

Recent transverse spin results from STAR

Qinghua Xu, Shandong University PanSpin2015, Taipei, October 8, 2015

Outline

- Introduction
- Single spin asymmetries in the forward region
- Mid-rapidity hadron-jet correlations (Transversity+Collins)
- Di-hadron spin asymmetries (Transversity+IFF)
- Single spin asymmetries for weak bosons (Sivers)
- Summary & outlook

RHIC- the first polarized pp collider in the world

Magnet

- 0.5 T Solenoid
- Triggering & Luminosity Monitor
- Beam-Beam Counters
 - $3.4 < |\eta| < 5.0$
- Zero Degree Calorimeters
- Vertex Position Detector

Central Tracking

- Large-volume TPC
 - |η| < 1.3

Calorimetry

- Barrel EMC (Pb/Scintilator)
 - |η| < 1.0
- Endcap EMC (Pb/Scintillator)
 - 1.0 < η < 2.0
- Forward Meson Spectrometer(Pb/Glass)
 - $2.5 < \eta < 4.0$

Tai Sakuma, Thesis, MIT (2010)

Mechanisms for Transverse Single-spin Asymmetries

• Anomalously large A_N observed for nearly 40 years:

Sivers effect (Sivers'90): parton spin and k₁ correlation in initial state (related to orbital angular momentum)

Collins effect (Collins'93):

quark spin and k_T correlation in fragmentation process (related to transversity)

Need two scales (Q and p_T), Q>> p_T

 Twist-3 mechanism (*Efremov-Teryaev'82, Qiu-Sterman'91*): Collinear/twist-3 quark-gluon correlation + fragmentation functions Need one scale (Q or p_T), Q, p_T>>\/_{QCD} Both mechanisms apply when Q>>p_T>>/_{QCD} Ji-Qiu-Vogelsang-Yuan,2006

$\pi^0 \: A_N$ in the forward region

• A_N for forward EM events: dependence on "jettiness":

1-photon events, which include a large $\pi 0$ contribution, are similar to 2-photon events

Three-photon jet-like events have a clear non-zero asymmetry, but substantially smaller than that for isolated π 0's

A_N decreases as the event complexity increases(i.e., the "jettiness")

2011 data, 22 pb⁻¹ at 500 GeV, anti- k_T jet algorithm on FMS photons, R = 0.7

Detailed study for forward $\pi^0 A_N$

Detailed study for forward $\pi^0 A_N$

How much of the large forward π⁰ A_N comes from partonic scattering? ->diffractive effect? New Roman pots at STAR

Mid-rapidity hadron-jet correlations (Collins)

- Study proton transversity through its coupling to Collins function:
- Collins asymmetries:

Collins angle: $\Phi_c = \Phi_s - \Phi_h$ Collins modulation: $sin(\Phi_s - \Phi_h)$ j_T : transverse momentum in jet Φ_s : azimuthal angle of beam spin Φ_h : azimuthal angle of hadron

Mid-rapidity hadron-jet correlations (Collins)

Non-zero Collins asymmetries observed from run2012 200 GeV

 A_{IIT} vs. j_T for $x_F > 0$

 A_{IIT} vs. z for $x_F > 0$

STAR Preliminary • π+ 0.04 0.04 STAR Preliminary $x_{F} > 0$ **π** $\mathbf{A}_{\mathsf{UT}}^{\mathsf{sin}(\varphi_{\mathsf{s}} - \varphi_{\mathsf{H}})}$ $A_{UT}^{sin(\phi_{s} - \phi_{H})}$ ÷ $p^{\uparrow} + p \rightarrow jet + \pi^{\pm} + X at \sqrt{s} = 200 \text{ GeV}$ $p^{\uparrow} + p \rightarrow jet + \pi^{\pm} + X at \sqrt{s} = 200 \text{ GeV}$ 5.6% Scale Uncertainty Not Shown -0.04 5.6% Scale Uncertainty Not Shown -0.04 10 < Jet p_ < 31.6 GeV/c 10 < Jet p_ < 31.6 GeV/c Jet p_ Jet p_T 0.1 < z < 0.6 0.125 < j_ < 4.5 GeV/c 0.75 1.5 N <u>,</u> 0.25 0.5 10⁻¹ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 j_ [GeV/c] 1 z J.K. Adkins, SPIN 2014

2012 data, 20 pb⁻¹ at 200 GeV, Pb=61%, anti- k_T jet algorithm, R = 0.7

Collins asymmetries at 500 GeV

Zero asymmetry at 500 GeV? High Q² ?

