Studies on transverse spin properties of nucleons at PHENIX

Pacific Spin 2015 Academia Sinica in Taipei, Taiwan October 8, 2015 Yuji Goto (RIKEN/RBRC)

3D structure of the nucleon

- Conclusive understanding of the nucleon spin
 - orbital motion inside the nucleon and orbital angular momenta of quarks and gluons
- TMD (Transverse-Momentum Dependent) distribution function
 - Correlation between transverse-momentum distribution, spin and orbital motion

- GPD (Generalized Parton Distribution)
 - Spatial distribution or tomography

Transverse-spin asymmetry measurement

• Transverse single spin asymmetry (SSA)

$$A_{N} = \frac{d\sigma_{Left} - d\sigma_{Right}}{d\sigma_{Left} + d\sigma_{Right}}$$

 Expected to be small in hard scattering at high energies

$$A_N \approx \frac{m_q \alpha_S}{p_T} \approx 0.001$$

Kane, Pumplin, Repko PRL 41 1689 (1978)

- FNAL-E704
 - Unexpected large asymmetry found in the forward-rapidity region
 - Development of many models based on perturbative QCD

Left

Right

TMD and higher-twist

D

- Two theory frameworks
- "Sivers effect"
 - Initial-state effect
 - TMD (Sivers) distribution function
 - Need 2 scales (p_T and Q^2)
 - Drell-Yan, W/Z bosons
 - Higher-twist distribution function
 - Need 1 scale (p_{τ})
 - Hadron, photon, jet production
- "Collins effect"
 - Final-state effect
 - Transversity with TMD (Collins) fragmentation function
 - Transversity with higher-twist fragmentation function

TMD and higher-twist

- Theoretical description of SSA
 - TMD at low p_T and high Q^2
 - Higher twist at high p_T
 - Common description at medium p_{τ}
- SSA description with initial state effect

$$T_{q,F}(x,x) = -\int d^2k_{\perp} \frac{|k_{\perp}^2|}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{\text{SIDIS}}$$

Twist- $\tau =$ Suppressed by $\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^{\tau-2}$

 $[\]Lambda_{
m QCD} \ll P_{hT} \ll Q$ October 8, 2015

Transverse-polarization runs

- Muon arm 2001-
- MPC 2006-
 - EM calorimeter
- FVTX 2012-
 - Silicon detector
- MPC-EX 2015-
 - Preshower detector

18.5 m = 60 ft

Year	Energy	Recorded Luminosity	Polarization	FoM (P ² L)
2001-2	200 GeV	0.15 pb ⁻¹	15%	0.0034 pb ⁻¹
2005	200 GeV	0.16 pb ⁻¹	47%	0.035 pb ⁻¹
2006	200 GeV	2.7 pb ⁻¹	57%	0.88 pb ⁻¹
2006	62.4 GeV	0.02 pb ⁻¹	53%	0.0056 pb ⁻¹
2008	200 GeV	5.2 pb ⁻¹	45%	1.1 pb ⁻¹
2012	200 GeV	9.2 pb ⁻¹	59%	3.3 pb ⁻¹
2015	200 GeV	110 pb ⁻¹	57%	35 pb ⁻¹

October 8, 2015

MPC

- Muon Piston Calorimeter
- EM calorimeter installed in the small cylindrical hole in muon magnet piston
 - PbWO₄ crystals
 - 2.2×2.2×18 cm³
 - 22.5 cm radius
 - 43.1 cm depth
 - $3.1 < |\eta| < 3.9$

High-p_T measurements

• Forward EM cluster at $\sqrt{s} = 200 \text{ GeV}$

October 8, 2015

High-p_T measurements

- Measured SSA
 - No significant drop at high p_{τ}
 - Not only initial state but also final state effect necessary
- Higher twist calculation of initial state and final state

MPC-EX

- Pre-shower detector in front of MPC
 - Silicon mini-pad detectors with tungsten plates
- 2015 run

Direct photon

- Distinguish predicted higher-twist quark-gluon correlation functions
 - No final state effect

Kang, Qiu, Vogelsang and Yuan, PRD 83 094001 (2011) Gamberg and Kang, arXiv 1208.1962v1 (2012)

Kanazawa, Koike, Metz and Pitonyak, PRD 83 094001 (2015)

 $p \uparrow + A$

- Unique capability of RHIC
- Polarization for probe to the gluon saturation (CGC)
 - Measurement of Q_s
- Projection for 2015 run

Z.-B.Kan and F.Yuan PRD84, 034019 (2011) $\frac{A_N^{pA \to hX}}{A_N^{pp \to hX}} \approx \frac{Q_{s,p}^2}{p_T^h < Q_s^2} f(p_T^h)$ $\frac{A_N^{pA \to hX}}{A_N^{pp \to hX}} \approx 1$

