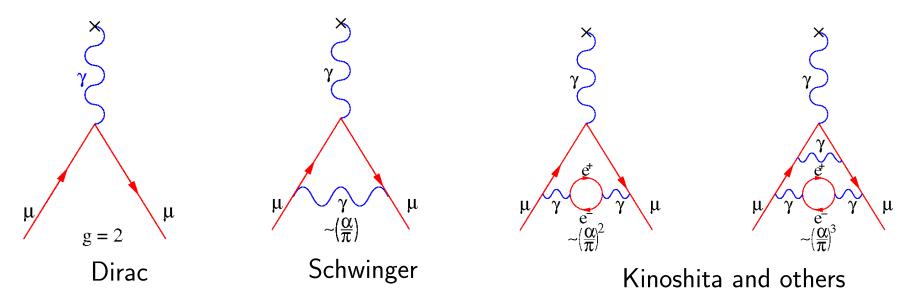
The New Muon g-2 Experiment at Fermilab

Dave Kawall, University of Massachusetts Amherst on behalf of the E989 Collaboration



Goal : Measure the muon anomalous magnetic moment, a_{μ} , to 140 ppb, a fourfold improvement over the 540 ppb precision of Brookhaven E821

• Recall the humble magnetic moment:

$$\mu = g \frac{e}{2mc} S$$
, $S = \frac{\hbar}{2} \sigma$ from quantum mechanics

- \Rightarrow Dimensionless g-factor predicted from theory; Dirac g=2 in 1928 for spin 1/2
 - 1933 Otto Stern measured proton μ_p : required g=5.6 Spin \Leftrightarrow nucleon structure
 - ullet 1947 : Rabi 0.3% discrepancies in ground-state HFS of H,D; G. Breit suggests $g_e=2(1+\epsilon)$
 - 1948 : Kusch and Foley measure g_e in Ga, Na; deviates from $2 \Leftrightarrow g_e \equiv 2(1+a_e), \ a_e \neq 0$!
 - 1948 : Schwinger QED calculation of anomalous part of g_e factor, finds $a_e=\alpha/2\pi$

- $a_e = \alpha/2\pi \approx 0.00116$ due to $radiative\ corrections$ from virtual particles in loops
- 1 part in 850 effect, huge success for QED!

The Anomalous Magnetic Moment of the Electron

PRL **100,** 120801 (2008)

PHYSICAL RE

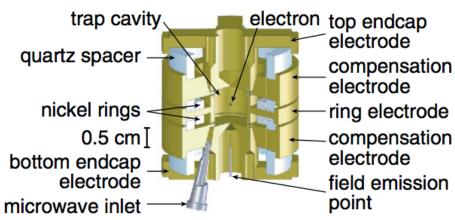
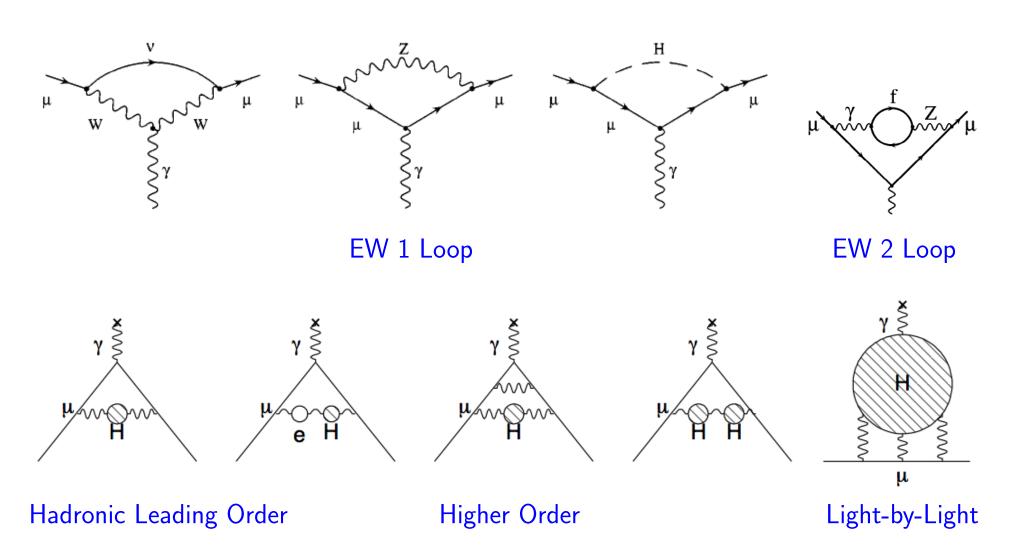


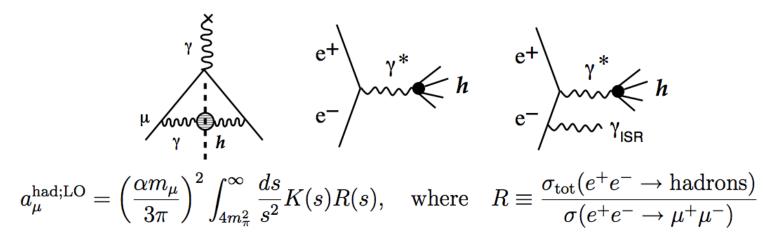
FIG. 2 (color). Cylindrical Penning trap cavity used to confine a single electron and inhibit spontaneous emission.


- D. Hanneke, S. Fogwell, G. Gabrielse, 2008
- Penning trap for single electron
- Magnetic confinement in radial
- Electrodes for vertical confinement
- Trapped for months
- $g_e/2 = 1.001 \ 159 \ 652 \ 180 \ 73(28)$ (0.28 ppt), most precise quantity in physics
- $a_e = (g_e 2)/2$ determined to 0.24 ppb

$$\frac{g_e}{2} = 1 + C_2 \left(\frac{\alpha}{\pi}\right) + C_4 \left(\frac{\alpha}{\pi}\right)^2 + \dots + C_{10} \left(\frac{\alpha}{\pi}\right)^5 + \dots + a_{\mu,\tau} + a_{\text{hadonic}} + a_{\text{weak}}$$

- ullet Extract lpha, compare with other measurements, confirms QED at ppt level
- ullet Muons live 2.2 μ seconds why bother measuring a_{μ} ?
- Sensitivity to new physics : $\Delta a_{e,\mu}(\text{New Physics}) \approx C \left(\frac{m_{e,\mu}}{\Lambda}\right)^2$
- ⇒ Muon mass 206 times electron mass, so new physics contribution 43,000 times larger
- \Rightarrow New physics contribution of 0.24 ppb on a_e corresponds roughly to 9 ppm on a_μ
 - ullet a_{μ} known from Brookhaven E821 to 540 ppb, hope to push at Fermilab to 140 ppb

Contributions to the Anomalous Magnetic Moment of the Muon


$$a_{\mu}(\mathsf{Standard\ Model}) = a_{\mu}(\mathsf{QED}) + a_{\mu}(\mathsf{Weak}) + a_{\mu}(\mathsf{Hadronic})$$

 $\Rightarrow a_{\mu}$ gets contributions from all physics - including the unknown

Low Energy Precision Frontier: The Anomalous Magnetic Moment of the Muon

 $a_u^{\mathrm{had;LO}}$ can be extracted from measurements by SND, CMD2, BaBar, KLOE, Belle

- CMD3 will measure up to 2.0 GeV, using energy scan and ISR, good cross-check
- KLOE will measure $\gamma^* \gamma^* \to \pi^0$, might reduce uncertainty on $a_{\mu}(Had;LBL)$

Standard Model prediction, in units of 10^{-11} : (M. Davier $et\ al.$ Eur. Phys. J. C 71, 1515 (2011))

```
a_{\mu}(\text{QED}) = 116 584 718.951 \pm 0.080(\alpha^{5}) (Kinoshita et al. 2012)

a_{\mu}(\text{HadVP; LO}) = 6 923. \pm 42(Exp) (Davier et al. 2011)

a_{\mu}(\text{HadVP; LO}) = 6 949. \pm 43(Exp) (Hagiwara et al. 2011)

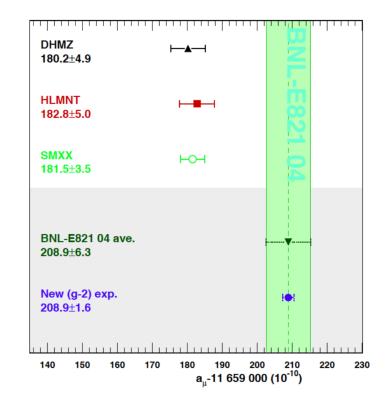
a_{\mu}(\text{HadVP; HO}) = -98.4 \pm 0.6(Exp) \pm 0.4(Rad) (Hagiwara et al. 2011)

a_{\mu}(\text{Had; LBL}) = 105. \pm 26 (Prades et al. 2010)

a_{\mu}(\text{Weak; 1 loop}) = 194.8

a_{\mu}(\text{Weak; 2 loop}) = -41.2 \pm 1(Had) (Czarnecki, Marciano, Stöckinger et al. 2013)

\Rightarrow a_{\mu}(\text{SM}) = 116 591 802. \pm 49 \times 10<sup>-11</sup> (0.42 ppm)


\Rightarrow a_{\mu}(\text{SM}) = 116 591 828. \pm 50 \times 10<sup>-11</sup> (0.43 ppm)
```

Brookhaven E821 $g_{\mu}-2$ Results (G.W. Bennett et~al. Phys. Rev. D 73, 072003 (2006))

In units of 10^{-11} :

