PacSPIN2015 Summary

Jen-Chieh Peng University of Illinois at Urbana-Champaign

The 10th Circum-Pan-Pacific Symposium on High Energy Spin Physics, October 5-8, 2015

Analects of Confucius

Analects of Confucius (first three sentences)

- Learning the new, and frequently reviewing the old, isn't that fun?
- Having friends coming from afar, isn't that delightful?
- Not being offended when other people do not recognize your work, isn't that a true gentleman?

Analects of Confucius (first three sentences)

- Learning the new, and frequently reviewing the old, isn't that fun?
- Having friends coming from afar, isn't that delightful?
- Not being offended when other people do not recognize your work, isn't that a true gentleman?

Don't be offended if your talk is not properly cited

T. Shibata

- 1st 1996 Kobe University (19 years ago),
- 2nd 1999 RIKEN,
- 3rd 2001 Peking University,
- 4th 2003 University of Washington,
- 5th 2005 Tokyo Tech,
- 6th 2007 Vancouver,
- 7th 2009 Yamagata University,
- 8th 2011 Cairns,
- 9th 2013 Shandong University,
- 10th 2015 Academia Sinica,

Toshiyuki Morii Koichi Yazaki Bo-Qiang Ma Xiang-Dong Ji Toshi-Aki Shibata Andy Miller Takahiro Iwata Anthony W. Thomas Zuo-Tang Liang Hai-Yang Cheng, Wen-Chen Chang

Tremendous contributions to spin physics

Broad and in-depth talks in PacSPIN2015

- Theory (16 talks)
 - Ji, Ma, Hatta, Kumano, Lin, Doi, Xiong, X. Chen, Kao,
 Kroll, Tanaka, Qiu, Thomas, Yoshida, Brodsky, Liang
- Experiment (22 talks)
 - Mallot, Gao, Pisano, Schnell, Sawada, d'Hose,
 Fimushkin, Choi, Kunne, Kim, Sichtermann, Kawall,
 Mibe, J. Chen, Miyachi, Denisov, Xu, Goto, Nakano,
 Meziani, Lansberg
- Topics
 - Overview, Lattice, Spin decomposition, 3D tomography,
 Form-factor, Longitudinal spin, Transverse spin, GPD,
 Future facilities, Muon g-2 and EDM, etc.

Spin structures of the nucleons Why is it interesting?

- Full of surprises and enigmas. Resolving them often led to important new insight on QCD.
- Close synergy between theory and experiment.
- The progress of lattice QCD calculations allow direct comparison with the experiments
- Novel parton distributions and their properties become accessible by experiments using lepton and hadron beams

Intricate internal structure of the nucleons

- Carved from a single piece of elephant ivory
- A total of 21 nested concentric layers
- Each layer rotates freely
- Various windows allow us to view deeper and deeper inside

The Proton Radius Puzzle

PRad Experimental Setup in Hall B at JLab

There was a time when nucleon was nice and simple..... Flavor structure of the proton sea $\overline{u}(x) = d(x) = \overline{s}(x) = s(x) \implies SU(3)$ symmetric sea 1.0 Questions From Frank • Is $u_V(x) = 2d_V(x)$? 0.8 Close's textbook (1980)• Is $\overline{u}(x) = d(x)$? 0.6 • Is $\overline{s}(x) = \overline{u}(x)$? xu(x)0.4 xd(x)• Is $\overline{s}(x) = s(x)$? 0.2 $x\overline{u}(x)$ • Is $u_{p}(x) = d_{n}(x)$? $x\overline{d}(x)$ $x\overline{s}(x)$ 0 • Is $g_p(x) = g_n(x)$? 0.2 0 0.4 0.6 0.8 1.0 Actually, the nucleon is full of surprises !!

Anti-Quark Flavor Asymmetry — $\bar{u} \neq \bar{d}$

- (Almost) symmetric in gluon splitting (g → uū or dd̄)
 CERN NMC ('90)
 - ▷ Gottfried Sum: $S_G = 0.2281(65) \neq 1/3$
 - $\triangleright \int \overline{d}(x)dx > \int \overline{u}(x)dx$
- ▶ Direct measurements of $\bar{u}(x) \& \bar{d}(x)$
 - ▷ CERN NA51 ('94): $\overline{d} > \overline{u}$ at $x \sim 0.18$
 - ▷ FNAL E866/NuSea ('98): $\bar{d}(x)/\bar{u}(x)$ for $x \in (0.015, 0.35)$

Kenichi Nakano

First Lattice calculation of $\overline{u}(x) - \overline{d}(x)$

Huey-Wen Lin

§ Lattice exploratory study $\approx M_{\pi} \approx 310 \text{ MeV}$

Compared with E866 Too good to be true?

