

becomes identical to the DOS for graphite (cf. Eq. (6.2.10)).

Anisotropic dispersion relation: We have used a few examples to illustrate the pro-
cedure for converting an E(k) relation to a density of states D(E). This procedure (see
Tables 6.2.1 and 6.2.2) works well when the dispersion relation E(ic.) is isotropic. How-
ever, the details become more complicated if the relation is anisotropic. For example,
silicon has six separate conduction band valleys, each of which is ellipsoidal:

h2k? h? k% K2k

E=E x ] N 6.2.11
et 2my, + 2my, + 2mg, ( )

For a given energy E, the constant energy contour (Fig. 6.2.3) looks like an
ellipsoid whose major axes are given by +/2m(E — Ec)/h, /2m,,(E — E.)/h,
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and /2m . (E — E.)/h. The volume of this ellipsoid is
7T 2m(E—E.) J2my,(E — E.) /2m..(E — E;)
h h

3 h
so that
T S 2Mme, V2my(E — E) 2m_;

N(E) = 2m (E E) my( 2m (E E)

87r3 3
and

d Q
D(E) = £=N(E) = —s 2m.amyym (E — Eo) (6.2.12)

which reduces to the earlier result (see Table 6.2.1) if the mass is isotropic.

Formal eXpression for DOS: In general if we have a system with eigenstates labeled
by an index «, then we can write the total number of states, Nt(E) with energy less
than E as

Ni(E) =) O(E — &) (6.2.13)

where #(E) denotes the unit step function which is equal to zero for E < 0, and equal
to one for E > 0. The derivative of the unit step function is a delta function, so that

D(E) = —NT(E) ZS(E — &) (6.2.14)

This expression represents a sequence of spikes rather than a continuous function.
Formally we can obtain a continuous DOS from Eq. (6.2.14) by letting the size of the
system get very large and replacing the summation by an integral as we have been
doing. For example, if

2k2

E(k) = E. + ——
2m*
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then D(E) = Y 8(E — &p)
X

2(k2 + k2 +k§))
k.

h
=;;Z:5(E—EC— o

where

27 2n 2n
k,= —v ky, = —v, k, = —uv,
LT YL UL
and vy, vy, and v, are integers. We then let the volume get very large and replace the
summations over these indices with integrals:

+00 dk +00 dk +00 dk
X ¥ <
; / 2n/L, Zk ~ _/ 27/L, Zk - f 2n/L,
* -0 * —00 < -0

Q / 2k
0

o n2k2
——/4rrk2dk6(E—-Ec—- )

" 873 2m*
+00 2.2
_ Q / m*dE vfm*(E - EC)(S E—E — hk=
T 272 h? h © om*
Qm*

= s [2m™(E - E0]

as we obtained earlier (cf. 3D DOS in Table 6.2.1). This procedure is mathematically
a little more involved than the previous procedure and requires integrals over delta
functions.

The real value of the formal expression in Eq. (6.2.14) is that it is generally valid
regardless of the E(I?) relation or whether such a relation even exists. Of course, in
general it may not be easy to replace the summation by an integral, since the separation
between energy levels may not follow a simple analytical prescription like Eq. (6.2.2).
But we can still calculate a continuous DOS from Eq. (6.2.14) by broadening each
spike into a Lorentzian (see Eq. (1.3.2)):

y/2n
(E = €a)* + (v /2)

The DOS will look continuous if the individual energies &, are spaced closely compared
to the broadening y, which is usually true for large systems.

ME —gy) =

(6.2.15)
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Separable problems: An interesting resuit that can be proved using Eq. (6.2.14) is that
if the eigenvalue problem is separable, then the overall DOS is given by the convolution
of the individual densities. For example, suppose we have a 2D problem that separates
into x- and y-components (as shown in Eq. (2.3.6) for 3D problems) such that the overall
energies are given by the sum of the x-energy and the y-energy:

e(n, m) = gx(n) + &y(m) (6.2.16)
We could define an x-DOS and a y-DOS:
D(E) =) 8[E — &:(n)] (6.2.17a)
n

Dy(E)= ) 8[E — &y(m)] (6.2.17b)
and it is straightforward to show that the total DOS
D(E) =) 8[E — &x(n) — £5(m)] (6.2.17¢)
can be written as a convolution product of the x-DOS and the y-DOS:

+00
D(E) = / dE'D,(E") D,(E — E') (6.2.18)

—00

6.3  Minimum resistance of a wire

Now that we have discussed the concept of subbands, we are ready to answer a very
interesting fundamental question. Consider a wire of cross-section L, L, with a voltage
V applied across it (Fig. 6.3.1). What is the conductance of this wire if the contacts
were perfect, and we reduce its length to very small dimensions? Based on Ohm’s law,
we might be tempted to say that the conductance will increase indefinitely as the length
of the wire is reduced, since the resistance (inverse of conductance) is proportional
to the length. However, as I pointed out in Section 1.3 the maximum conductance
G = I/ V for a one-level conductor is a fundamental constant given by

Go=q%/h =387 uS =(258kQ)™" (6.3.1)

We are now ready to generalize this concept to a wire with a finite cross-section. It has
been established experimentally that once the length of a wire has been reduced suffi-
ciently that an electron can cross the wire without an appreciable chance of scattering
(ballistic transport) the conductance will approach a constant value given by (assuming
“perfect” contacts)

G = [M(E)] g=g Go (6.3.2)
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Fig. 6.3.1 A wire of cross-section L,L. with a voltage V applied across large contact.

where M(E) is the number of “modes” or subbands at an energy E. The actual number
of modes M(E) at a given energy depends on the details of the wire, but the maxi-
mum conductance per mode is Go independent of these details. This can be shown as
follows.