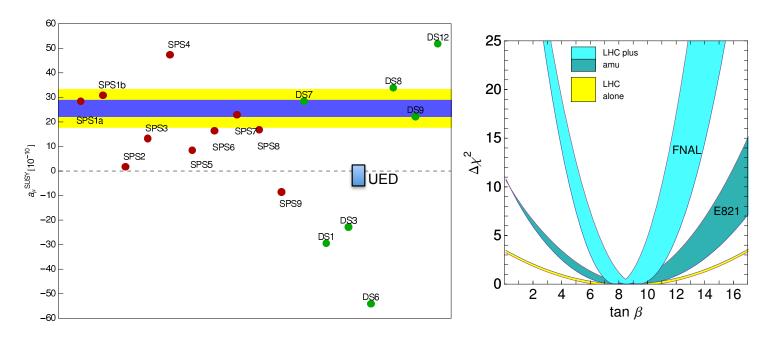
$$a_{\mu}(\mathsf{Expt}) = 116\ 592\ 089 \pm 54 \pm 33\ (540\ \mathsf{ppb})$$
 $a_{\mu}(\mathsf{SM}) = 116\ 591\ 802 \pm 49\ (420\ \mathsf{ppb})$ $a_{\mu}(\mathsf{SM}) = 116\ 591\ 828 \pm 50\ (430\ \mathsf{ppb})$

$$a_{\mu}(\mathsf{Expt}) - a_{\mu}(\mathsf{SM}) = 287 \pm 80 \ (3.6\sigma)$$

 $a_{\mu}(\mathsf{Expt}) - a_{\mu}(\mathsf{SM}) = 261 \pm 80 \ (3.3\sigma)$

- ⇒ Theory (HVP from e^+e^- , no τ) from M. Davier et~al., Eur. Phys. J. C **71**, 1515 (2011), K. Hagiwara et~al., J. Phys. G38, 085003 (2011); Plot: T. Blum et~al., arXiv:1311.2198
- ⇒ Deviation is large compared to weak contribution and uncertainty on hadronic terms
- ⇒ Signature of new physics?
- \Rightarrow Deviation doesn't reach 5σ threshold for discovery
- ⇒ Need a better experiment. Need to reduce theoretical uncertainties

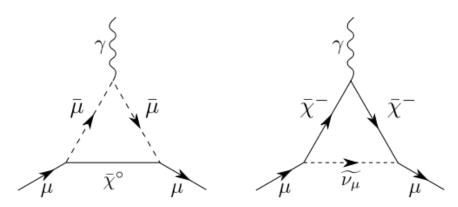
Improving the Standard Model Estimate


- Substantial e^+e^- cross-section data available soon from VEPP-2000 (SND and CMD3), BESIII should improve $\delta a_\mu({\sf HadLO})$ significantly
- Lattice estimates at 1% level might by possible

	$\delta(\sigma)/\sigma$ present	δa_{μ} present	$\delta(\sigma)/\sigma$ future	δa_{μ} future
$\sqrt{s} < 1 \text{ GeV}$	0.7%	33	0.4%	19
$1 < \sqrt{s} < 2 \text{ GeV}$	6%	39	2%	13
$\sqrt{s} > 2 \text{ GeV}$		12		12
total		53		26

- Hadronic light-by-light $(105\pm26)\times10^{-11}$ (1 ppm of a_{μ}): improve by measurements at BESIII and KLOE-2 of $e^+e^-\to e^+e^-\gamma^*\gamma^*$ with $\gamma^*\gamma^*\to\pi^0$
- Lattice estimate of LbL of 30% precision possible 3-5 years
- \Rightarrow Reduce theory uncertainty from 50×10^{-10} (0.43 ppm) to 35×10^{-10} (0.30 ppm)

Low Energy Precision Tests: Beyond the Standard Model


- \bullet a_{μ} sensitive to variety of new physics; including many SUSY models and others
- ullet a_{μ} sensitive to flavor- and CP-conserving, chirality-flipping, loop-induced contributions
- Most LHC observables chirality conserving; low energy precision observables are CPviolating (EDMs) or flavor-violating (CLFV)

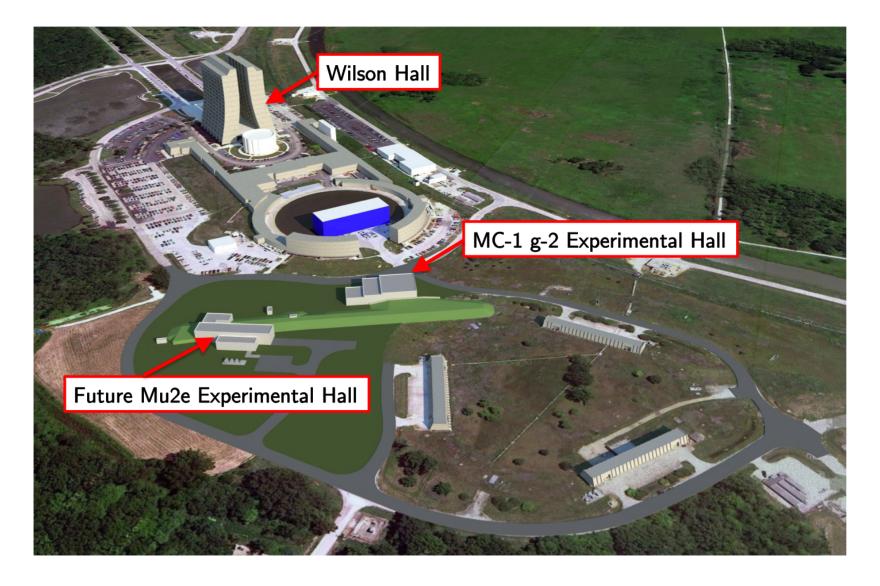
- ullet Snowmass benchmark points in SUSY parameter space show range of contributions to a_{μ}
- Some models "degenerate" parameters can't be distinguished by LHC alone, $g_\mu-2$ helps discriminate, can provide tighter constraints on $\tan\beta$
- Regardless of $final\ value$, a_{μ} constrains the possibilities, complements other searches

Low Energy Precision Tests: Beyond the Standard Model

• a_{μ} sensitive to variety of new physics; including many SUSY models

 One-loop contributions to anomaly from smuon and neutralino (left) and muon sneutrino and chargino

$$\Delta a_{\mu}(\text{SUSY}) \simeq (\text{sgn}\mu) \times (130 \times 10^{-11}) \times \tan\beta \times \left(\frac{100 \text{ GeV}}{\tilde{m}}\right)^2$$

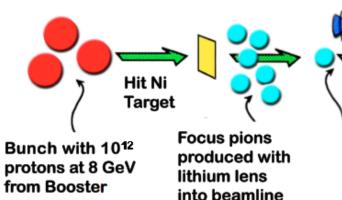

- $\Rightarrow \mu$ and $\tan \beta$ are difficult to measure at LHC, $g_{\mu}-2$ can provide tighter constraints; complementary measurements $\tan \beta$ important test of universality, underlying structure
 - LHC: no evidence of SUSY; TeV-scale limits on squarks, gluinos; looser constraints on smuons, charginos, neutralinos
 - If SUSY is origin of deviation in a_{μ} some SUSY masses less than 700 GeV for $\tan \beta < 50$ (smuons, charginos/neutralinos)
 - Room for new, well-motivated physics not yet excluded by LHC

Low Energy Precision Tests : Motivation for reducing uncertainty on a_{μ}

- a_{μ} sensitive to leptonic couplings; b-, or K-physics sensitive to hadronic couplings
- CLFV $\mu \to e$ conversion depends on mass and coupling strength of new physics (several unknowns); g_{μ} help determine nature of new physics
- Dark sector models with additional light neutral gauge bosons mostly hidden from LHC, visible to $g_{\mu}-2$
- ullet Many well motivated theories predict large Δa_{μ} new g-2 can constrain parameters
- ullet Many well motivated theories predict tiny Δa_{μ} if large Δa_{μ} found these are excluded
- Some models predict similar signatures at LHC but distinguishable by Δa_{μ} (MSSM and UED (1D), Littlest Higgs)
- New g-2 sensitive to parameters difficult to measure at LHC [$tan(\beta)$, $sgn(\mu)$]
- Provides constraints on new physics that are independent and complementary to LHC, CLFV $(\mu \to e)$, EDMs, ...
- ⇒ Sensitivity to new particles close to TeV scale mass
- ⇒ Even agreement with the Standard Model would be very interesting
 - \Rightarrow Many reasons to pursue a new measurement of a_{μ} at Fermilab, reduce δa_{μ} from 540 ppb \to 140 ppb

E989 : New Muon g_{μ} -2 Experiment at Fermilab

- ullet E989 will measure the Muon Anomalous Magnetic Moment to ± 140 ppb precision
- Factor of 4 improvement possible due to advantages at Fermilab


Overview of the the Experimental Method

- \bullet Produce an 8 GeV pulsed proton beam $10^{12}/\text{pulse}$, direct it onto a Ni production target
- Capture pions from production target with lithium lens into long decay beam line
- ullet Capture muons at 3.1 GeV/c, >90% polarized from "forward" pion decay $\pi^+ o \mu^+
 u_\mu$
- ullet Polarized muons enter storage ring through SC inflector that cancel storage ring $oldsymbol{B}$ field
- Kick the 3.094 GeV/c muon beam onto a stored orbit radius=711.2 cm with pulsed magnets
- Measure arrival time and energy of e^+ from muon decay in ring $\mu^+ \to e^+ \bar{\nu}_\mu \nu_e$ for 10+ lifetimes, 700 μ s

Overview of the g-2 experiment

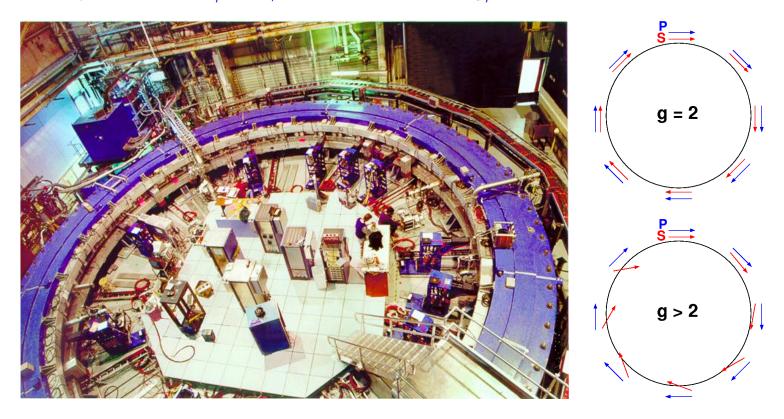
Pions decay.
Collect forward,
polarized muons
at 3.1 GeV/c

Muons injected using superconducting inflector into 14 m diameter magnetic storage ring operating at 1.45 Tesla. Pulsed magnet kicks muons on to stable orbit.

-Muons confined vertically by electrostatic quadrupoles -Penning trap like electron g-2, except 14 meters, 650 tons 12 14 meters

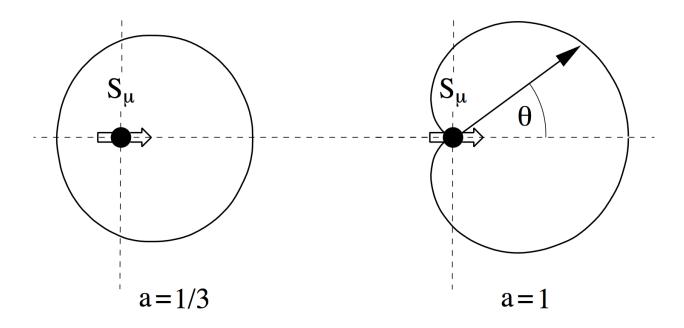
One of the 24 calorimeters detects positron. Cutting on high energy e⁺ in lab frame selects muons with spin direction along momentum. Rate will oscillate.