Lost resolution in small-x region Future improvement to have larger lattice volume

$$dx\left(\bar{u}(x)-\bar{d}(x)\right)\approx-0.16(7)$$

Experiment	x range	$\int_0^1 [\overline{d(x)} - \overline{u(x)}] dx$
E866	0.015 <x<0.35< td=""><td>0.118 ± 0.012</td></x<0.35<>	0.118 ± 0.012
NMC	0.004 < x < 0.80	0.148 ± 0.039
HERMES	0.020 < x < 0.30	0.16 ± 0.03

R. Towell et al. (E866/NuSea), Phys.Rev. D64, 052002 (2001)

See related talk of Xiaonu Xiong

Where does the spin of the proton come from?

EMC experiment in 1988/1989

$$g_1(x) = \frac{1}{2} \sum_{\bar{a}} e_q^2 \left[\Delta q(x) + \Delta \bar{q}(x) \right] + \mathcal{O}(\alpha_s) + \mathcal{O}(1/Q)$$

 $\Delta \Sigma = \sum_{q} \Delta q + \Delta \overline{q} = 0.2 - 0.3 \rightarrow \text{"Spin Crisis"}_{*13}$

Impressive experimental progress in QCD spinZ. Mezianiphysics in the last 30 years

• Inclusive spin-dependent DIS

- ➡ CERN: EMC, SMC, COMPASS
- ➡ SLAC: E80, E142, E143, E154, E155
- DESY: HERMES
- JLab: Hall A, B and C

• Semi-inclusive DIS

- SMC, COMPASS
- ➡ HERMES, JLab

• Polarized pp collisions

- ANL: ZGS
- ➡ FERMILAB: E704,....
- BNL: AGS, PHENIX, STAR and BRAHMS

Polarized e+e- collisions

➡ KEK: Belle

World data on g₁ ^p and g₁^d

F. Kunne

proton

deuteron

g₁ data as will be used in global QCD fits for extraction of $\Delta q_f(x)$ and $\Delta G(x)$

$$\frac{d g_1}{d Log(Q^2)} \propto -\Delta g(x, Q^2)$$

• come back to World data fits incl. SIDIS and pp later

•G.K. Mallot 5/10/2015

•PACSPIN Taipei

- $\Delta g(x)$ small, maybe positive around $x \cong 0.1$, caveat: LO
- no clear x dependence

Di-hadron production suggests positive $\Delta g/g$

RHIC - Polarized Proton-Proton Collider

Unique opportunities to study nucleon spin properties and spin in QCD,

Δg from RHIC-spin

 A_{LL}^{jet} from STAR

Δg from global fits

•20

$\Delta \overline{u}(x)$ and $\Delta \overline{d}(x)$ from A_L of W^{\pm} production

E. Sichtermann

STAR data

 $\Delta \overline{u} > \Delta d$ consistent with some models and Lattice

$\Delta \overline{u}(x)$ and $\Delta \overline{d}(x)$ from A_L of W^{\pm} production

Chong Kim

PHENIX data

•arXiv:1504.07451 0.8[⊥]a) e⁺ b) e 0.5 a) W^++Z^0 b) W⁻+Z⁰ PHENIX 2011-2013 W[±]+Z⁰ 0.4 0.6 PHENIX Run 2011 (500 GeV) + |η_|<0.35, p^e₋ > 30 GeV/c 0_3[[]● Run 2012 (510 GeV) ϻ |<0.35 0.4 STAR 2012 W[±] $p^{e} > 25 \text{ GeV/c}$ 0.2 PHENIX Run 2013 p+p 510 GeV 0.2 0.1^{-■} |η_|<0.35 $\vec{<}^{0^{|}}$ ح^ا0 > 30 GeV/c -0.2 (3.5% polarization scale uncert. not shown -0.1 **CHE NLO calculations CHE NLO calculations** -0.4 -0.2 DSSV 14 W[±]+Z⁰ ---- DSSV 14 p<u>e</u> > 30 GeV/c -0.6 -0.3 DSSV 14 W[±] NNPDFpol1.1 -0.4 -0.8 p^e > 25 GeV/c -0.5 -0.2 0.2 0.4-0.4 -0.2 0.2 0.4 -0.4 0 0 -1 -0.5 0 0.5 -0.5 0 0.5 1 -1 $\dot{\eta_e}$ η_{e} η_{e} η $\Delta \overline{u} > \Delta d$ consistent with STAR result

Spin Decomposition

Xiang-Dong Ji

- There has been much theoretical confusion about spin sum rule for the nucleon, many dozens of theoretical papers have been written on the subject.
 - → F. Wang, X. S. Chen, Wakamatsu, E. Leader, C. Lorce, Y. Hatta, X. Ji, F. Yuan, Y. Zhao, ...
- But the confusion is over, move on!

