A Lattice Study of Quark and Glue momenta and angular momenta in the Nucleon

Takumi Doi

(Nishina Center, RIKEN)

<u>χQCD Collaboration</u>

M. Deka, Y.-B. Yang, B. Chakraborty, S.-J. Dong, T. Draper, M. Glatzmaier, M. Gong, H.-W. Lin, K.-F. Liu, D. Mankame, N. Mathur, T. Streuer

> PRD91(2015)014505 (arXiv:1312.4816)

Pacific Spin 2015 @ Taiwan

<u>Outline</u>

- Introduction
- Lattice QCD framework
 - Challenges: Disconnected Insertion and Glue
- Lattice QCD results
- Summary & Prospects

Puzzles in Nucleon structure

- Spin (axial vector)
 "Spin crisis"
 - quark spin is small !

$$\Delta \Sigma = \sum_{q} [\Delta q + \Delta \bar{q}] = 0.2 - 0.3$$

 $g_1(x) \simeq \frac{1}{2} \sum_q e_q^2 [\Delta q(x) + \Delta \bar{q}(x)]$

- Glue ?

$$\int_{0.05}^{0.2} \Delta g(x) dx = 0.1 \pm_{0.07}^{0.06}$$

RHIC Spin: arXiv:1304.0079

2015/10/05

De Florian et al., PRL113(2014)012001

Lattice QCD First-principles calculation of QCD

 $Z = \int dU dq d\bar{q} \ e^{-S_E}$

- Well-defined reguralized system
- **Gauge-invariance manifest**
- **Fully-Nonperturbative**
- DoF ~ $10^9 \rightarrow$ Monte-Carlo w/ Euclid time

Summary by Kronfeld, arXiv:1203.1204

Isovector matrix elements

M. Constantinou @ Lat14

Strangeness EM form factor

J. Green et al., PRD92(2015)031501

How about proton spin ?

(MSbar, mu=2GeV)

Fig from C. Alexandrou et al., PRD88(2013)014509

- <u>Outline</u>
 - Introduction
 - Lattice QCD framework
 - Challenges: Disconnected Insertion and Glue
 - Lattice QCD results
 - Summary & Prospects

Formulation on the Lattice

- 1st-moment <x> and spin J studied simultaneously
- Matrix elements of energy-momentum tensor

Gauge invariant decomposition

Recent developments:

Chen et al., Wakamatsu, Hatta, Leader & Lorce, ...

$$\langle p, s | T^{\mu\nu} | p', s' \rangle = \bar{u}(p, s) \left[T_1(q^2) \gamma^{\mu} \bar{p}^{\nu} + T_2(q^2) \bar{p}^{\mu} i \sigma^{\nu\alpha} / 2m \right. \\ \left. + T_3(q^2) (q^{\mu} q^{\nu} - g^{\mu\nu} q^2) / 2m + T_4(q^2) g^{\mu\nu} m / 2 \right] u(p', s')$$

$$\left[\langle x \rangle = T_1(0) \right] \qquad \qquad J = \frac{1}{2} [T_1(0) + T_2(0)]$$

(angular) momentum sum rules

Nucleon matrix elements

$$x\rangle_q + \langle x \rangle_G = 1$$
 $J_q + J_G = 1/2$

8

Formulation on the Lattice

- Calculate 3pt (& 2pt) -> matrix elements

 - Typical examples:

p'=p-q

t0

t2

– Other momentum combinations are calculated and T_1 , T_2 , (T_3) are determined simultaneously

Challenges in Lattice QCD (1) Disconnected Insertion (DI)

• Two kinds of calc in Lattice:

Disconnected Insertion (DI)

- DI is inevitable for flavor singlet quantities, but...
 - All(source)-to-all(sink) propagator is necessary
 - Straightforward calculation **impossible**
 - O(10⁵) inversions for O(10⁶) x O(10⁶) matrix

$$\operatorname{Tr}[\Gamma M^{-1}] = \sum_{x} \operatorname{Tr}_{\operatorname{color}}^{\operatorname{spin}}[\Gamma M^{-1}(x,x)]$$