After each circuit, muon momentum vector rotates by 360°, spin vector rotates 372°, additional 12° from where it was on its previous circuit around the ring.


Typical muon circles ring 400 times before decaying to a positron (plus neutrinos). In rest frame, the most energetic e⁺ emitted in direction of the muon spin.

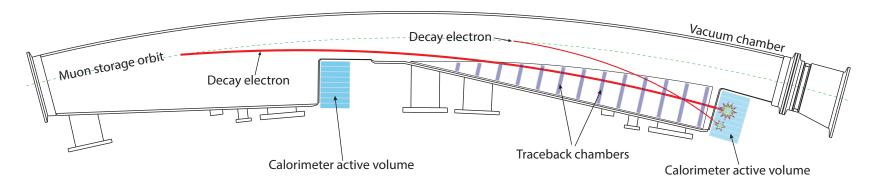
Overview of the the Experimental Method

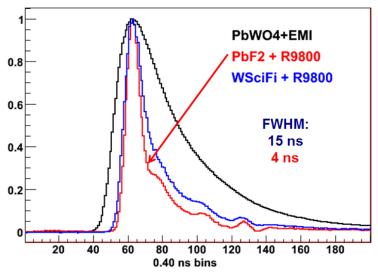
• Thomas-BMT: Spin vector precession ω_s faster than momentum vector cyclotron precession ω_c :

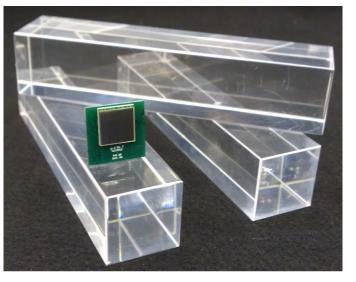

$$\vec{\omega}_a = \vec{\omega}_S - \vec{\omega}_C = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \left(\frac{mc}{p} \right)^2 \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

- ullet Cancel term from electrostatic vertical focusing at $p_{
 m magic}=m_\mu c/\sqrt{a_\mu}pprox$ 3.094 GeV/c
- \Rightarrow Experiment measures two quantities: (1) difference in precession rates anomalous precession frequency ω_a and (2) magnetic field \vec{B} averaged over muon distribution in ring
 - Difference directly sensitive to $a_{\mu} \approx \alpha/2\pi \approx 0.00116...$, not $g_{\mu} \approx 2.00232...$

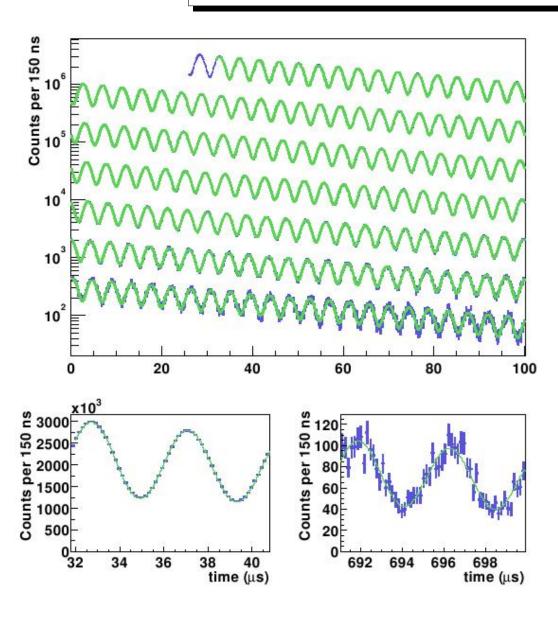
Sub-ppm corrections applied due to vertical betatron motion (pitch correction) and muons not at magic γ


- To measure ω_a , need to know muon spin direction when it decayed
- Nature is kind here : muon decay $\mu^+ o e^+
 u_e ar{
 u}_\mu$ is self-analyzing due to PV
- Rest frame: Muon spin direction correlated with decay positron direction


- ullet Averaged over all positron energies, forward-backward asymmetry wrt muon spin is a=1/3
- For highest energy positrons (3.1 GeV), asymmetry a=1
- $E_{\rm lab} \approx \gamma E^* \left(1 + \cos \theta^*\right) \implies {\sf positron\ energy\ correlated\ with\ muon\ spin}$
- Detect decay e^+ above 1.8 GeV \Leftrightarrow cut on θ^* , reconstruct muon spin direction versus time


Figures from thesis of Alex Grossmann

Detecting the e^+ from Muon Decay: Dave Herzog UW + Collaborators


- ullet 24 calorimeter stations detect e^+ from muon decay made from PbF $_2$ crystals
- Calorimeter segmented to handle pileup: 9×6 crystals of $2.5 \times 2.5 \times 14$ cm³
- Čerenkov light detection with silicon photomultipliers (SiPMs), E resolution 2.8% at 3.5 GeV
- Smaller Moliere radius (1.8 cm), X_0 =0.93cm, greater segmentation, greater immunity to pileup then BNL E821
- ullet Signals digitized with 800 MHz 12-bit waveform digitizers for 700+ μ s, extract e^+ signals offline

Measurement of ω_a

$$N_{\text{ideal}}(t) = N_0 \exp\left(-t/\gamma \tau_{\mu}\right) \left[1 - A \cos\left(\omega_a t + \phi\right)\right]$$

← Wiggle plot from BNL E821

$$\bullet \ \omega_a \approx \frac{e}{m} a_\mu B = 2\pi \times 229 \ \mathrm{kHz}$$

• $3.6 \times 10^9 \ e^+$ above 1.8 GeV/c

$$\frac{\delta\omega_a}{\omega_a} = \frac{\sqrt{2}}{\omega_a \gamma \tau_\mu A P \sqrt{N}}$$

- $\gamma \tau \approx 64.4 \ \mu s$, $A \approx 0.4$, $P \approx 0.95$
- Need $N \approx 1.6 \times 10^{11}$ for 100 ppb
- Corrections for muon losses, pileup, coherent betatron oscillations

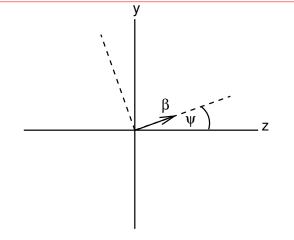
ullet Largest systematics uncertainties on ω_a from BNL E821 and FNAL E989 goals:

Category	E821	E989 Improvement Plans	Goal
	[ppb]		[ppb]
Gain changes	120	Better laser calibration	
		low-energy threshold	20
Pileup	80	Low-energy samples recorded	
		calorimeter segmentation	40
Lost muons	90	Better collimation in ring	20
CBO	70	Higher n value (frequency)	
		Better match of beamline to ring	< 30
E and pitch	50	Improved tracker	
		Precise storage ring simulations	30
Total	180	Quadrature sum	70

- Lab-frame energies of e^+ from μ^+ decay depend on angle between μ spin and momentum vectors; highest energy when parallel
- ullet Detector gain changes affect reconstructed e^+ energy, changes phase of detected μ^+

$$\Rightarrow \phi_0 \Rightarrow \phi_0 + (d\phi/dt)\delta t \Rightarrow \cos(\omega_a t + \phi_0) \Rightarrow \cos[(\omega_a + d\phi/dt)t + \phi_0]$$

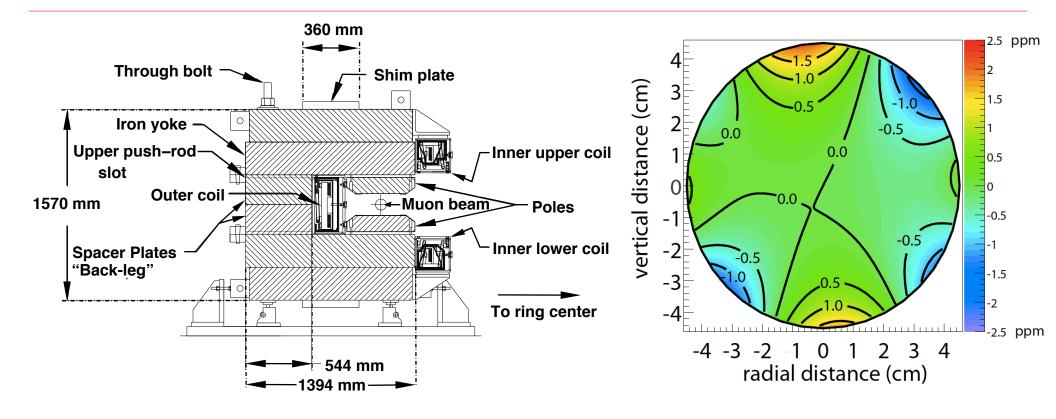
• Hadronic flash much reduced from BNL E821, detectors remain on during muon injection


Corrections to ω_a : Electric Field and Pitch Correction

$$\vec{\omega}_a \approx \vec{\omega}_S - \vec{\omega}_C = -\frac{e}{m} \left[a_\mu \vec{B} - a_\mu \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

- Electric field correction: Not all muons at magic momentum, $p=p_m+\Delta p$,
- Storage ring momentum acceptance $\Delta p \approx \pm 0.5\%~p_m,~p_m \approx 3.094~{\rm GeV}/c$
- Measure momentum distribution from fast-rotation analysis, decay e^+ tracking chambers, muon fiber beam monitors: BNL E821 correction $+470~\rm ppb$

ullet Vertical betatron motion: $egin{aligned} ec{eta} \end{aligned}$ not perpendicular to $ec{\mathbf{B}}$

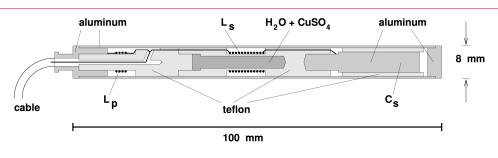

$$\omega_a' \approx \omega_a \left(1 - \frac{\psi^2}{2}\right)$$

- BNL E821 pitch correction $+270 \pm 36$ ppb
- Electric field and pitch corrections reduce observed frequency, only corrections made
- ullet Improved E989 muon tracking brings E field and pitch uncertainties to 30 ppb level