See talks by Bo-Qiang Ma and Xiang-Song Chen

Partonic spin sum rule

 Partonic spin sum rule was proposed by Jaffe and Manohar (1991)

 $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \ell_q + \ell_g$

 Locality and gauge-invariance yield the unique result (Ji, 1996)

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + Lq + Jg$$

- No direction calculation of △G from lattice QCD, because it is a "light-cone" quantity
- Now we provide a first recipe
 - → Calculate E x A in an appropriate gauge with a finite momentum nucleon and boost!

 $L(u) + L(d) [CI] \sim = 0$ $J(u) >> J(d) [CI] \sim = 0$

(observed in other Lat)

From our old results: _____ Dong et al., PRL75(1995)2096

Effect of the Pion Cloud/ Chiral Symmetry

Tony Thomas

	2 L _{u+ubar}	2 L _{d+dbar}	Σ
Non-relativistic			1.0
Relativity (e.g. Bag)	0.46	-0.11	0.65
Plus OGE	0.52	-0.02	0.50
Plus pion	0.50	0.12	0.38

At model scale: $L_u + S_u = 0.25 + 0.42 = 0.67 = J_u$: $L_d + S_d = 0.06 - 0.22 = -0.16 = J_d$ ²⁶

Features of Supersymmetric Equations

- J =L+S baryon simultaneously satisfies both equations of G with L , L+1 for same mass eigenvalue
- $J^z = L^z + 1/2 = (L^z + 1) 1/2$ $S^z = \pm 1/2$
- Baryon spin carried by quark orbital angular momentum: <J^z> =<L^z q>
- Mass-degenerate meson "superpartner" with L_M=L_B+1. "Shifted meson-baryon Duality"

Meson and baryon have same κ !

Proton spin carried by quark orbital angular momentum

Hadron Spin Dynamics from Light-Front Holographic QCD

Stan Brodsky

Stan Brodsky

Generalized PDF's

- Correlating transverse spatial and longitudinal momentum degrees of freedom
- PDFs and elastic FF as limiting cases
- $H, \tilde{H} \rightarrow f_1, g_1 \text{ for } \xi \rightarrow 0;$
- no such limiting cases for E, E
- *H (E)* for nucleon helicity (non)conservation

 $H(x, \xi, t, Q^2); \quad Q^2$ large, t small

$$H^{f}, E^{f}, \widetilde{H}^{f}, \widetilde{E}^{f}$$
 with $f = q, g$

Ji's sum rule for total orbital momentum:

$$J^{f}(Q^{2}) = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \, x \quad \left[H^{f}(x,\xi,t,Q^{2}) + E^{f}(x,\xi,t,Q^{2}) \right]$$

X.-D. Ji, PRL 78 (1997) 610

Gerhard Mallot

DVCS @ HERMES

HERMES analyzed a wealth of DVCSrelated asymmetries on nucleon and nuclear targets

data with recoil-proton detection allows clean interpretation indication of larger amplitudes for pure sample

-> assoc. DVCS in "traditional" analysis mainly dilution, supported by recent results from HERMES [JHEP 01 (2014) 077]:

assoc. DVCS results consistent with zero but also with model prediction

Gunar Schnell

- extensive data set on unpolarized and polarized SDMEs in vector-meson production
- (not shown:) cross section
 and A_{UT} for excl. π⁺
- essential input in model building
- recent results on omega production require pionpole contribution with a preference for positive πω transition FF

HEMP @ HERMES

[A. Airapetian et al., EPJ C74 (2014) 3110, EPJ C62 (2009) 659] r₀₀ $A: \gamma^*_T \rightarrow VM_L$ $r_{h_1}^1$ $\gamma^*_{\pi} \rightarrow VM_T$ Im r_b Re r⁵₁₀ B: Interference $\gamma_{T}^{\dagger} \rightarrow VM_{L} & \gamma_{T}^{\dagger} \rightarrow VM_{T} \bigcirc$ Im r⁶₁₀ Im r₁₀ Re ris Re r₁₀⁶⁴ $C; \gamma^*_{\tau} \rightarrow VM_L$ 0, proton Re r¹₁₀ o, deuteron Im r10 ρ⁰, proton r₀₀ ο ρ⁰, deuteron r₀₀ Im r10 r800 r⁵11 $D: \gamma^*_T \rightarrow VM_T$ r5-1 Im r_k Im r71-1 гů r⁸ 1-1 r₀4 r⊾1 $E: \gamma^{\dagger}_{T} \rightarrow VM_{T}$ r₁₁ Im rh -0.10.3 -0.2 0.20.40.6SDME values