2015/10/05

(MSbar, mu=2GeV)

Fig from C. Alexandrou et al., PRD88(2013)014509 11

The approach for disconnected insertion

- Stochastic Method for DI
 - Use Z(4) (or Z(N)) noises such that

$$\lim_{L \to \infty} \frac{1}{L} \sum_{l=1}^{L} \eta_i^{l \dagger} \eta_j^{l} = \delta_{ij}$$

S.-J.Dong, K.-F.Liu, PLB328(1994)130

- DI loop can be calculated as

$$\operatorname{Tr}[\Gamma M^{-1}] = \lim_{L \to \infty} \frac{1}{L} \sum_{l=1}^{L} \eta^{l \dagger} (\Gamma M^{-1} \eta^{l})$$

- Introduce new source for noises ("off-diagonal" part)
 - → Unbiased subtraction using hopping parameter expansion (HPE)
 - Off-diagonal contaminations are estimated in unbiased way

c.f. other approaches All-to-all (Foley et al., 2005) CAA/AMA (Blum et al., 2012)

Stochastic method for DI

 Stochastic Method for DI S.-J.Dong, K.-F.Liu, PLB328(1994)130 Noise $\lim_{L \to \infty} \frac{1}{L} \sum_{l=1}^{L} \eta_i^{l \dagger} \eta_j^{l} = \delta_{ij}$ – DI loop $\operatorname{Tr}[\Gamma M^{-1}] = \lim_{L \to \infty} \frac{1}{L} \sum_{l=1}^{L} \eta^{l \dagger} (\Gamma M^{-1} \eta^{l})$ y_x $\eta_x^{\dagger}\eta_y$ ╋ +i - -1 - +1 $\eta_x \eta_x$ **Stochastic source Noise part** Signal part

Improvement of DI calc

 The <u>unbiased subtraction</u> using <u>hopping parameter</u> <u>expansion (HPE)</u> to eliminate off-diagonal noises

➔ The error reduces by a factor of 2 or more

Challenges in Lattice QCD (2) gluon matrix elements

• Gluon operator

$$T_G^{\mu\nu} = \frac{1}{4} g^{\mu\nu} F^2 - F^{\mu\alpha} F^{\nu}{}_{\alpha}$$

Implementation is simple w/ link variables

 $F_{\mu\nu} \leftarrow \rightarrow$ clover term w/ link U_µ

- In practice, S/N is known to be notoriously noisy

Gluon DoF fluctuate too much in high-freq mode

M. Gockeler et al., Nucl.Phys.Proc.Suppl.53(1997)324

The approach for Glue

• Field tensor constructed from overlap operator

$$F_{\mu\nu}(x) \longleftarrow \operatorname{Tr}_{(\operatorname{spinor})} [\sigma_{\mu\nu} D_{ov}(x,x)]$$

 $\begin{array}{ll} (a \rightarrow 0) & \mbox{K.-F.Liu, A.Alexandru, I.Horvath} \\ D_{ov} = \rho \left(1 + X \frac{1}{\sqrt{X^{\dagger}X}}\right), \ X = -\rho + D_W \end{array}$

- Ultraviolet fluctuation is expected to be suppressed (automatic smearing)
- In order to estimate D_{ov}(x,x), stochastic method is used w/ color/spinor & (some) spacial dilution

$$D_{ov}(x,x) \Leftarrow \langle \eta_x^{\dagger} (D_{ov} \eta)_x \rangle$$

c.f. other approaches Smearing (Meyer et al., 2008) Change Action & response (Horsley et al., 2012) Wilson-Flow (H.Suzuki, 2013)

2015/10/05

- <u>Outline</u>
 - Introduction
 - Lattice QCD framework
 - Challenges: Disconnected Insertion (DI) and Glue
 - Lattice QCD results
 - Summary & Prospects