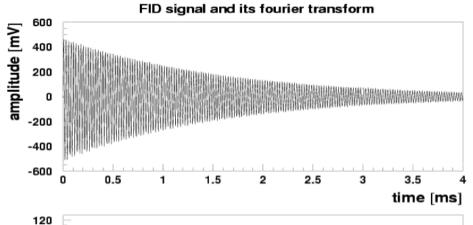
Measuring ω_p : The Storage Ring Magnet

- Superferric C-magnet, 680 tons of iron, 4 superconducting coils 24 windings each, 5200
 A, 7.112 m radius, 9 cm diameter storage volume, 1.4513 T
- ullet Need to know $oldsymbol{B}$ absolutely at 70 ppb level \Rightarrow high homogeneity and stability required
- Designed as shimmable kit: passive (wedges, edge shims), active (surface coils)

- ullet BNL E821 achieved high homogeneity $pprox \pm 60$ ppm variations over azimuth
- Average over azimuth \Rightarrow at 1 ppm level over muon storage volume


$m{B}$ Field Measurement and ω_p Systematics

- E989 relies on precision measurement of two quantities, ω_a and magnetic field $B \approx 1.4513 \mathrm{T}$:
- Measure field with pulsed proton NMR: $\hbar\omega_p=2\mu_p B$

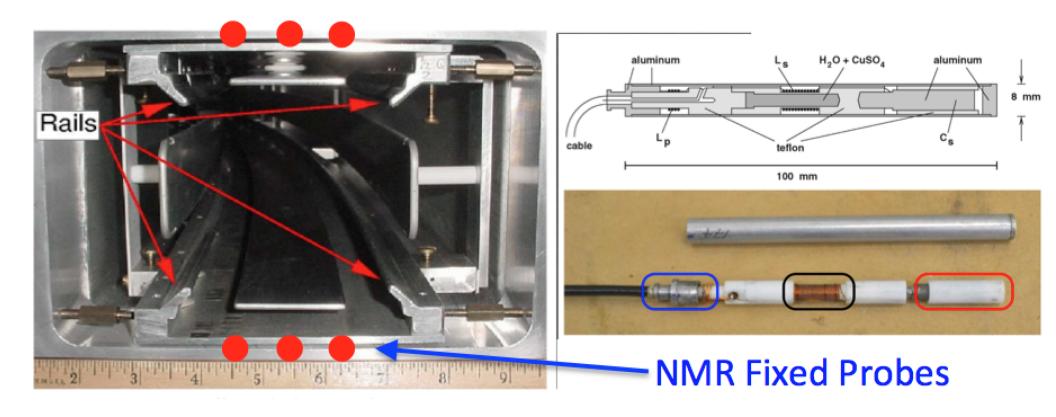

$$a_{\mu} = \frac{\omega_a}{\omega_p} \frac{\mu_p}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

- ω_p : free proton precession frequency weighted by muon distribution $\approx 2\pi \times 61.79~\text{MHz}$
- \Rightarrow Goal is to determine ω_p , reducing uncertainty from 170 ppb (BNL E821) to 70 ppb (E989)

B Field Measurement with Pulsed NMR

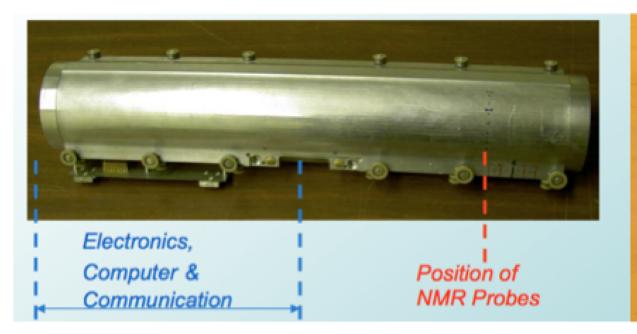
ullet Field measured with pprox 400 new NMR probes positioned around 45 meter circumference of ring

- ← Free induction decay signal and Fourier transform
 - Signals typically last 1 ms
 - ullet Signal : noise $\geq 100:1$
 - Frequency resolution \approx linewidth/[S/N] ≈ 130 Hz / 100 = 1.3 Hz
- Fractional resolution: $\delta f_{\rm NMR}/f_{\rm NMR} = 1.3~{\rm Hz}/61.79~{\rm MHz} \Leftrightarrow$


20 ppb resolution on field, single shot

- 4 ppm
 20
 39.5 40 40.5 41 41.5 42
 frequency [kHz]
- Fully digitization of FIDs: more robust and higher resolution field determination
- ullet Corrections necessary to get from measurements in NMR probes to ω_p of $free\ proton$
- \Rightarrow Need absolute calibration of probes in terms of free proton precession frequency; demonstrated at level of 34 ppb (see X. Fei et al., Nucl. Inst. Meth. A 394, 349 (1997))

100 80


Overview of B Field Measurement: Fixed Probe System

- ullet Need Larmor frequency ω_p of free protons in storage volume while muons are stored
- (1) Fixed NMR probes measure field at same time as muons stored, but outside storage volume in almost 400 locations
 - All probes to be read out every 3 seconds

Overview of B Field Measurement: NMR Trolley

- (2) Field inside storage volume measured by NMR trolley, but not when muons stored
 - Fixed probes are cross-calibrated when trolley goes by; can infer field inside storage volume when muons stored from fixed probes

(3) Trolley probes calibrated in terms of free proton frequency by an absolute calibration probe

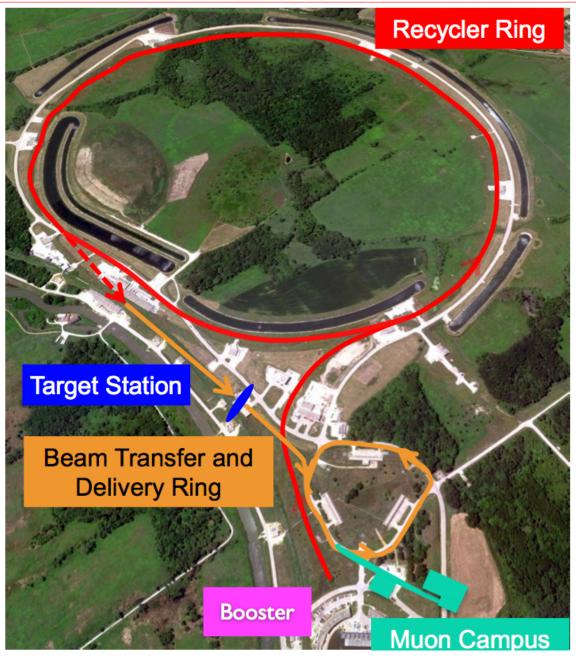
Systematics Improvements over BNL E821

Category	E821	Main E989 Improvement Plans	Goal
	[ppb]		[ppb]
Absolute field calibration	50	Improved T stability and monitoring, precision tests in MRI	35
		solenoid with thermal enclosure, new improved calibration	
		probes	
Trolley probe calibrations	90	3-axis motion of plunging probe, higher accuracy position de-	30
		termination by physical stops/optical methods, more frequent	
		calibration, smaller field gradients, smaller abs cal probe to	
		calibrate all trolley probes	
Trolley measurements of B_0	50	Reduced/measured rail irregularities; reduced position uncer-	30
		tainty by factor of 2; stabilized magnet field during measure-	
		ments; smaller field gradients	
Fixed probe interpolation	70	Better temp. stability of the magnet, more frequent trolley	30
		runs, more fixed probes	
Muon distribution	30	Improved field uniformity, improved muon tracking	10
External fields	-	Measure external fields; active feedback	5
		-	_
Others †	100	Improved trolley power supply; calibrate and reduce temper-	30
		ature effects on trolley; measure kicker field transients, mea-	
		sure/reduce O_2 and image effects	
Total syst. unc. on ω_p	170		70

• Improved temperature and floor stability in new experimental hall will help

E989: Fermilab offers advantages, factor 4 improvement possible

Recycler


• Rebunches 8 GeV protons from booster

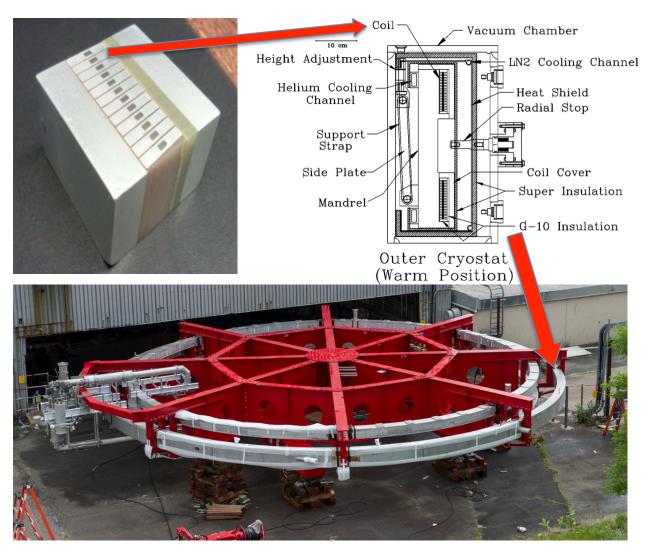
Target Station

Target + focusing lens

Decay Line

- Target to M2 to M3 to delivery ring
- \Rightarrow 1900 m long decay channel for π \Rightarrow μ reduced π and p in ring, factor 20 reduction in hadronic flash
- \Rightarrow 4× higher fill frequency than E821
- ⇒ Muons per fill about the same
- \Rightarrow 21 times more detected e^+ , 2×10^{11}
- ⇒ Better temperature control in experimental hall
- → Reduction in systematics by factor of 3 without major modifications

E989: Rate Estimates

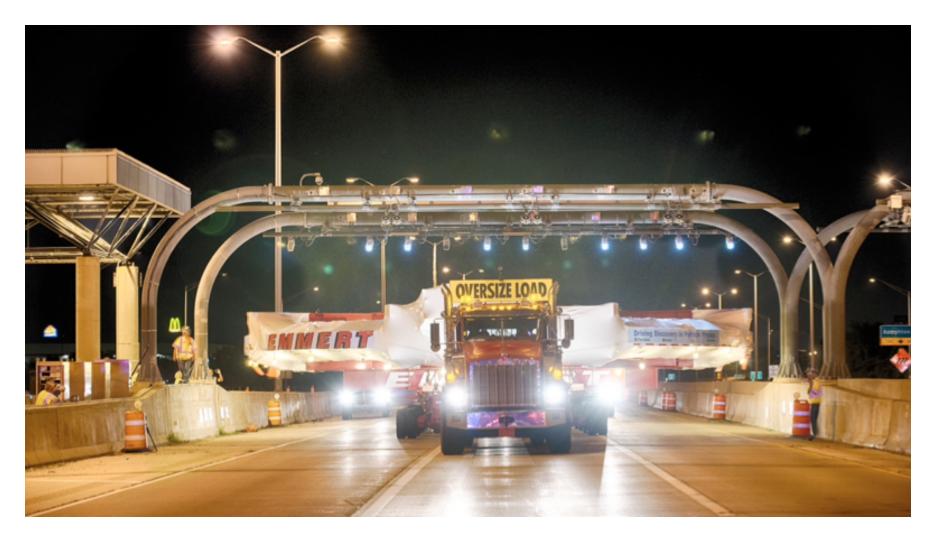

Table 5.1: Event rate calculation using a bottom-up approach.