• Comparison of Collins asymmetries at 200 & 500 GeV:

Kinematics are dictated by the ΔR_{min} cut:

$$\left\langle j_{T}\right\rangle_{\min} pprox z \times \Delta R_{\min} \times \left\langle p_{T}\right\rangle$$

- Collins asymmetry depends on j_T and z correlation.
- Consistent results at both 200 and 500 GeV with same j_T !
- The higher j_T asymmetries (bottom) both go away.
- Higher Q² and same x?

Collins assymmetry for π^0 in forward EM Jets

• Collins asymmetries for π^0 with EM jets in 500 GeV pp:

- Hints of possible non-zero Collins asymmetries!

Collins-like Asymmetries at 500 GeV

• Collins-like asymmetry $A_{UT}^{\sin(\phi_s-2\phi_H)}$, provide sensitivity to gluon linear polarization.

• First measurement on $A_{UT}^{\sin(\phi_s - 2\phi_H)}$

• Di-hadron correlation provides access to IFF& transversity:

$$A_{UT}\sin\left(\phi_{RS}
ight) = rac{1}{Pol}rac{d\sigma^{\uparrow} \ -d\sigma^{\downarrow}}{d\sigma^{\uparrow} \ +d\sigma^{\downarrow}}$$

$$A_{UT}^{\sin(\phi_{RS})} \propto h_1 \otimes H_1^{\angle}$$
$$\phi_{RS} = \phi_R - \phi_S$$
$$\overrightarrow{p}_h = \overrightarrow{p}_{h,1} + \overrightarrow{p}_{h,2}$$
$$\overrightarrow{R}_h = \overrightarrow{p}_{h,1} - \overrightarrow{p}_{h,2}$$

—"Interference Fragmention Function"Bacchetta, Radici, Phys.Rev. D70 (2004)

Di-hadron spin asymmetries at STAR

• Significantly non-zero di-hadron asymmetries from run6 data:

Sign of non-zero signal for di-hadron transverse single spin asymmetries-> constraints on transversity!

Di-hadron spin asymmetries at STAR

Significant, high-precision di-hadron asymmetries with 2012 data: ^ک ۵.08 $P^{\uparrow}P \rightarrow \pi^+\pi^- + X \text{ at } \sqrt{s} = 200 \text{ GeV}$ 0.08 • $\langle p_{\tau} \rangle = 10.49 \text{ GeV/c}$ STAR preliminary $\langle \eta \rangle = 0.84$ 0.06 0.06 ■⟨η⟩ = -0.84 STAR preliminary 0.04 0.04 2012 dataset (improved stats) 0.02 0.02 0 0 $P^{\uparrow}P \rightarrow \pi^+\pi^- + X \text{ at } \sqrt{s} = 200 \text{ GeV}$ K. Landry, APS 2015 -0.02 -0.02 0.5 1.5 p_T^{π⁺π⁺} [GeV/c] 4 8 $M_{\pi^{+}\pi^{-}}$ [GeV/c²] K. Landry, APS 2015

Significant non-zero IFF observed also at 500 GeV:

Single spin asymmetry of weak boson

• Sivers sign change in DIS and DY/W/Z process:

-Critical test for our understanding of TMD's and TMD factorization

- Advantages of weak boson production
 - Low background
 - High Q²-scale (~ W/Z boson mass)

STAR goal: *measure sign change and pin down TMD -evolution by measuring A*_N *for all the processes:* γ, W[±], Z⁰, DY

The effects from TMD evolution

Strategy to reconstruct W kinematics at STAR

W boson momentum reconstruction technique in h-h collision, has been well tested at Fermi Lab and LHC CDF: PRD 70, 032004 (2004); ATLAS: JHEP 1012 (2010) 060

□ Select events with the W-signature (Step 1)

> Isolated high P_T electron

□ Neutrino transverse momentum is reconstructed from missing P_T (Step 2) $\vec{P}_T^W = \vec{P}_T^e + \vec{P}_T^v = -\vec{P}_T^{recoil}$

Recoil reconstructed using tracks and towers, MC correction applied to incorporate those outside of STAR acceptance.