DVCS at JLab

Hall-B: DVCS cross-section on the proton in Hall-B (E01-113)

•H. S. Jo et. al., hep-ex:1504.02009, accepted by PRL

Extraction and applications of generalized parton distributions

Peter Kroll Ji's sum rule for 2nd moments of H and E $J^{a} = \frac{1}{2} \left[q_{20}^{a} + e_{20}^{a} \right] \qquad J^{g} = \frac{1}{2} \left[g_{20} + e_{20}^{g} \right] \qquad (\xi = t = 0)$ q_{20}^a, q_{20} from ABM11 (NLO) PDFs $(a = u, d, s, \overline{u}, \overline{d}, \overline{s})$ $e_{20}^{a_v}$ from form factor analysis Diehl-K. (13): $e_{20}^s \simeq 0 \ldots - 0.026$ from analysis of A_{UT} in DVCS and pos. bound e_{20}^{g} from sum rule for e_{20} : $\int_{0}^{1} dx x e_{g}(x) \equiv e_{20}^{g} = -\sum e_{20}^{a_{v}} - 2\sum e_{20}^{\bar{a}}$ (Diehl-Kugler(07), Goloskokov-K (09), K. 1410.4450) 0.15DGKMS(13) ${}^{+\bar{u}} = 0.261...0235;$ $J^{d+\bar{d}} = 0.035...0009;$ $J^g = 0.187...0265;$ $J^{s+\bar{s}} = 0.017...-0.009;$ Bacchetta-Radici(11) 0.10Wakamatsu(10) Thomas(08) 0.05Liuti(11) $r^{d+\bar{d}}$ 0 -0.05-0.10QCDSF(07) LHPC(10) -0.150.10.20.30.40.5 $T^{u+\bar{u}}$

GPD STUDIES AT COMPASS EXCLUSIVE MEASUREMENTS

Nicole d'Hose

Extraction of GPD

Space-like vs. Time-like Processes

Muller et al., PRD 86 031502(R) (2012)

J-PARC High-Momentum beam and the P-50 spectrometer

- The signal of exclusive Drell-Yan processes can be clearly identified in the missing mass spectrum of dimuon pairs.
- Because of the low event rate, this program could be accommodated into the E50 experiment.

23

Transverse Momentum Dependent (TMD) **Quark Distributions** See overviews Leading-Twist Quark Distributions by Z. Liang (A total of eight distributions) and J. Qiu $f_1 =$ Three survive after K_⊥ integration $h_{1T} =$ **Transversity** The other five $\mathbf{f}_{1\mathrm{T}}^{\perp} = \mathbf{0}$ Sivers function are transverse momentum (K_{\perp}) **Boer-Mulders** dependent function (TMD)

 $h_{1L}^{\perp} =$

Three parton distributions describing transverse momentum and/or transverse spin

Three transverse quantities:

1) Nucleon transverse spin

 $ec{S}_{ot}^{\,\scriptscriptstyle N}$

2) Quark transverse spin

 \vec{S}_{\perp}^{q}

3) Quark transverse momentum

 k^{q}_{\perp}

 \Rightarrow Three different correlations

Correlation between \vec{s}_{\perp}^{q} and \vec{S}_{\perp}^{N}

2) Sivers function
$$f_{1T}^{\perp} = \bigcirc - \bigcirc$$

Correlation between \vec{S}_{\perp}^{N} and \vec{k}_{\perp}^{q}

B) Boer-Mulders function
$$h_1^{\perp} = \bigcirc - \bigcirc$$

Correlation between \vec{s}_{\perp}^{q} and \vec{k}_{\perp}^{q}

- Product of $h_1(x)H_1^{\perp}(z)$ is non-zero
- A surprising flavor dependence : $H_1^{\perp, unfavored} / H_1^{\perp, favored} \approx -1$
- Extraction of h₁(x) requires an independent measurement of Collins function H[⊥]₁(z)

Extraction of Transversity and Collins fragmentation function from SIDIS and Belle data

Torino group, Anselmino et al., PRD 87, 094019 (2013)

$\sin(\phi + \phi_s)$ dependence from COMPASS

160 GeV/c muon on polarized ⁶Li D target

Cancellation between proton and neutron in deuteron ?