Item	Factor	Value per fill
Protons on target		10^{12} p
Positive pions captured in FODO, $\delta p/p = \pm 0.5\%$	1.2×10^{-4}	1.2×10^{8}
Muons captured and transmitted to SR, $\delta p/p = \pm 2\%$	0.67%	8.1×10^{5}
Transmission efficiency after commissioning	90%	7.3×10^5
Transmission and capture in SR	$(2.5 \pm 0.5)\%$	1.8×10^4
Stored muons after scraping	87%	1.6×10^4
Stored muons after 30 μs	63%	1.0×10^4
Accepted positrons above $E = 1.86 \text{ GeV}$	10.7%	1.1×10^3
Fills to acquire 1.6×10^{11} events (100 ppb)		1.5×10^{8}
Days of good data accumulation	17 h/d	202 d
Beam-on commissioning days		150 d
Dedicated systematic studies days		50 d
Approximate running time		$402 \pm 80 \; d$
Approximate total proton on target request		$(3.0 \pm 0.6) \times 10^{20}$

- Estimated rates from Technical Design Report, arXiv:1501.06858
- Will need about 2 years running to reach statistics goals (100 ppb on ω_a)

From BNL E821 to E989 at Fermilab

- 650 ton magnet iron yoke and pole pieces are disassembled, transported by truck to FNAL
- 8 ton, 15 m diameter superconducting coils must be transported in one piece
- ullet Keep accel <1 g, protect delicate superconductor, cooling lines, heat shield, G10 straps,



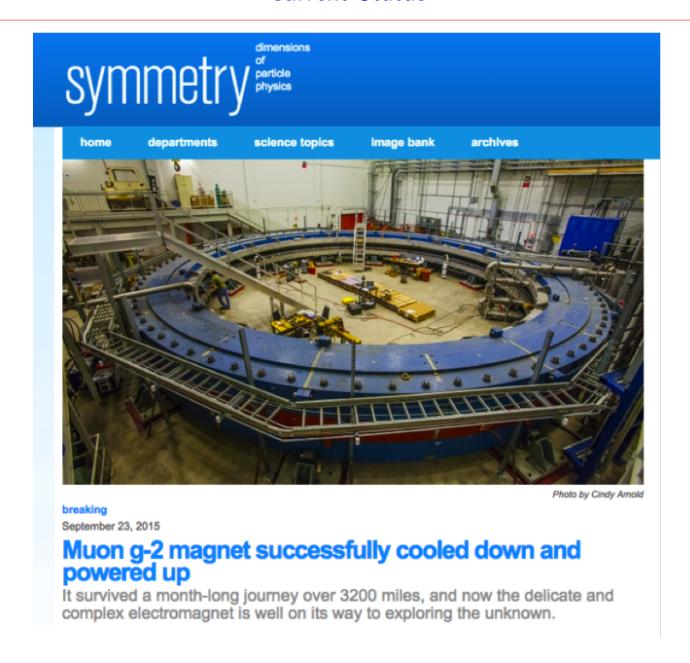
From BNL E821 to E989 at Fermilab

 \bullet Coils moved by barge up Mississippi. Constant monitoring of acceleration, always $<\!12$ hrs to safe harbor. Accel $<\!1g$, tilt $<\!30^\circ.$

Transporting the coils to FNAL : E-ZPass

- Trailer with coils passes toll arches with 6" clearance on each side
- "Nature is hard and unyielding" Martin Perl, Reflections on Experimental Science
- We were lucky this time

Coils arrvived at Fermilab July 2013 and installed July 2014

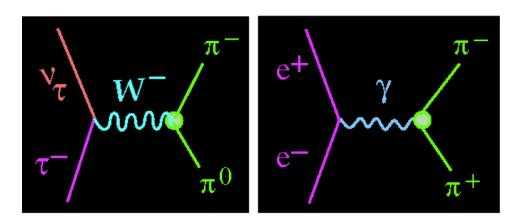


E989 Collaboration: 35 Institutes; 156 Members

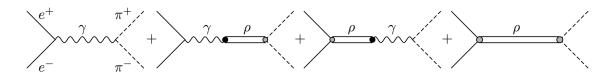
Current Status

• Magnet cold and powered to full field in Sept 2015 - shimming underway

Summary

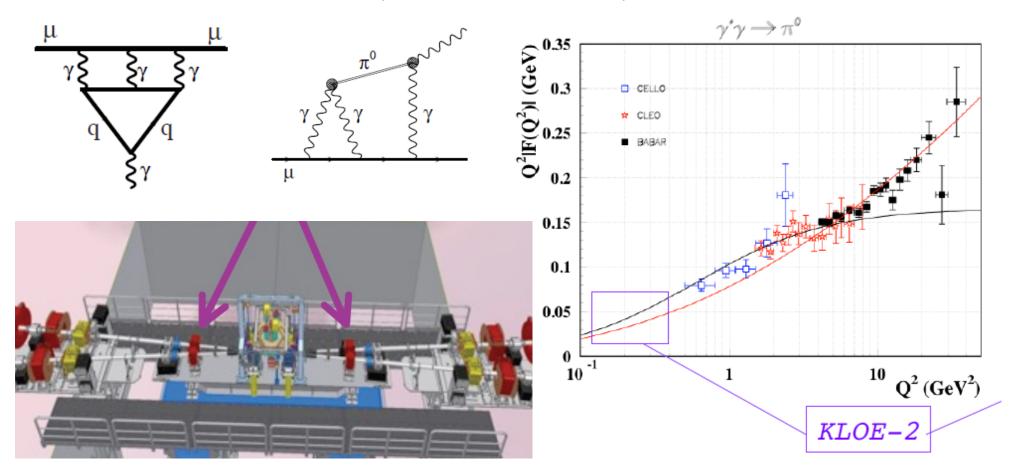

- ullet Experiment will measure a_{μ} to 140 ppb, fourfold improvement over BNL E821
- Reduction in statistical uncertainty by factor 4; reduce ω_a , ω_p systematics by factor 3
- Magnet cold and energized, shim and install detectors by 2016, first data 2017
- Hope to motivate improvements in theory and more exp. work :
 - Currently $\delta a_{\mu}(\text{HadVP,LO}) = 0.36$ ppm, and $\delta a_{\mu}(\text{Had,LBL}) = 0.23$ ppm
- Before E821 (1983), expt. known to 7 ppm, theory to 9 ppm: now 0.54 and 0.42 ppm
- ullet Regardless of where final result for a_μ lands :
 - Precision test of Standard Model and constraint on all future models
 - Provide complementary information to direct searches at LHC, CLFV, EDMs

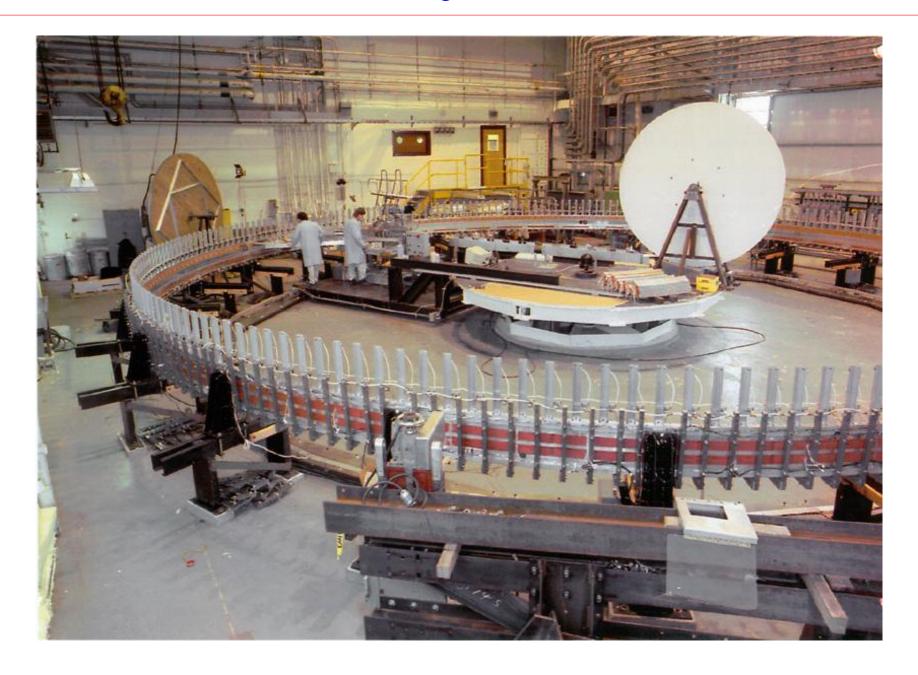
E989 : New Muon g-2 Experiment at Fermilab



What to do with $a_{\mu}(HadVP,LO)$ based on τ data?

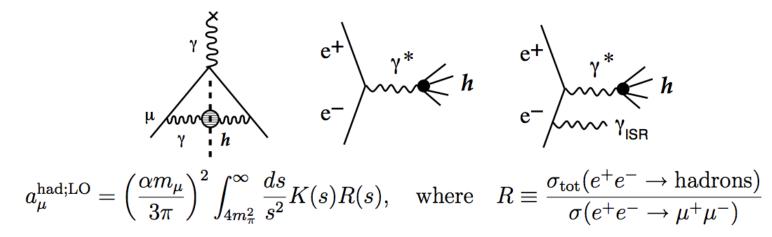
• Evaluate $a_{\mu}(\text{HadVP,LO})$ using dispersion integral from threshold to τ mass from hadronic τ decays: relate decay rate $\tau^- \to \pi^- \pi^0 \nu_{\tau}$ to $e^+ e^- \to \pi^+ \pi^-$:


- ullet Attractive option since lots of precision au data from LEP, CLEO
- Caveats: need to invoke CVC, and apply isospin corrections
- ullet au data has only isovector component, insert by hand isoscalar contribution present in e^+e^-
- τ and e^+e^- values for $a_\mu(\text{HadVP,LO})$ compatible once $\rho-\gamma$ mixing accounted for (F. Jegerlehner and R. Szafron, Eur. Phys. J C71, 1632 (2011))

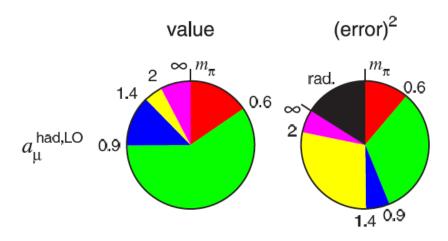

 \Rightarrow Lattice QCD experts suggest percent level determination of $a_{\mu}(HadVP,LO)$ possible.

