GPD study at J-PARC

Takahiro Sawada Institute of Physics, Academia Sinica

The 10th Circum-Pan-Pacific Spin Symposium on High Energy Spin Physics (Pacific Spin 2015) 6th Oct. 2015, Academia Sinica, Taiwan

Outline

- PDF from Space-like(DIS) and Time-like(Drell-Yan) processes
- **GPD** from Space-like(DVCS, DVMP) and Timelike(Exclusive meson-induced Drell-Yan) processes
- Feasibility study of exclusive pion-induced Drell-Yan ($\pi^- p \rightarrow \mu^+ \mu^- n$) experiment at J-PARC
- Summary

Structure Function and PDF

Bjorken X: longitudinal momentum fraction

3

Extraction of **PDF**

Complementarity between Space-like and Time-like processes

Deep Inelastic Scattering (DIS)

Drell-Yan process

Process	Subprocess	Partons	x range	
$\ell^{\pm}(n,n) \rightarrow \ell^{\pm}Y$	$v^*a \rightarrow a$	a ā a	$r \ge 0.01$	
$c \mid p, n \to c \Lambda$	$\gamma q \rightarrow q$	q, q, g	$x \gtrsim 0.01$	DIS
$\ell^{\pm}n/p \to \ell^{\pm}X$	$\gamma^* d/u \to d/u$	d/u	$x \gtrsim 0.01$	
$pp \rightarrow \mu^+ \mu^- X$	$u\bar{u}, dd \rightarrow \gamma^*$	\bar{q}	$0.015 \lesssim x \lesssim 0.35$	Drel
$pn/pp \rightarrow \mu^+\mu^- X$	$(u\bar{d})/(u\bar{u}) \rightarrow \gamma^*$	\bar{d}/\bar{u}	$0.015 \lesssim x \lesssim 0.35$	Vere
$\nu(\bar{\nu})N \to \mu^-(\mu^+)X$	$W^*q ightarrow q'$	q, ar q	$0.01 \lesssim x \lesssim 0.5$	Yan
$\nu N \to \mu^- \mu^+ X$	$W^*s \to c$	5	$0.01 \lesssim x \lesssim 0.2$	
$\bar{\nu}N \to \mu^+\mu^-X$	$W^*\bar{s} \to \bar{c}$	\overline{s}	$0.01 \lesssim x \lesssim 0.2$	
$e^{\pm}p \rightarrow e^{\pm}X$	$\gamma^* q \to q$	g, q, \bar{q}	$0.0001 \leq x \leq 0.1$	DIS
$e^+p \rightarrow \bar{\nu}X$	$W^+\{d,s\} \to \{u,c\}$	d, s	$x \gtrsim 0.01$	
$e^{\pm}p \rightarrow e^{\pm}c\bar{c}X$	$\gamma^* c \to c, \gamma^* g \to c \bar{c}$	с, д	$0.0001 \lesssim x \lesssim 0.01$	
$e^{\pm}p \rightarrow \text{jet} + X$	$\gamma^* g \to q \bar{q}$	8	$0.01 \lesssim x \lesssim 0.1$	
$p \bar{p} \rightarrow \text{jet} + X$	$gg, qg, qq \rightarrow 2j$	g,q	$0.01 \lesssim x \lesssim 0.5$	
$p \bar{p} \to (W^\pm \to \ell^\pm \nu) X$	$ud \to W, \bar{u}\bar{d} \to W$	u, d, \bar{u}, \bar{d}	$x \gtrsim 0.05$	
$p\bar{p} \to (Z \to \ell^+ \ell^-) X$	$uu, dd \rightarrow Z$	d	$x \gtrsim 0.05$	

Main Processes in Global PDF Analysis

Eur. Phys. J. C (2009) 63: 189–285

Both DIS and Drell-Yan process are tools to probe the quark and antiquark structure in hadrons (factorization, universality)

Extraction of **PDF**

Complementarity between Space-like and Time-like processes

E. Pereza and E. Rizvib, arXiv:1208.1178

Both DIS and Drell-Yan process are tools to probe the quark and antiquark structure in hadrons (factorization, universality)

Generalized Parton Distribution (GPD)

Spatial tomography

- 1+2D description of the nucleon structure
- Correlations among longitudinal momenta and transverse positions
- Connection to quark orbital angular momentum

Generalized Parton Distribution (GPD)

Extraction of **GPD**

Space-like vs. Time-like Processes

Muller et al., PRD 86 031502(R) (2012)

