Single Electron Transistor

Electrostatic energy E(n) = (ne+ CQXQ)ZIZC 5

C= Cs+Cp+C,




Various Single electron transistors:

(1) All metal transistors: Al island
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our work (and many other groups)

(2) Sandwich structure: Al particle
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Al electrode H- N2

Al electrode Al particle
“4® 10 nm size scale

Al particles are isolated by thin Al,O, layer

D.C.Ralph, C.T.Black and M. Tinkham
PRL, 78, 21 p. 4087 (1997) (Harvard Univ)

(3) STM: on Au particle
(STM=Scaning Tunneling Microscope)

P. Radojkovic et al.
J. Vac. Sci. Technol. B 14(2), 1229 (1996)
(Technical Univ. of Munich)
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(4) Colloidal: Au or CdSe particles

_Nanocrystals

Linker
Molecules . .

3nm

self-assmbled molecular
of dithiol molecules

David L. Klein et al.

Nature, 389, p.699 (1997)
(Lawrence Berkeley National Lab.)

Ronald P. Andres et al. Science 722,1323 (1996)
(Purdue Univ.)




T =50 mK

I(Vy) VS. 1(V,)
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Coulomb Oscillation
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Measurement vs. Simulation
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Tunneling rate in orthodox theory [[(AW) = 1 .
e’R 1—exp(~ AW /k,T)




Coulomb blockade oscillation
In Multiwalled Carbon nanotubes
observed by 4-probe techniques

4-probe = measuring the intrinsic properties of wires
contacts are irrelevant
— tunneling related phenomena such as SET should not appear

.
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Asymmetric SET (simulations)

Coulomb Staircase

R,= 50 kQ, R,= 1 MQ, C,=0.2fF, C,=0.15fF, C,=16aF,
E=2.54K, T=20mK

appears when R,C,#R,C, appears when R#R,

sopVsn=e/C,=0.42mV
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slope = (C,/Cy)/R,




Charging effect probed by STM

Capacitance of adielectric disk : C =8¢, r
Capacitance of a dielectric sphere : C =4gy, r

For a GaAs sphere, C = 1.47 x 108 r farad for radius r in nm

VoLUME 63, Numser 7 p. 801 PHYSICAL REVIEW LETTERS 14 AUGUST 1989

Scanning-Tunneling-Microscope Observations of Coulomb Blockade and
Oxide Polarization in Small Metal Droplets

R. Wilkins,"” E. Ben-Jacob,"?) and R. C. Jaklevic”
" Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109
2 School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, 69978 Tel Aviv, Israel
W Seientific Laboratory, Ford Motor Company, Dearborn, Michigan 48121
{Received 20 March 1989)
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FIG. 1. Schematic showing an In droplet separated from an

Al ground plane by a tunneling oxide layer (=10 A thickness)
with an Au STM tip positioned about 10 A above it. The
squivalent circuit is shown with a voltage source and capacitor
Cyr for tip to droplet and Cp for droplet to ground plane. The
resistors characterize the tunneling probability for each junc-
tion and are strictly shot-noise devices.
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FIG. 2. Curve A is an experimental I-V characteristic from by scanning the substrate.'* However, we do not under-
an In droplet in a sample with average droplet size of 300 A. stand at this time why C7 is greater than Cp. At T=4
The peak-peak current is 1.8 nA. Curve B is a theoretical fit to
the data for Cp=3.5x10""" F, Cr=18%x10""® F, Rp=17.2
x10% 0, and Rr=4.4%10° 0. The obvious asymmetric
features in curve A4 require a voltage shift ¥V, =22 mV (V, =18
mV). Curve C, calculated for V; =0, shows the (seldom ob-
served) symmetric case. As explained in the text, a small
quadratic term was added to the computed tunneling rate for
each junction. Inset: A wider voltage scan for this same drop-
let; again, the topmost curve is experimental data.