Need an independent measurement on neutron

³He^{$(e,e'\pi^{+/-})}x at JLab Hall A</sup>$

Obtain full coverage in Φ angle by rotating the target spin direction

Extraction of Transversity and Collins fragmentation function from SIDIS and Belle data

Torino group, Anselmino et al., PRD 87, 094019 (2013)

Transversity

Extraction of nucleon tensor charge

Torino group, Anselmino et al., PRD 87, 094019 (2013)

• $\delta u = 0.39^{+0.18}_{-0.12}$

 $\bullet \ \delta u = 0.31^{+0.16}_{-0.12}$

•
$$\delta d = -0.25^{+0.30}_{-0.10}$$

$$\delta d = -0.27^{+0.10}_{-0.10}$$

$$\delta q = \int_0^1 [h_1^q(x) - h_1^{\bar{q}}(x)] dx$$

1 : Extractions from global fits (using two different Collins FF parameterizations)

2-10: Predictions from various models (including LQCD)

- Tensor charges are smaller than axial charge
- Discrepancy could be
 - caused by neglecting

```
sea transversity in the fit
```


Recent progress in LQCD suggests the possibility to calculate the x-dependence of parton distributions

PRL 110, 262002 (2013)

PHYSICAL REVIEW LETTERS

week ending 28 JUNE 2013

The *x*-dependence of the quark and antiquark transversity distributions can be calculated (not just their moments)

Parton Physics on a Euclidean Lattice

Xiangdong Ji^{1,2}

 $\delta q^d)$

 δq^u

Transversity Distribution § Exploratory study $\int dx \, \frac{\delta \overline{u}(x) - \delta \overline{d}(x)}{g_T} \approx -0.320 \, (18)$ ∂w We found $\delta \overline{u} < \delta \overline{d}$ with large sea asymmetry $\int dx \left(\delta \overline{u}(x) - \delta \overline{d}(x) \right) \approx -0.082$ ✤ Chiral quark-soliton model B. Dressler et al., 1.4hep-ph/9809487 PROSMINAR 1.2CQS model 1.00.81 -0.51.5-1.00 0.51.0-1 x 1 0 P. Schweitzer et al.

х

•44

PRD 64, 034013 (2001)

Extraction of Sivers function from SIDIS data

- u and d quark Sivers functions have opposite signs
- Sea-quark Sivers functions are non-zero (from K^+ data)

-0.01

Outstanding questions on Sivers function

- Does Sivers function change sign between DIS and Drell-Yan?
- Sign and magnitude of the sea-quark Sivers functions?
- Q^2 -evolution of the Sivers function?

Polarized Drell-Yan with 190 GeV/c pion beam

Proposal to measure Sivers in polarized Drell-Yan at Fermilab W. Lorenzon

Proposal (P-1027) (Polarized Drell-Yan with polarized proton beam)

Main goals: 1) Accelerate polarized proton beam at the Main Injector2) Test "sign-change" of T-odd Sivers function in Drell-Yan

- Propose using the existing dimuon spectrometer
- Possibility of polarized target is also being considered

A-dependence of neutron AN

- Isospin effect?
- Nuclear effect?
 - Nucleus size
 - Neutron skin
 - Coherent effect
- Other trigger or offline event selection results to be obtained

Collins Asymmetry from STAR

Qinghua Xu

Mid-rapidity hadron-jet correlations (Collins)

Non-zero Collins asymmetries observed from run2012 200 GeV

 A_{UT} vs. z for $x_F > 0$

 A_{UT} vs. j_T for $x_F > 0$

2012 data, 20 pb⁻¹ at 200 GeV, Pb=61%, anti- k_T jet algorithm, R = 0.7

Melosh Rotation for Spin-1/2 Particle

The connection between spin states in the rest frame and infinite momentum frame

Or between spin states in the conventional equal time dynamics and the light-front dynamics

Husimi Distribution for Nucleon Tomography

Structure Functions of Deuteron

S. Kumano

Future Facilities

Halls A, B, C

•53

GS

Muon g-2 and EDM experiments

David Kawall

Fermilab E989

Muon's magnetic moment and EDM can be non-zero because it has non-zero spin Tao-Te-Ching of Laozi (first two sentences)

道可道,非常道。 名可名,非常名。

- The "Dao" which can be articulated is not the eternal "Dao".
- The object which can be named is not the enduring object.

Tao-Te-Ching of Laozi (first two sentences)

道可道,非常道。 名可名,非常名。

- The "Dao" which can be articulated is not the eternal "Dao".
- The object which can be named is not the enduring object.

A truly successful Symposium can not be summarized

A big "Thank you" to Wen-Chen Chang, Hai-Yang Cheng, and Ms. Jing-Xuan Su