Odderon mechanism (Kovchegov and Sievert) predicts $\rightarrow 0$

October 8, 2015

Heavy-flavor measurements

- Gluon contribution
 - Quark sector good knowledge
 - Twist-3 quark-gluon correlation functions
 - Gluon sector largely unknown
 - Twist-3 tri-gluon correlation functions
- Heavy-flavor from gluon-gluon process
 - No final state effect
- Single muon SSA
 - 2012 run preliminary result

Single muon SSA

 Much improved results expected from 2015 run with VTX and FVTX

Forward J/ψ SSA

- 2012 run preliminary result
 - Asymmetry consistent with zero
 - More from 2015 run

Forward neutron asymmetry

Forward neutron production

- Cross section measurement
 - Forward peak in the x_F distribution around x_F~0.8
- OPE (one-pion exchange) model gives a reasonable description
- Asymmetry measurement
 - Interference between spin-flip and non-flip with a relative phase
 - Kopeliovich, Potashnikova, Schmidt, Soffer: Phys. Rev. D 84 (2011) 114012
 - Pion-a₁ interference: the data agree well with independence of energy
 - The asymmetry has a sensitivity to presence of different mechanisms, e.g. Reggeon exchanges with spinnon-flip amplitude, even if they are small amplitudes

FIG. 1: (Color online) Single transverse spin asymmetry A_N in the reaction $pp \rightarrow nX$, measured at $\sqrt{s} = 62, 200, 500 \text{ GeV}$ [1] (preliminary data). The asterisks show the result of our calculation, Eq. (38), which was done point by point, since each experimental point has a specific value of z (see Table I).

$p\uparrow +A$

- 2015 run preliminary result
 - ZDC trigger

A-dependence of neutron A_N

- Isospin effect?
- Nuclear effect?
 - Nucleus size
 - Neutron skin
 - Coherent effect
- Other trigger or offline event selection results to be obtained
- Inputs from theorists necessary

RHIC schedule

- PHENIX will end data taking after 2016 run
 - Polarized proton runs have already ended in 2015
- "sPHENIX" in 2021-22
 - Starting as a new collaboration
 - There will be polarized proton runs

	Years	Beam Species and	Science Goals	New Systems
	2014	Au+Au at 15 GeV Au+Au at 200 GeV ³He+Au at 200 GeV	Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search	Electron lenses 56 MHz SRF STAR HFT STAR MTD
	2015-16	p↑+p↑ at 200 GeV p↑+Au, p↑+Al at 200 GeV High statistics Au+Au Au+Au at 62 GeV ?	Extract η/s(T) + constrain initial quantum fluctuations Complete heavy flavor studies Sphaleron tests Parton saturation tests	PHENIX MPC-EX STAR FMS preshower Roman Pots Coherent e-cooling test
	2017	p ↑+p ↑ at 510 GeV	Transverse spin physics Sign change in Sivers function	
	2018	No Run		Low energy e-cooling install. STAR iTPC upgrade
	2019-20	Au+Au at 5-20 GeV (BES-2)	Search for QCD critical point and onset of deconfinement	Low energy e-cooling
	2021-22	Au+Au at 200 GeV p↑+p↑, p↑+Au at 200 GeV	Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism Color screening for different quarkonia Forward spin & initial state physics	sPHENIX Forward upgrades ?
2	≥ 2023 ?	No Runs		Transition to eRHIC

"sPHENIX"

- A new large-acceptance jet and Upsilon detector around the BaBar megnet
- Probe QGP with precision measurements of jet quenching and Upsilon suppression
- Spin physics and initial conditions at forward rapidities with p+p and p+A collisions

Forward "sPHENIX"

- Transverse spin physics
 - Transverse spin "puzzle"
 - Large single spin asymmetry (SSA) in the forward region
 - Understanding of the orbital motion
- p+A and p⁺+A physics
 - Cold Nuclear Matter (CNM) effects
 - Polarization for probe to the gluon saturation

Jet measurements

- Small jet asymmetry measured by AnDY
 - Cancellation between u- and dquarks
 - A cut on the charge of the leading hadron changes the composition of the jet sample
- Asymmetry measurement inside of jets
 - Transversity (initial state) + polarized fragmentation function (final state)

Drell-Yan measurement

- Establishment of non-universality of TMD distribution function
 - Opposite-sign contribution of TMD distribution function to SSA in SIDIS process and Drell-Yan process

$$f_{1T}^{\perp q}|_{\text{SIDIS}} = -f_{1T}^{\perp q}|_{\text{DY}}$$

- Fundamental property based on gauge invariance of QCD
- Experimental verification required

Drell-Yan measurement

- Statistical sensitivities
 - With and without Sivers function evolution
- Better S/B (lower heavy-flavor cross section) but reduced luminosity at $\sqrt{s} = 200 \text{ GeV}$
- Higher luminosity (higher statistics) but higher background at $\sqrt{s} = 510$ GeV