Lattice Setup

- Wilson Fermion + Wilson gauge Action
 - 500 configs with Quenched approximation
 - 1/a=1.74GeV, a=0.11fm (beta=6.0)
 - 16³ x 24 lattice, L=1.76fm
 - kappa(ud) = 0.154, 0.155, 0.1555
 - m(pi) = 0.48, 0.54, 0.65 GeV
 - m(N) = 1.09, 1.16, 1.29 GeV
 - kappa(s)=0.154 , kappa(critical)=0.1568

Lattice Setup (cont'd)

- Disconnected Insertion (DI)
 - Z(4) stochastic method, #noise=500
 - Unbiased subtraction w/ up to 4th HPE
- Glue matrix element
 - Overlap operator $D_{ov}(x,x)$
 - Z(4) stochastic method, #noise=2, w/ color/spinor dilution
 + spacial dilution (d=2 & even/odd → taxi-distance=4)
- Improvement
 - Many nucleon sources, #src=16
 - CH, H and parity symmetry:
 - $(3pt)=(2pt) \times (loop) \rightarrow (3pt) = Im(2pt) \times Re(loop) + Re(2pt) \times Im(loop)$

Results for CI: q²-dependence

Results for DI: q²-dependence

Results for Glue: q²-dependence

Chiral Extrapolation

Simple Linear-extrapolation is performed

Renormalization

• Quark-glue mixing

$$\begin{pmatrix} \langle x \rangle_q^{\overline{MS}}(\mu) \\ \langle x \rangle_G^{\overline{MS}}(\mu) \end{pmatrix} = \begin{pmatrix} Z_{qq}(a\mu, g_0) & Z_{qG}(a\mu, g_0) \\ Z_{Gq}(a\mu, g_0) & Z_{GG}(a\mu, g_0) \end{pmatrix} \begin{pmatrix} \langle x \rangle_q^{lat} \\ \langle x \rangle_G^{lat} \end{pmatrix}$$

Check on Momentum sum rules for lat results

$$\langle x \rangle_q^{lat} + \langle x \rangle_G^{lat} = 0.95(7) 2(J_q^{lat} + J_G^{lat}) = 0.95(9)$$

$$Z_{qG} = 0 (quenched) Z_{qq} = 1 + \frac{g_0^2}{16\pi^2} C_F \left(\frac{8}{3}\log(a^2\mu^2) + f_{qq}\right), Z_{qg} = -\frac{g_0^2}{16\pi^2} \left(\frac{2}{3}N_f \log(a^2\mu^2) + f_{qg}\right), Z_{gq} = -\frac{g_0^2}{16\pi^2} C_F \left(\frac{8}{3}\log(a^2\mu^2) + f_{gq}\right), Z_{gg} = 1 + \frac{g_0^2}{16\pi^2} \left(\frac{2}{3}N_f \log(a^2\mu^2) + f_{gg}\right).$$

Lat PT calc (one-loop)

← M.Glatzmaier, K.-F.Liu, M.Ramsey-Musolf, arXiv:1403.7211

$$f_{qq} = -7.60930 \quad f_{qG} = 0 \qquad \qquad \frac{1}{\sqrt{X^{\dagger}X}} = \int_{-\infty}^{\infty} \frac{d\sigma}{\pi} \frac{1}{\sigma^2 + X^{\dagger}X}$$

(Integral form for glue op.)

Renormalization

• "Sum-rule improved" version $\langle x \rangle_q^{lat,S} + \langle x \rangle_G^{lat,S} = 1 \quad 2(J_q^{lat,S} + J_G^{lat,S}) = 1$ "normalization-improvement" by imposing $\langle x \rangle_q^{lat,S} = Z_q^L \langle x \rangle_q^{lat}$ sum-rules to account for latt systematics $\langle x \rangle_G^{lat,S} = Z_q^L \langle x \rangle_G^{lat}$ etc.