Exclusive pion-induced DY

$$\pi^- N \rightarrow \mu^+ \mu^- N'$$

E.R. Berger, M. Diehl, B. Pire, PLB 523 (2001) 265

$$t = (p - p')^2$$

 $\widetilde{\mathcal{H}}^{du}(\xi,\eta,t)$

 $=\frac{8}{3}\alpha_S \int_{-1}^{1} dz \frac{\phi_{\pi}(z)}{1-z^2}$

 $\times \left[\widetilde{H}^d(x,\eta,t) - \widetilde{H}^u(x,\eta,t) \right],$

$$\begin{split} M^{0\lambda',\lambda} & \left(\pi^- p \to \gamma^* n\right) \\ &= -ie \frac{4\pi}{3} \frac{f_\pi}{Q'} \frac{1}{(p+p')^+} \bar{u} \left(p',\lambda'\right) \\ &\times \left[\gamma^+ \gamma_5 \widetilde{\mathcal{H}}^{du} (-\eta,\eta,t) \right. \\ &+ \gamma_5 \frac{(p'-p)^+}{2M} \widetilde{\mathcal{E}}^{du} (-\eta,\eta,t) \right] u(p,\lambda). \end{split}$$

$$\tau = \frac{Q'^2}{2pq} \approx \frac{Q'^2}{s - M_N^2} = x_B \qquad \eta = \frac{(p - p')^+}{(p + p')^+} = \frac{\tau}{2 - \tau}$$

$$\frac{d\sigma}{dQ'^2 dt d(\cos\theta) d\varphi} = \frac{\alpha_{\rm em}}{256\pi^3} \frac{\tau^2}{Q'^6} \sum_{\lambda',\lambda} |M^{0\lambda',\lambda}|^2 \sin^2\theta,$$

Differential Cross Sections (Q^2 , t, τ)

E.R. Berger, M. Diehl, B. Pire, PLB 523 (2001) 265

angles

10

small s (\rightarrow low beam energy)

CERN (190 GeV) vs. J-PARC (15 GeV)

E.R. Berger, M. Diehl, B. Pire, PLB 523 (2001) 265

σ = 0.65 pb

New Primary Proton Beam Line

J-PARC High-momentum BL

Unseparated secondary beams

- High-intensity secondary Pion beam
- High-resolution beam: $\Delta p/p \approx 0.1\%$

* Sanford-Wang: 15 kW Loss on Pt, Acceptance :1.5 msr%, 133.2 m

Basic Layout of Drell-Yan Experiment ~ Earliest Date ~

Basic Layout of Drell-Yan Experiment

~ Recent Date ~

Dimuon Invariant Mass Spectrum

proton-Uranium collisions at AGS.

J.H. Christenson et al., PRL 25 (1970) 1523

Indium-Indium collisions at 158 GeV/nucleon NA60, PRL 99 (2007) 132302

Extension of J-PARC E50 Experiment for Drell-Yan ($\pi^- p \rightarrow \mu^+ \mu^- X$) measurement

Identifying the Exclusive Drell-Yan Process with Missing Mass Technique

Typical Drell-Yan experiment

Proposed Drell-Yan experiment

J-PARC E50 + Muon ID

Special Features

(Relatively) lower beam energy

 \rightarrow Higher total cross section of exclusive Drell-Yan process

- Open aperture without hadron absorber before momentum measurement
 - \rightarrow Minimizing the multiple-scattering effect.
 - \rightarrow Identifying the exclusive Drell-Yan process with missing mass technique
 - Muon ID and momentum measurement at the forward angles

J-PARC High-*p* BL + E50 + Muon ID will provide the best opportunity to measure the exclusive Drell-Yan process ($\pi^- p \rightarrow \mu^+ \mu^- n$)

Yield Estimation

Event Generator

- Inclusive Drell-Yan
 Pythia 6.4.26 + LHAPDF 5.8.9
- Exclusive Drell-Yan GPD:

Pire 2001: EPJC 23, 675 (2002) Kroll 2013: EPJC 73, 2278 (2013) Kroll 2015: arXiv: 1506.04619

Background
 JAM 1.132

Particle Transportation

+ Detector Response

Geant 4.9.3 (E50 spectrometer + Muon ID)

Total Cross Section

Inclusive Drell-Yan ($M_{\mu\mu}$ >1.5 GeV)

	π-	π+
10 GeV	2.11 nb	0.323 nb
15 GeV	2.71 nb	0.493 nb
20 GeV	3.08 nb	0.616 nb

Exclusive Drell-Yan ($M_{\mu\mu}$ >1.5 GeV, |t-t₀|<0.5 GeV²)

	π- (Pire 2001)	π- (Kroll 2013)	π- (Kroll 2015)
10 GeV	6.28 pb	17.53 pb	140 pb
15 GeV	4.66 pb	10.64 pb	20 pb
20 GeV	3.69 pb	7.24 pb	