Summary

- Transverse-spin properties of the nucleon
 - Conclusive understanding of the nucleon spin
 - Orbital motion inside the nucleon
 - Description with TMD and higher twist effect
 - Distinguish between initial state and final state effect
 - Forward measurements with MPC and MPC-EX
- p⁺A asymmetry measurement
 - Unique capability of RHIC
 - MPC-EX result to be obtained
 - Neutron asymmetry
- sPHENIX forward measurement
 - Jet and Drell-Yan asymmetry measurements
 - Support from the spin community important and necessary

Backup slides

SSA at midrapidity

Drell-Yan measurement

	COMPASS-II	fsPHENIX 200 GeV	fsPHENIX 510 GeV		
$L_{avg}(\mathrm{cm}^{-2}\mathrm{s}^{-1})$	1.18×10^{32}	0.76×10^{32}	6.48×10^{32}		
Average L /week	14.3 pb ⁻¹ /week	18.7 pb ⁻¹ /week	128 pb ⁻¹ /week		
Accelerator eff.	0.8	(included above)	(included above)		
Detector up-time	0.85	0.6	0.6		
Vertex cut	n/a	0.62	0.62		
Sampled L /week	9.7 pb ⁻¹ /week	6.9 pb ⁻¹ /week	47.6 pb ⁻¹ /week		
week/year	20	10	15		
Sampled L /year	194 pb ⁻¹ /year	69 pb ⁻¹ /year	714 pb ⁻¹ /year		
Dimuon trigger eff.	0.81	0.81	0.81		
		•			
Hi	High mass: $4 \text{ GeV}/c^2 < M < 9 \text{ GeV}/c^2$				
Reconstruction eff.	0.8	0.312	0.305		
Offline L /year	126 pb ⁻¹ /year	17.5 pb ⁻¹ /year	177 pb ⁻¹ /year		
Cross section σ	1291 pb	1199 pb	2542 pb		
Acceptance Ω	0.35	0.14	0.19		
$\sigma \cdot \Omega$	452 pb	171 pb	478 pb		
K factor (assumption)	2	1.38	1.38		
Dimuon/year $L \cdot \sigma \cdot \Omega \cdot K$	115000/year	4150/year	117000/year		
FoM/year	2230/year	747/year	14600/year		
$\delta A_T^{\sin\phi_S} = 1/\sqrt{FoM}$	0.021	0.037	0.0083		
-		,	•		

Low mass: $2 \text{ GeV}/c^2 < M < 2.5 \text{ GeV}/c^2$

Reconstruction eff.	0.8	0.285	0.272
Offline L /year	126 pb ⁻¹ /year	16.0 pb ⁻¹ /year	157 pb ⁻¹ /year
Cross section σ	6231 pb	2811 pb	4630pb
Acceptance Ω	0.43	0.22	0.21
$\sigma \cdot \Omega$	2679 pb	610 pb	955 pb
K factor (assumption)	2	1.38	1.38
Dimuon/year $L \cdot \sigma \cdot \Omega \cdot K$	674000/year	13500/year	207000/year
FoM/year	13200/year	2430/year	25900/year
$\delta A_T^{\sin\phi_S} = 1/\sqrt{FoM}$	0.0087	0.020	0.0062

October 8, 2015

Forward neutron production

- Cross section measurement at ISR/FNAL
 - Forward peak in the x_F distribution
 - around $x_F \sim 0.8$
 - Only a small \sqrt{s} dependence
- OPE (one-pion exchange) model gives a reasonable description

- Cross section measurement at HERA(e+p)/NA49(p+p)
 - \sqrt{s} dependence indicated
 - Suppression of the forward x_F peak at high \sqrt{s} ?
- More data necessary to understand the production mechanism
 - Asymmetry measurement as a new independent input

No cross section measurement performed at IP12 experiment \rightarrow measurement at PHENIX

Forward neutron production

 Interference between spinflip and non-flip with a relative phase

 $A_N \approx \frac{2 \operatorname{Im}(fg^*)}{|f|^2 + |g|^2}$ f: spin non-flip amplitude g: spin flip amplitude

- Pion-a₁ interference: results
 - The data agree well with independence of energy
- The asymmetry has a sensitivity to presence of different mechanisms, e.g. Reggeon exchanges with spin-non-flip amplitude, eve if they are small amplitudes

Reggeon exchanges with spin-non-flip amplitude, even if they are small amplitudes if they are small amplitudes spin-non-flip amplitudes for the spin-non-flip amplitude in the reaction $pp \rightarrow nX$, measured at $\sqrt{s} = 62$, 200, 500 GeV in the result of our calculation, Eq. (38), which was done point by point, since each experimental point has a specific value of z (see Table I).