What about $a_{\mu}(\text{Had}; LBL) = 105 \pm 26 \ (\times \ 10^{-11})$?

- $a_{\mu}(Had; LBL)$ non-perturbative, high order correction. Value stable since sign error corrected 2002.
- Important might dominate theoretical uncertainty soon
- KLOE-2 will measure $\gamma^* \gamma \to \pi^0$ at low Q², dominant contribution
- Might reduce leading uncertainty on $a_{\mu}(Had; LBL)$
- \Rightarrow PrimEx effort to reduce uncertainty on π^0 decay width, pion polarizability measurement important
 - Lattice QCD effort underway as well (T. Blum and collaborators)

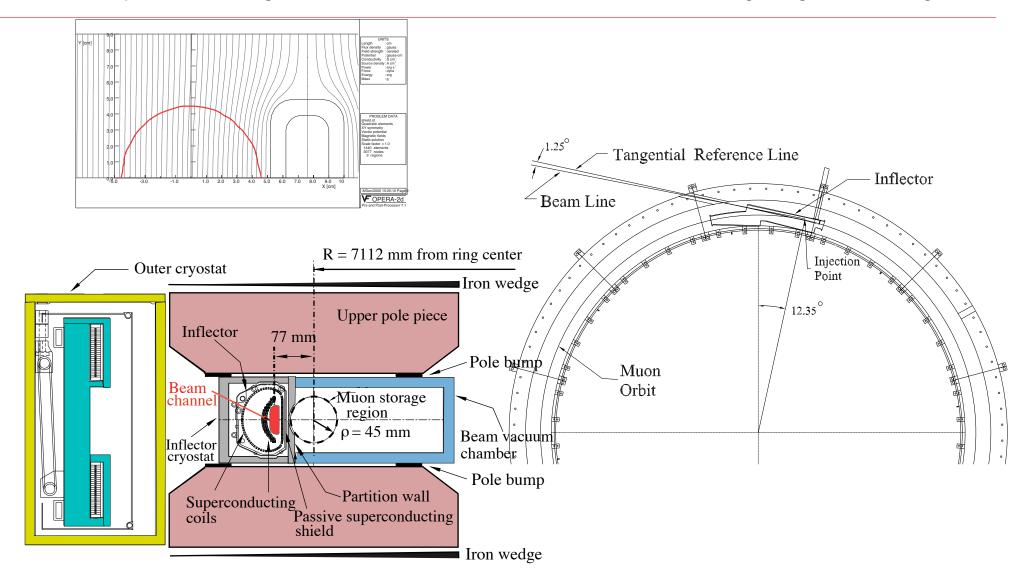


Winding the Coils

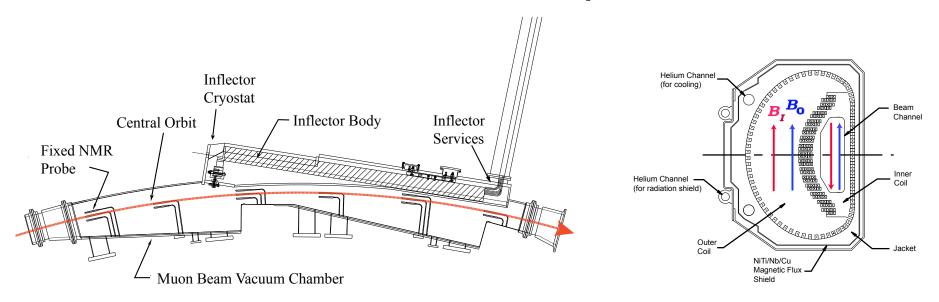


Contributions to Had-VP Dispersion Integral

 $a_{\mu}^{\mathrm{had;LO}}$ can be extracted from measurements by SND, CMD2, BaBar, KLOE, Belle



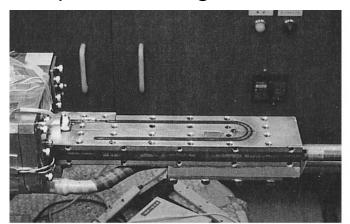
- CMD3 will measure up to 2.0 GeV, using energy scan and ISR, good cross-check
- KLOE will measure $\gamma^* \gamma^* \to \pi^0$, might reduce uncertainty on $a_{\mu}(Had;LBL)$
- Dispersion integral weights cross-section ratio R(s) as $1/s^2$, low energy important
- ullet K. Hagiwara et~al., J. Phys. G38, 085003 (2011) : contribution to $a_{\mu}^{
 m had,LO}$ and uncertainty

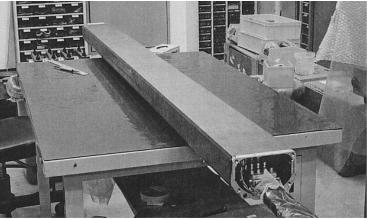

The Superconducting Inflector

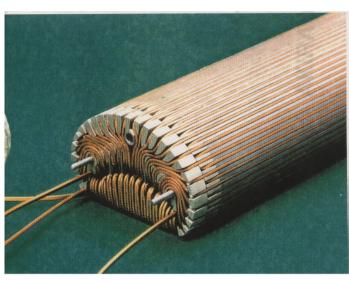
- Have to get the muon beam into the storage ring from zero field area outside to 1.45 T inside beam strongly deflected unless we cancel this field
- Use a superconducting flux-exclusion tube? Perturbations in storage region too large

Superconducting Inflector

• Base plan: use double- $\cos\theta$ design from BNL E821, $\int \vec{B} \cdot d\vec{L} = 2.55 \text{ T} \cdot \text{m}$

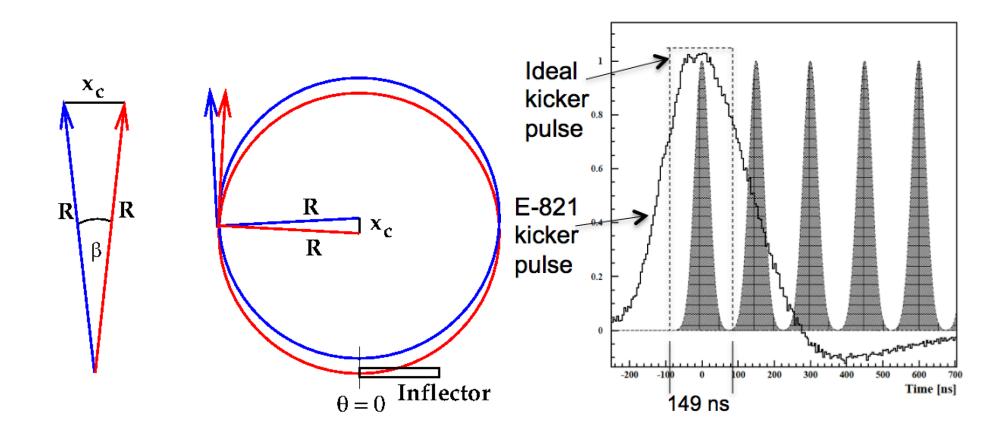


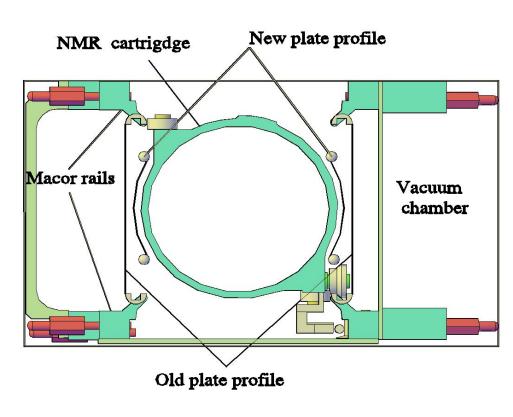

• Procedure :

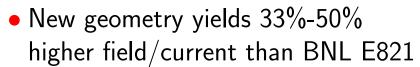

- Warm inflector+Type II SC shield, turn on main magnet, flux penetrates inflector and SC shield
- ullet Cool inflector and shield, since $H>H_{C1}$ field fully penetrates shield
- Energize coils cancels field in beam channel, eddy currents in passive shield prevents flux leaking out
- ullet Cancels B field in beam channel, no perturbation to field outside SC shield

Superconducting Inflector

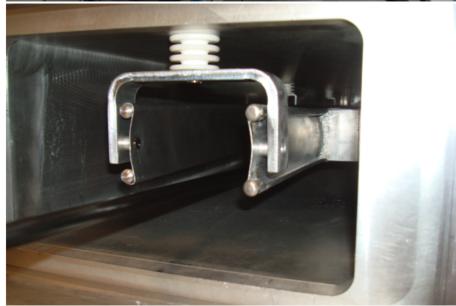
Versions of superconducting inflector with closed and open ends

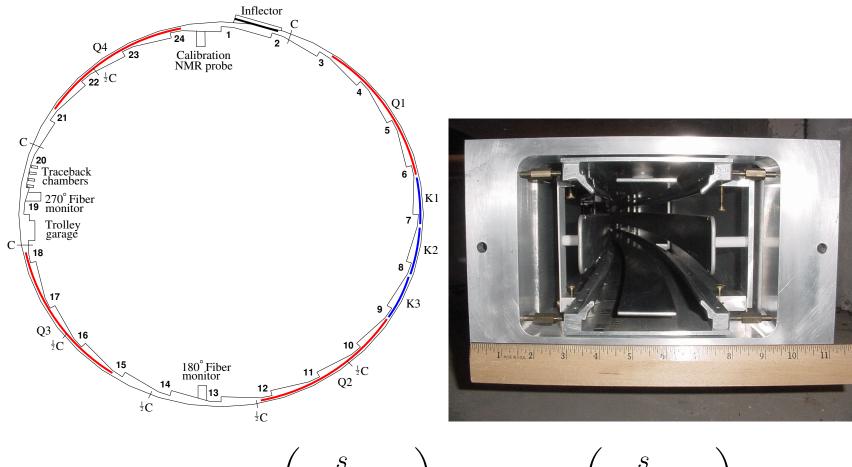



- BNL E821 inflector closed ends, significant multiple scattering, aperture 18×56 mm², injection efficiency $\approx 2\%$
- New inflector : open ends, $40\times 56~{\rm mm^2}$ (storage aperture $\pm 45{\rm mm}$) $\to~4\times$ more stored muons, could do μ^- and μ^+