Maximum current in a single-moded wire: Consider a mode or subband v with a
dispersion relation E, (k). The current carried by the states having a positive group
velocity can be written as

1= % vk

velky)>0

We have seen earlier that for free electrons with E = h2k?/2m, the velocity is given
by hk/m, which is equal to the momentum Ak divided by the mass m. But what is the
appropriate velocity for electrons in a periodic solid having some dispersion relation
E,(k)? The answer requires careful discussion which we will postpone for the moment
(see Section 6.4) and simply state that the correct velocity is the group velocity generally
defined as the gradient of the dispersion relation

hi(k) = Vi E (k)

so that in our 1D example we can write v,(k,) = 8 E,(k,)/9k, and the current is given
by

jozf y L3RG

L &b ok
dkx 1 aEv(kr) -q /
=g | Sx_22I T4 [ g, 3.
1) 278 ok, h 6.33)

showing that each mode of a wire carries a current of (g/h) per unit energy. At equilib-
rium there is no net current because states with positive and negative velocities are all
equally occupied. An applied voltage V changes the occupation of the levels over an
energy range Er + (gV/2) creating a non-equilibrium situation whose details depend
on the nature of the coupling to the contacts. But regardless of all these details, it is
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apparent that the maximum net current will be established if the positive velocity states
are occupied up to u; = Eg + (¢V/2) while the negative velocity states are occupied
up to up = Ep — (qV/2), so that in the energy range

Er—(qV/2) < E <Ep+(qV/2)

only the positive velocity states are occupied (Fig. 6.3.2). From Eq. (6.3.3) we can write
the current carried by these states belonging to mode v as

2
—q q
] = — - - —V
P (1 — u2) h
so that the maximum conductance of mode v is equal to g>/ & as stated earlier (see
Eq. (6.3.1)). Note that this result is independent of the dispersion relation E, (k) for
the mode v.

Number of modes: How many modes M(E) we actually have at a given energy,
however, is very dependent on the details of the problem at hand. For example, if the
relevant energy range involves the bottom of the conduction band then we may be able
to approximate the band diagram with a parabolic relation (see Fig. 6.1.2, Eq. (6.1.1)).
The subbands can then be catalogued with two indices (n, p) as shown in Fig. 6.3.3

2412

E,p (ko) ~ Ec +n’ey + pPe. + Pk (6.3.4)
2m.

where e, = 72h%/2m L% and &, = w?h*/2m.L?, assuming that the electrons are
confined in the wire by infinite potential wells of width L, and L; in the y- and
z-directions respectively. The mode density M(E) then looks as shown in Fig. 6.3.2,
increasing with energy in increments of one every time a new subband becomes
available.

The details of the subbands in the valence band are much more complicated, because
of the multiple bands that are coupled together giving rise to complicated dispersion
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Fig. 6.3.3 Energy dispersion relation showing the four lowest conduction band subbands
(see Eq. (6.3.4)) in a rectangular wire with L, = L, = 10nm, m; = 0.25m.
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Fig. 6.3.4 Energy dispersion relation showing the four lowest valence band subbands
(see Egs. (6.3.5) and (6.3.6)) in a rectangular wire with L, = L, = 10nm, m, = 0.25m.

relations. For simple back-of-an-envelope estimates we could approximate with a
simple inverted parabola

- hk?
hky=E, — (6.3.5)
ny
We then get inverted dispersion relations for the different subbands
h2k2
~ 2 2
En.p (k) ~* E,—n Ey —PpE — 2m: (6.3.6)

with a mode density M (E) that increases with decreasing energy as shown in Fig. 6.3.4.

Minimum resistance of a wide conductor: We have see that there is a minimum
resistance (h/q?) that a wire can have per mode. An interesting consequence of this
is that there is 2 minimum resistance that a given conductor could have. For example,
we could model a field effect transistor (FET) as a two-dimensional conductor with
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a width W and a length L as shown in the figure below. As the length L is reduced,
it would approach a ballistic conductor whose resistance is dominated by the contact
resistance. This is a well-known fact and device engineers work very hard to come up
with contacting procedures that minimize the contact resistance. What is not as well-
recognized is that there is a fundamental limit to how small the contact resistance can
possibly be — even with the best conceivable contacts.

< »
% »

To estimate this minimum contact resistance, let us assume an n-type semiconduc-
tor where conduction takes place through the conduction band states described by a
parabolic dispersion relation of the form given in Eq. (6.3.4). Assuming that it has only
one subband along the z-direction we can write the electron density per unit area at
T =0 K as (see Table 6.2.1)

ng =

m
nh;(EF - E) (6.3.7)

The maximum conductance is given by

2g° Egz— E. 29% [2n,
Guax = —1Int | —_~ W 2/
max = 7m0 2/ 2m W2 h ¥V &

where we have made use of Eq. (6.3.7) and used the symbol Int(x) to denote the largest
integer smaller than x. The minimum resistance is given by the inverse of G pax:

koo b [T _ 1628k
min = 2q 2n, = \/;1_5

(6.3.8)
With a carrier density of ng = 10'2/cm?, this predicts Rymin W =~ 160 Q um. Note that
we have assumed only one subband arising from the z-confinement. For silicon, the
six conduction valleys give rise to six sets of subbands, of which the lowest two
are degenerate. This means that if the L_-dimension is small enough, there will be
two degenerate subbands arising from the z-confinement and the corresponding mini-
mum contact resistance will be half our estimate which was based on one z-subband:
RminW =~ 80 Qum.