Potential distribution in a finite 1-D array of arbitrary
mesoscopic tunnel junctions

V. Gasparian', U. Simon*

Institut fiir Anorganische Chemie, Festkorperchemie, Universitidt GH Essen, Schiiizenbahn 70, Essen 453127, Germany

Received 2 September 1997 Physica B 240 (1997) 289-297

Electrode  Metal core Ligand shell Electrode
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G na impuiity
&—& impurity at | =2

1 2 3 4 5

M=x-vx*-1 ¢, =,/cZ+4cc,

—_ Fig. 2. Potential distribution of the infinite array in the units
X _1+C0/2C of —e/Cy and for one impurity at [, =2 with C,/Cy =
— 0.999.



IV characteristics for 1D array with C=100aF, R=20kQ
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Device fabrication

Chip layout

Wires from
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Au leads made by photo-lithography



E-beam lithography for nano-scaled electrodes

e-beam After development
(a) (b) '
ll deposition After lift-off
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Bi-layer polymer system (PMMA/LOR)

We chose to use a PMMA/LOR bi-layer polymer system because LOR is a polydimethylglutarimide
(PMGI)-based polymer and has a much higher charge-sensitivity than that of top PMMA layer.
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nle fabrication facilities

Measurement equipment




Break junction approach for electrical measurement of a single nano-particle
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IV characteristics of a single C,, transistor at 1.5K
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Figure 1 Current—voltage ( I-V) curves obtained from a single-Cg, transistor at T= 1.5 K. Five |-V curves taken at
different gate voltages ( Vg) are shown. Single-Cg, transistors were prepared by first depositing a dilute toluene
solution of C60 onto a pair of connected gold electrodes. A gap of,1 nm was then created using electromigration-
induced breaking of the electrodes. Upper inset, a large bias was applied between the electrodes while the
current through the connected electrode was monitored (black solid curve). After the initial rapid decrease (solid
arrow), the conductance stayed above ,0.05 mS up to ,2.0 V. This behaviour was observed in most single-Cg,
transistors, but it was not observed when no Cg, solution was deposited (red dotted curve). The bias voltage was
increased until the conductance fell low enough to ensure that the current through the junction was in the
tunnelling regime (open arrow). The low bias measurements shown in the main panel were taken after the
breaking procedure. Lower inset, an idealized diagram of a single C60-transistor formed by this method.



Electron transfer through a quantum dot with charging energy E.




What makes electrons flow?

J, J, biasing: p,-p,=qVp

Fermi function: 1
f,(E)= =
1+exp[(E — 1) /KT ]

(E— 1)

L = f
1+eXp[(E _ﬂz)/kBT] e

f,(E)= (E-1)

Coupling strength for J, and J, =y, and v,
l, = e(%)( f (&) - p) I, = e(%)( f,(e,)— p)
p = average number of electroninthe QD 0< p<1

rifi+7, 1,
V1TV

At steady state, I,=I, pP=

=l =1, =22 [§ ()= f,()]
Iy +y,

Handbook of Nanoscience, Engineering, and Technology Quantum transport: atom to transistor
Section: 12.2.2 Current flow as a balancing act Sec. 1.2 What makes electrons flow
By Magnus Paulsson, Ferdows Zahid and Supriyo Datta,

Edited by William A. Goddard,lll et al. CRC Press, 2003



In large bias range

V(mV)
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Charging energy > 270meVv YaM)

Two-dimensional differential conductance (01/6V) plots as a function of the bias

voltage (V) and the gate voltage (V,). Data were obtained from four different devices
prepared from separate fabrication runs. The dark triangular regions correspond to the
conductance gap, and the bright lines represent peaks in the differential conductance.
a—d, The differential conductance values are represented by the colour scale, which
changes from black (0 nS) through pink to white (white representing 30 nSin a, b and c
and 5 nSin d). The white arrows mark the point where 0 1/0 V lines intercept the
conductance gap. During the acquisition of data in d, one ‘switch’ where the entire 8 1/0 V
characteristics shift along the V, axis occurred at V, = 1.15 V. The right portion of the plot
d is shifted along the V, axis to preserve the continuity of the lines.



Single-walled carbon nanotube
with quantum dot behavior
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AE=2.5~3.0 meV

E-=6~9 meV (70~100K)



Where is the Fermi Energy?

Weakly coupled molecule

-ionization potential -f-----1 - —

Vacuum level

-electron affinity---------- —
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Work function
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Strongly coupled molecule

contact potentia
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in positive bias
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