Neutrino's longitudinal momentum is reconstructed from the decay kinematics (Step 3)

$$M_{W}^{2} = \left(E_{e} + E_{v}\right)^{2} - \left(\vec{p}_{e} + \vec{p}_{v}\right)^{2}$$

The STAR detector

First W, Z A_N results at 500 GeV from STAR

Data: STAR 2011 transverse run @ 500 GeV, integrated luminosity ~25 pb⁻¹ Average beam polarization \rightarrow P = 53%

Systematics estimated based Monte Carlo package

"Left-right" cross ratio formula for A_N:

• A_N for W^{\pm} and Z :

$$A_{N} \approx \frac{1}{P} \frac{\sqrt{N_{R}^{\uparrow} N_{L}^{\downarrow}} - \sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}}{\sqrt{N_{R}^{\uparrow} N_{L}^{\downarrow}} + \sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}}$$

Future measurements of W/Z $\rm A_{\rm N}$ at STAR

• STAR plans to collect ~400 pb⁻¹ transverse pp in 2017:

Goal:

- ✓ Constrain TMD evolution sea-quark Sivers function
- ✓ Test sign-change if TMD-evolution suppression factor ~5 or less

Future measurements of photon at STAR

• Projection for direct γ asymmetry with 400 pb⁻¹ pp data at STAR:

• Observables with DY for Sivers sign-change:

Accessing the gluon GPD in pAu

Unique opportunity to measure A_N for exclusive J/ψ in ultra peripheral p[↑]Au collisions:

Detect the scattered proton in "Roman Pots" and veto the break-up of Au

A nonzero asymmetry would be the first signature of a nonzero GPD E for gluons.

Transverse pA run in 2015

RP_UPC Successful pA run at STAR in 2015 ×10⁶ Nevents 200 170M ultra-peripheral Why pA? 180 pAu collisions 160 ✓ Saturation effects-CGC with Roman Pots 140 \checkmark Nuclear effect of A_N 120 100 Distinguish different 80 mechanisms for A_N 60 40 \checkmark Exclusive J/ Ψ for GPD 20 12 May 19 May 02 Jun 09 Jun 26 May 05 May Mon Jun 8 12:04:26 2015 FMS-lg-bs3 FMS-lg-bs3 Lum [nb⁻¹] Lum [nb⁻¹] 1000 500 -pAI with FMS pAu data with FMS 800 FoM: P²L~270nb⁻¹ FoM: P²L~160nb⁻¹ 400 600 300 400 200 200 100 12 May 19 May 26 May 02 Jun 09 Jun 09 Jun 16 Jun 23 Jun 05 Mav Mon Jun 8 12:03:52 2015 Mon Jun 22 12:01:29 2015

Summary & Outlook

- Exploration of transverse spin asymmetries at STAR:
 - ✓ Single spin asymmetries in the forward region observed, π^0 asymmetry with different event topology studied.
 - ✓ Observation of non-zero Collins asymmetries at 200GeV & 500GeV.
 - ✓ Non-zero di-hadron spin asymmetries (IFF) observed.
 - ✓ First measurements of weak boson $A_{N_{,}}$ gain insights into TMD evolution and sea quark Sivers function.
- □ Transversely polarized pA data taken for the first time in 2015
 - $-A_N$ asymmetries in p+A
 - Exclusive J/ ϕ in ultra peripheral pAu-> gluon GPD
- □ Long transverse run planned for 2017 at 500 GeV
 - $-A_N$ for W,Z, gamma-> TMD evolution, Sivers sign change.
- Future measurements for DY, forward di-jet in 2020+ with dedicated detector upgrades.

STAR Detector in 2021-2022

FCS/FTS: Forward Calrimeter/Tracking System, RP II: Full Roman Pot Phase II