Hadronic Background

	π-	π+
10 GeV	26.9 mb	24.8 mb
15 GeV	25.8 mb	24.1 mb
20 GeV	25.1 mb	23.5 mb

21

Experimental Conditions

- **Target**: 57cm $LH_2 (n_{TGT} = 4 \text{ g/cm}^2)$
- ε(DAQ*Tracking*PID) = 0.9*0.7*0.9
- Beam momentum resolution: $\Delta p/p = 0.1 \%$
- **Detector resolution**: $\Delta M/M = 1 \%$
- Exclusive DY: ~ 1.2 events/day/pb for $I_{\text{beam}}=10^7 \, \pi^-/\text{sec}$
- **π⁻ beam momentum**: 10/15/20 GeV/c
- Data Taking Period: 50 days

Expected Missing Mass M_X distribution

- The signal of exclusive Drell-Yan processes can be clearly identified in the missing mass spectrum of dimuon pairs.
- Because of the low event rate, this program could be accommodated into the E50 experiment.

GPD($x_B, t; Q^2$) from space-like and time-like processes

• J-PARC: Time-like approach and large-Q² region.

Summary

- High-energy hadron beam at J-PARC is unique for studying hard exclusive processes.
- Measurement of GPD through the exclusive π-induced Drell-Yan process at J-PARC will offer
 - Information of GPD at large-Q² region.
 - Test of universality of GPD in space-like and time-like processes.
 - Test of QCD-evolution properties of GPD.
 - Test of factorization of exclusive Drell-Yan process.
- The preliminary study of the measurement with J-PARC E-50 spectrometers is **feasible**.

Spares

Nucleon Partonic Structure

Physics Programs at J-PARC E50 + Muon ID

Charm and Strange production

- Charmed Baryon Spectroscopy (E50)
 - Di-quark Correlation in Heavy-quark system
- Ξ baryon (S= -2) spectroscopy (LOI by M. Naruki and K. Shirotori)
- Hard exclusive process
 - Exclusive $\Lambda(1405)$ production at large angles
 - Valence quark structure of $\Lambda(1405)$
 - Transition GPD
- Drell-Yan process
 - Exclusive pion-induced Drell-Yan
 - GPD of proton
 - Pion DA
 - Inclusive pion-induced Drell-Yan:
 - d(x)/u(x) at large x
 - Violation of Lam-Tung relation, BM functions
 - Pion PDF
- Many interesting physics ideas are left out, e.g. the studies using <u>nuclear</u> targets and polarized beam/target.

"GPD" and "Transition GPD"

- $\pi^- p \rightarrow \gamma^* n$
- $\pi^- p \rightarrow \gamma^* \Delta^0$
- $\pi^- n \rightarrow \gamma^* \Delta^-$
- $\pi^+ n \rightarrow \gamma^* p$
- $\pi^+ p \rightarrow \gamma^* \Delta^{++}$
- $\pi^+ n \rightarrow \gamma^* \Delta^+$

- $K^- p \rightarrow \gamma^* \Lambda$
- $K^- p \rightarrow \gamma^* \Lambda(1405)$
- $K^- p \rightarrow \gamma^* \Lambda(1520)$
- $K^-n \rightarrow \gamma^* \Sigma^-$
- $K^+n \rightarrow \gamma^* \Theta^+$

Inclusive DY $(\pi^+/\pi^-) p \rightarrow \mu^+ \mu^- X$ <u>d/u measurement with E-50 Spectrometer + MuID</u>

Projected 12 GeV d/u Extractions

DNP, Oct. 2014, Jen-Chieh Peng

Measuring d(x)/u(x) at large x with pion-induced Drell-Yan

$$\sigma_{DY}(\pi^{-} + p) \sim 4\overline{u}^{\pi^{-}}(x_{1})u^{p}(x_{2}) \text{ for large } x_{1} \text{ and } x_{2}$$

$$\sigma_{DY}(\pi^{+} + p) \sim \overline{d}^{\pi^{+}}(x_{1})d^{p}(x_{2}) \text{ for large } x_{1} \text{ and } x_{2}$$

hence

$$\frac{\sigma_{DY}(\pi^{+} + p)}{\sigma_{DY}(\pi^{-} + p)} \sim \frac{\overline{d}^{\pi^{+}}(x_{1})d^{p}(x_{2})}{4\overline{u}^{\pi^{-}}(x_{1})u^{p}(x_{2})} \sim \frac{1}{4} \frac{d^{p}(x_{2})}{u^{p}(x_{2})}$$

No nuclear correction for deuteron is needed

DNP, Oct. 2014, Jen-Chieh Peng

Dedicated Designs of Hadron Absorber and Trigger

Level-2 trig (Level-1 trig && single muon trigger x2) ~ 0.26 kHz Level-3 trig (Level-2 trig && dimuon trigger matrix) not yet

Main backgrounds and their rejections