The Fast Muon Kicker

- Muons exit the inflector, enter storage region at radius 77 mm outside ideal closed orbit
- \bullet Muons cross ideal orbit $\approx~90^\circ$ later in azimuth, angle off by 10.8 mrad
- Including momentum spread, multiple scattering in inflector, need 14 mrad kick
- ullet Temporarily reduce ${f B}$ by 280 Gauss, $\int ec{B} \cdot dec{L} {=} 1.4$ kG·m for 14 mrad kick
- Pulse width 80 ns < au<149 ns, 100 Hz, 10% homogeneity

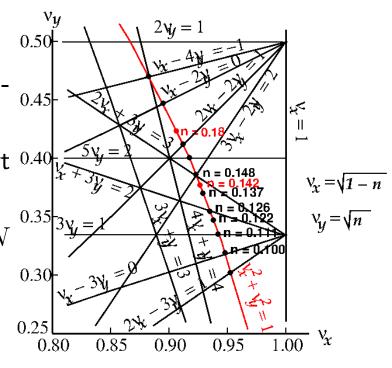

The Fast Muon Kicker


- 3×1.7 m stripline kickers, Blumlein PFN
- Tracking studies determine optimal shape
- Dave Rubin and collaborators at Cornell

Storing the Muon Beam: Vertical Focusing Electric Quadrupoles

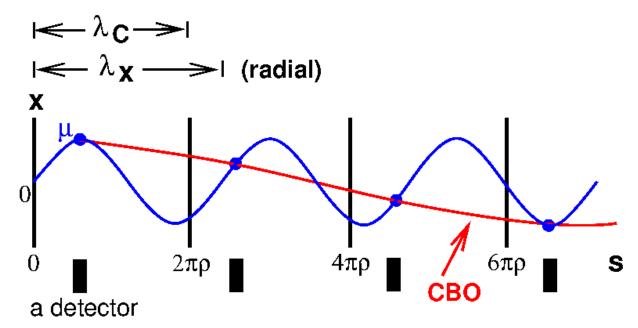
- Storage ring is a weak-focusing betatron using electric quadrupoles for linear restoring force in vertical, $\kappa = dE_y/dy$, field index $n = \kappa R_0/\beta B_0 \approx 0.137$
- ullet Uniform quadrupole field leads to simple harmonic motion radial x and vertical y betatron oscillations of beam

$$x = x_e + A_x \cos\left(\nu_x \frac{s}{R_0} + \delta_x\right), \ y = A_y \cos\left(\nu_y \frac{s}{R_0} + \delta_y\right)$$


Stored Beam Dynamics and Related Systematic Uncertainties

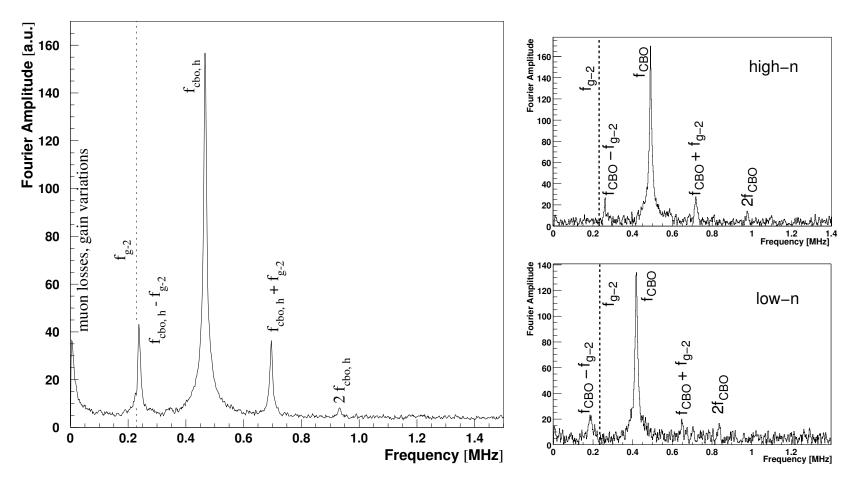
$$x = x_e + A_x \cos\left(\nu_x \frac{s}{R_0} + \delta_x\right), \ y = A_y \cos\left(\nu_y \frac{s}{R_0} + \delta_y\right)$$

$$\nu_x = \sqrt{1 - n}, \ \nu_y = \sqrt{n}, \ n \approx 0.137, \ f_x = f_C \sqrt{(1 - n)} \approx 0.929 f_C, \ f_y = f_C \sqrt{n} \approx 0.37 f_C$$


Quantity	Expression	Frequency [MHz]	Period $[\mu s]$
f_a	$\frac{e}{2\pi mc}a_{\mu}B$	0.228	4.37
f_C	$\frac{v}{\pi R_0}$	6.7	0.149
f_x	$\sqrt{1-n}f_c$	6.23	0.160
$\mid f_y \mid$	$\int \sqrt{n} f_c$	2.48	0.402
$f_{ m CBO}$	$f_c - f_x$	0.477	2.10
$f_{ m VW}$	$\int f_c - 2f_y$	1.74	0.574

- ullet Perturbations of stored muon beam from ideal circular orbit affect ω_a
- \Rightarrow Resonances in ring cause muon beam losses, distort $^{0.40}$ time spectrum
 - Resonances occur if $L\nu_x + M\nu_y = N$ where L, M, N integers. Operating points have $\nu_x^2 + \nu_y^2 = 1$

Coherent Betatron Oscillations (CBO)


- Detector acceptance depends on muon radius at decay coherent radial motion modulates electron time spectrum
- ullet Radial betatron wavelength (blue line) is longer than circumference (cyclotron wavelength), $f_x < f_{
 m C}$
- ullet At fixed detector location, each pass of bunched beam appears at different radius moving at $f_{
 m CBO}$
- ullet CBO frequency $f_{
 m CBO}=f_{
 m C}-f_x$ must be kept far from f_a

- Cyclotron wavelength marked by black lines, single detector by black block, betatron oscillations in blue
- ullet Red line : apparent radial breathing in and out of beam at $f_{
 m CBO}$
- Effect nearly cancels when all detectors added together

Coherent Betatron Oscillations (CBO)

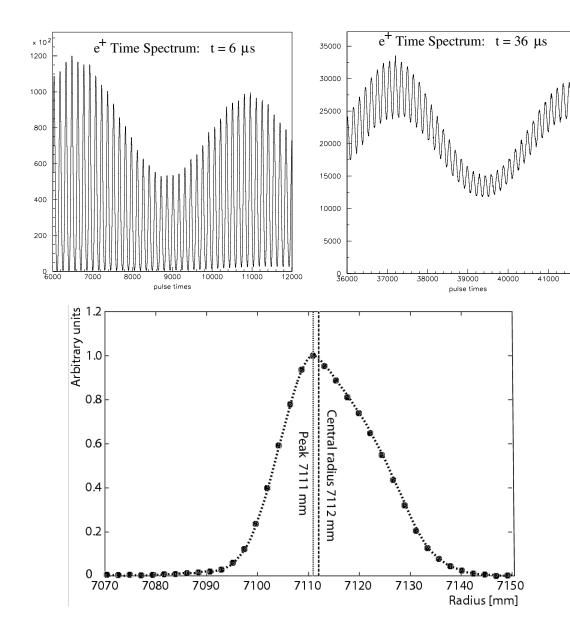
- ullet In BNL E821 2000 data taken when CBO frequency close to f_a can be seen in residual to 5 parameter fit
- ullet In 2001, field index n changed to move $f_{
 m CBO}$ away from f_a

Corrections to ω_a : Radial Electric Field Correction

$$\vec{\omega}_a \approx \vec{\omega}_S - \vec{\omega}_C = -\frac{e}{m} \left[a_\mu \vec{B} - a_\mu \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

- Not all muons at magic momentum, $p=p_m+\Delta p$,
- Storage ring momentum acceptance $\Delta p \approx \pm 0.5\%~p_m,~p_m \approx 3.094~\text{GeV}/c$

$$\frac{p - p_m}{p_m} = (1 - n) \left[\frac{R - R_0}{R_0} \right] = (1 - n) \frac{x_e}{R_0}$$


$$\frac{\omega_a' - \omega_a}{\omega_a} = \frac{\Delta \omega_a}{\omega_a} = -2 \frac{\beta E_r}{c B_y} \left(\frac{\Delta p}{p_m} \right) = -2n(1 - n) \beta^2 \frac{\langle x_e^2 \rangle}{R_0^2}$$

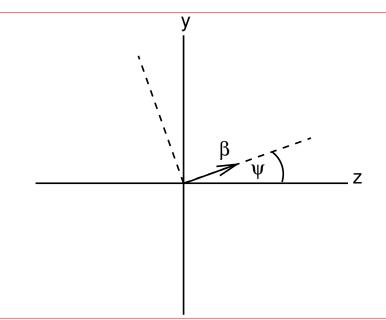
- ullet Momentum distribution from fast-rotation (de-bunching) analysis, decay e^+ tracking chambers, muon beam fiber monitors
- → Correction determined from detailed tracking analysis using actual discontinuous quad geometry

Corrections to ω_a : Radial Electric Field Correction

ullet Momentum distribution from fast-rotation (de-bunching) analysis, decay e^+ tracking chambers, muon beam fiber monitors

42000

- Bunch structure visible at early times, $au_{
 m cyclotron} pprox 149$ ns
- Bunch structure erased by 60μ s due to momentum spread Δp
- ullet BNL E821 injected beam width pprox 23 $^{\circ}$ ns
- BNL E821 $\sqrt{\langle x_e^2 \rangle} \approx 10$ mm \Rightarrow electric field correction $+0.47 \pm 0.05$ ppm
- FNAL E989 beam width ≫ 23 ns
- FNAL E989 uncertainty on correction ± 0.03 ppm using improved traceback system