- We also have to modify matching coeffs

 $Z = \left(\begin{array}{cc} 0.9641 & 0.0119\\ 0.0359 & 0.9881 \end{array}\right)$

$$\begin{pmatrix} \langle x \rangle_q^{\overline{MS}}(\mu) \\ \langle x \rangle_G^{\overline{MS}}(\mu) \end{pmatrix} = \begin{pmatrix} Z_{qq}(a\mu, g_0) & Z_{qG}(a\mu, g_0) \\ Z_{Gq}(a\mu, g_0) & Z_{GG}(a\mu, g_0) \end{pmatrix} \begin{pmatrix} \langle x \rangle_q^{lat,S} \\ \langle x \rangle_G^{lat,S} \end{pmatrix}$$

"Sum rule constraint" $Z_{qq} + Z_{Gq} = 1$, $Z_{Gq} + Z_{GG} = 1$

$$\Rightarrow \quad \tilde{f}_{qq} = \tilde{f}_{Gq} = (f_{qq} + f_{Gq})/2 \qquad \tilde{f}_{qG} = \tilde{f}_{GG} = (f_{qG} + f_{GG})/2$$

(ad-hoc solution w/~1% sys err)

25

2015/10/05

(to MSbar mu=2GeV)

Results

	CI(u)	CI(d)	CI(u+d)	$\mathrm{DI}(\mathrm{u/d})$	DI(s)	Glue
$\langle x \rangle$	0.413(38)	0.150(19)	0.565(43)	0.038(7)	0.024(6)	0.334(55)
$T_2(0)$	0.286(108)	-0.220(77)	0.062(21)	-0.002(2)	-0.001(3)	-0.056(51)
2J	0.700(123)	-0.069(79)	0.628(49)	0.036(7)	0.023(7)	0.278(75)
g_A	0.91(11)	-0.30(12)	0.62(9)	-0.12(1)	-0.12(1)	—
2L	-0.21(16)	0.23(15)	0.01(10)	0.16(1)	0.14(1)	_

 $\overline{MS}, \ \mu = 2 \text{ GeV}$ (Stat. Error Only)

Results

Spin = 25(12)%Glue = 28(08)%Orbital = 47(13)%

DI part is important

 $L(u) + L(d) [CI] \sim = 0$ $J(u) >> J(d) [CI] \sim = 0$

(observed in other Lat)

From our old results: _____ Dong et al., PRL75(1995)2096

Systematic errors to be explored

- Dynamical quark effect
 This is quenched calc.
- Uncertainty in (long) chiral extrapolation
 m(pi) = 0.48--0.65 GeV in this calc
- Contamination from excited states
 - Sys error could be large (quite common in N on lat)
- Finite volume artifact, discretization artifact
 m(pi) L >~ 4, a = 0.11fm
- Renormalization
 - Perturbative vs. non-perturbative, etc.

<u>Comparison</u>

quark spin

Quenched calc (1995) $\Delta \Sigma^{u,d}$ (DI) $\simeq \Delta \Sigma^s$ (DI) $\simeq -0.12$ Recent dynamical clac $\Delta \Sigma^{u,d}$ (DI) ~ -0.05 (Boston, QCDSF, Engelhardt, ETMC,CSSM/QCDSF,...) $\Delta \Sigma^s$ (DI) ~ -0.03

 $L = J - \Delta \Sigma / 2$

→ Large orbital mom by large negative DI in quenched

➔ Smaller orbital mom by going to full QCD ?

Close-Roberts (1993)

SU(3) breaking effect change situation ?

Lattice calc (Lin et al. (2009), Sasaki et al. (2009), Erkol et al. (2010)) suggests small SU(3) breaking

Summary & Prospects

- The first study of <u>complete calc</u> of proton spin – Connected (CI), <u>Disconnected</u> (DI) & <u>Glue</u>
 - DI: stochastic method + unbiased subt. w/ HPE
 - Glue: overlap operator to improved S/N
- Quenched calc at heavy quark mass
 J (u+d): 70(5)%, J(s): 2.3(7)%, J(glue): 28(8)% where L(u+d+s): 47(13)%

• Future:

- Full QCD calc at lighter mass
- New decomposition, ΔG
- (Wilson-Flow for EM-tensor op., etc.)