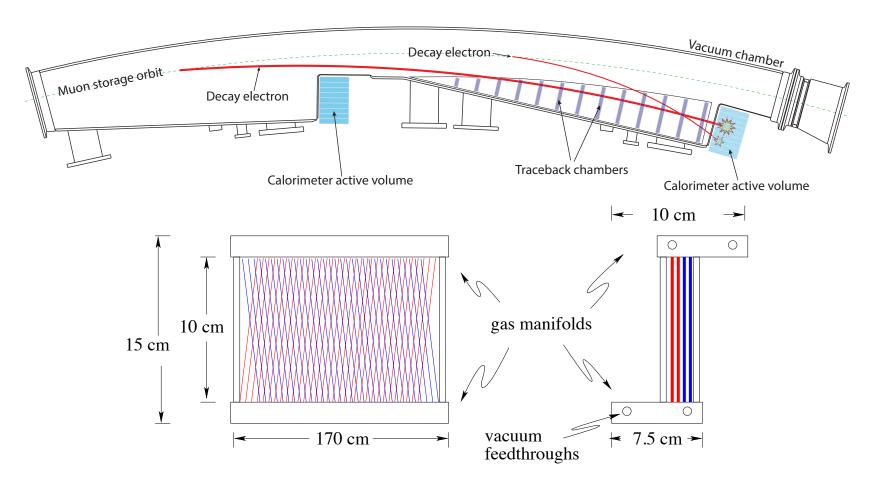

Corrections to ω_a : Pitch Correction

$$\vec{\omega}_a \approx \vec{\omega}_S - \vec{\omega}_C = -\frac{e}{m} \left[a_\mu \vec{B} - a_\mu \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

- Vertical betatron motion
 - ightarrow $ec{eta}$ not perpendicular to $ec{\mathbf{B}}$

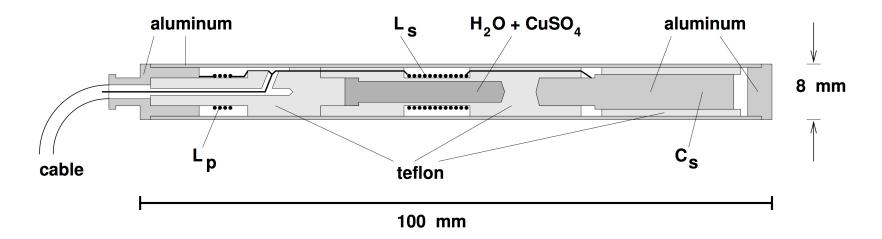
$$\omega_a' \approx \omega_a \left(1 - \frac{\psi^2}{2} \right),$$

$$C_p = -\frac{\langle \psi^2 \rangle}{2} = -\frac{n \langle y^2 \rangle}{R_0^2}$$


- Electric field and pitch corrections reduce observed frequency
- BNL E821 pitch correction $+0.27 \pm 0.036$ ppm
- ullet Electric field and pitch are the only corrections made to the ω_a data
- Improved E989 muon tracking reduces uncertainties ± 0.05 ppm $\Rightarrow 0.03$ ppm level

Determining the Stored Muon Distribution

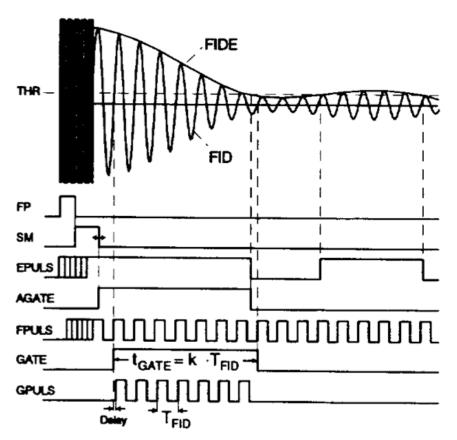
- Need to know muon beam distribution :
 - \bullet Finite momentum spread : not all muons at magic momentum, need ppm-level corrections ω_a from E-field
 - ullet Betatron motion : ppm-level correction because muon momentum not always $oldsymbol{\perp}$ to $ar{\mathbf{B}}$ (pitch correction)
 - Betatron motion of beam leads to time-dependent acceptance changes in calorimeters, must be corrected
 - Muon distribution convoluted with magnetic field map to determine effective magnetic field seen by muons
- Muon beam distribution determined with straw tube trackers


Determining the Stored Muon Distribution: Straw Tube Trackers

- Two tracker stations planned, reside in vacuum chambers 180° and 270° from injection
- 1216 aluminized mylar straws/station, 12 cm long, 1 atm, 80:20 Argon:CO₂, 1400 V, $\pm 7.5^{\circ}$ angle from vertical
- \bullet Vertical angular resolution <10 mrad, momentum resolution <3.5% at 1 GeV
- Brendan Casey FNAL and collaborators

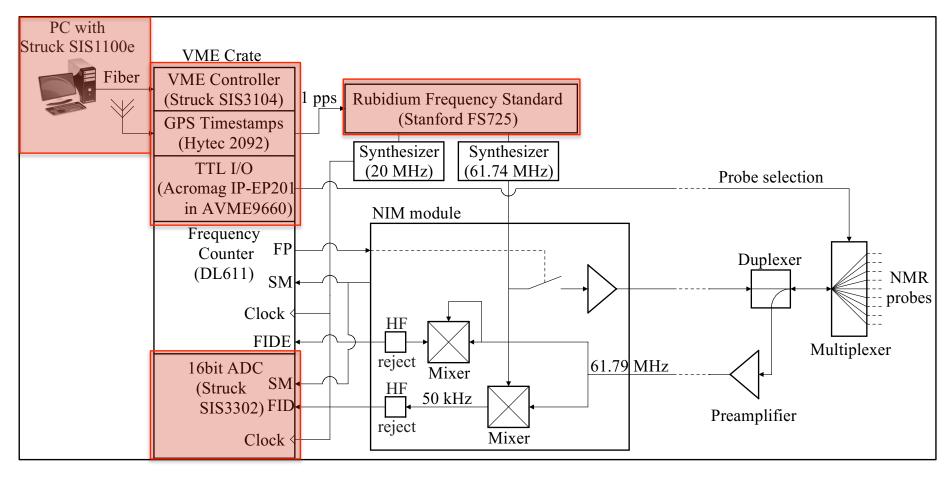
Field Measurement with Pulsed NMR

- ullet Measure field using pulsed NMR to induce and detect free induction decay (FID) of protons in a water sample 1
- ullet Typical NMR probe shown below (field direction vertical, perpendicular to L_s coil axis) :



- ullet RF pulse at $f_{
 m ref}$ =61.74 MHz produces RF magnetic field in coil L_s around sample
- Rotates magnetization of protons in sample perpendicular to main field
- ullet After pulse, proton spins process freely, coherently at $f_{
 m NMR} pprox 61.79$ MHz, $\omega pprox \gamma_{p'} B$
- ullet Rotating magnetization induces V in coil L_s , signal decays exponentially, au~pprox 1 ms

May use petroleum jelly (CAS 8009-03-08) : long $T_2 \approx 40$ ms, doesn't evaporate, low temp. coefficient


Field Measurement with Pulsed NMR

- ullet NMR signal at $f_{
 m NMR}$ goes to low noise amplifier, mixed with $f_{
 m ref}=61.74$ MHz from synthesizer
- ullet Difference frequency $f_{
 m NMR}-f_{
 m ref}\equiv f_{
 m FID}$ ranges from 45-55 kHz, dependent on local field
- ullet Difference of 62 Hz in f_{FID} corresponds to 1 ppm difference in field
- ullet Count zero crossings of this free induction decay (FID) and ticks of clock running at 20 MHz till signal decays to roughly 1/e of peak, pprox 1 ms

- \Rightarrow Local field characterized by Larmor frequency, $f_{\mathrm{NMR}} = f_{\mathrm{ref}} + f_{\mathrm{FID}}$
 - Single shot resolution on $f_{
 m NMR}$ pprox 0.020 ppm
 - Depends on signal duration, S/N
 - See R. Prigl et al., Nucl. Inst. Meth. A 374, 118 (1996).

Block diagram of the proposed NMR electronics shown.

- Multiplexer connects to 20 NMR probes, and contains a duplexer and preamplifier
- DL611 frequency counter, NIM modules, multiplexers, NMR probes from E821 will be refurbished for E989; parts shaded red are new

Field Measurement Task (3): Absolute Calibration

- Construct absolute calibration probe with spherical water sample at known temperature
- ⇒ Larmor frequency of proton in spherical water sample related to that of free proton by :

$$\omega_p(\mathrm{sph} - \mathrm{H}_2\mathrm{O}, T) = [1 - \sigma(\mathrm{H}_2\mathrm{O}, T)] \,\omega_p(\mathrm{free}),$$

- $\sigma({\rm H_2O},T)\approx$ 26 ppm, is the temperature-dependent diamagnetic shielding of the proton in a water molecule
- E821 absolute calibration probe properties known well enough to determine fields in terms of free protons to accuracy of 0.034 ppm

- E821 used this probe with accuracy of 0.050 ppm (limited in part by temp. uncertainties)
- ullet E989 will repeat and improve study of probe properties, $improve\ temperature\ stability$ and monitoring to reduce temperature related uncertainties, calibration goal is 0.035 ppm

Error budget for the ω_p measurement

- Systematic errors on E821 field measurements from 1999, 2000, 2001 listed below
- The final column lists the uncertainties anticipated for E989

Source of uncertainty	R99	R00	R01	E989
	[ppm]	[ppm]	[ppm]	[ppm]
Absolute calibration of standard probe	0.05	0.05	0.05	0.035
Calibration of trolley probes	0.20	0.15	0.09	0.03
Trolley measurements of B_0	0.10	0.10	0.05	0.03
Interpolation with fixed probes	0.15	0.10	0.07	0.03
Uncertainty from muon distribution	0.12	0.03	0.03	0.01
Inflector fringe field uncertainty	0.20	_	_	_
Time dependent external ${\cal B}$ fields	_	_	_	0.005
Others †	0.15	0.10	0.10	0.03
Total systematic error on ω_p	0.4	0.24	0.17	0.070
Muon-averaged field [Hz]: $\widetilde{\omega}_p/2\pi$	61 791 256	61791595	61 791 400	_

- †Higher multipoles, trolley temperature ($\leq 0.05 \text{ ppm/}^{\circ}\text{C}$) and power supply voltage response (0.4 ppm/V, ΔV =50 mV), and eddy currents from the kicker.
- Note the steady reduction in uncertainties achieved in E821